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Abstract

Co-evolution between pairs of residues in a multiple sequence alignment (MSA) of homolo-

gous proteins has long been proposed as an indicator of structural contacts. Recently, sev-

eral methods, such as direct-coupling analysis (DCA) and MetaPSICOV, have been shown

to achieve impressive rates of contact prediction by taking advantage of considerable

sequence data. In this paper, we show that prediction success rates are highly sensitive to

the structural definition of a contact, with more permissive definitions (i.e., those classifying

more pairs as true contacts) naturally leading to higher positive predictive rates, but at the

expense of the amount of structural information contributed by each contact. Thus, the

remaining limitations of contact prediction algorithms are most noticeable in conjunction

with geometrically restrictive contacts—precisely those that contribute more information in

structure prediction. We suggest that to improve prediction rates for such “informative” con-

tacts one could combine co-evolution scores with additional indicators of contact likelihood.

Specifically, we find that when a pair of co-varying positions in an MSA is occupied by resi-

due pairs with favorable statistical contact energies, that pair is more likely to represent a

true contact. We show that combining a contact potential metric with DCA or MetaPSICOV

performs considerably better than DCA or MetaPSICOV alone, respectively. This is true

regardless of contact definition, but especially true for stricter and more informative contact

definitions. In summary, this work outlines some remaining challenges to be addressed in

contact prediction and proposes and validates a promising direction towards improvement.

1 Introduction

Formation of tertiary structure in proteins is dependent on the establishment of close through-

space interactions, often between amino-acid residues distant in sequence. Inter-residue con-

tacts should impose constraints on evolutionary dynamics. Thus, mutations at contacting

pairs are expected to be coupled in the evolutionary record. Such compensatory mutational

coupling in evolutionarily related proteins enables statistical methods to infer which positions

in a multiple sequence alignment (MSA) of structurally homologous proteins may be in
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contact. The idea of using predicted inter-residue contacts, discovered by analyzing MSAs, to

aid in structure prediction has been around for decades [1], but has experienced a resurgence

recently due to the massively increased amount of available sequence data [2–5]. Several inves-

tigators have now shown that the large sequence datasets available today enable much more

robust contact predictions than their smaller counterparts [6–9]. However, any successful con-

tact prediction model must avoid inferring spurious couplings [10]. Indeed, pairs of mutations

can co-occur by chance or appear to couple due to phylogenetic biases, unrelated to maintain-

ing structure [11]. Trying to determine which apparent correlations correspond to contacts

has been approached from a variety of angles, such as enforcing maximum entropy to remove

spurious indirect couplings [12], using probabilistic graphical models to learn correlations

from sparse statistics [2], and estimating evolutionary distance relationships to determine the

significance of correlations [13]. Impressive precision rates upwards of 90% have been

reported for the most confident few predicted contacts [2], which can be enough for practical

structure prediction [14–16].

Several challenges in contact prediction remain to be addressed, however. For instance,

accuracy drops considerably when more than a few contacts are predicted [17]. Additionally,

current methods require large numbers of sequences in the right range of homology that are

unavailable in many practical scenarios [18]. But perhaps more importantly, the high reported

prediction rates are in relation to fairly loose definitions of contact between two residues—for

instance, any two atoms being within 8Å of each other in any available structure belonging to

the family in question [12] or any two Cβ atoms being within 8 Å [19]. This aids in achieving a

high precision rates, but such loose definitions may not be optimal for the purpose of making

predictions about structure.

A reasonable quality measure for a contact definition is the amount of information, per

contact, contributed towards discriminating correct from incorrect structural models. Guided

by this idea, we propose a new contact definition, termed contact degree (CD), and show that

the knowledge of a single CD-based contact eliminates considerably more solution space in

structure prediction than does knowledge of a contact defined via common distance-based cri-

teria. On the other hand, we find that MSA-based contact prediction results in much lower

precision for CD-based contacts as it does for traditional contact definitions. Thus, the

remaining challenges in contact prediction are better revealed by adopting stricter definitions

of contact that are ultimately more informative for structure prediction.

Motivated by these observations, and the need for both an informative contact definition

and accurate prediction rates, we consider an additional source of information that can be

used to supplement co-variation in contact prediction. In particular, we consider the fact that

different amino-acid pairs have different a priori expectations of being in contact, based on

observations in native proteins. These differential expectations are captured within so-called

residue-level statistical contact potentials [20]. While contact potentials cannot encode all of

the information required to fold a structure [21], they can be used to differentiate native struc-

tures from many varieties of decoys [22]. Thus, if a pair of MSA positions predicted to co-vary

tends to be occupied by amino-acid pairs that do not score favorably by a residue-level contact

potential, this should weaken our belief that the pair represents a true contact. On the other

hand, if mutations at this pair of positions appear to compensate for each other in such a way

as to produce consistently favorable contact potentials, this pair may be more likely to be a

true contact. Based on this intuition, we propose a metric that combines a contact potential

with a co-evolution score (from DCA or MetaPSICOV) and show it to improve the precision

of both DCA and MetaPSICOV alone considerably.

The idea of using contact potentials in contact prediction has been put forth in recent work

[19, 23–25]. For example, Jones et al. include contact potential values as one of the many
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features in their neural network for predicting contacts [19]. In the analysis of the EPSI-

LON-CP method developed by [25], the mean contact potential energy is deemed an impor-

tant feature in the neural net. However, to our knowledge, the isolated benefit of contact

potentials towards improving contact prediction has not been studied extensively. Further-

more, it has been unclear to what extent the significant degradation in performance resulting

from the utilization of more informative contact definitions can be mitigated by the incorpo-

ration of contact potentials. Here we show that the added benefit of incorporating contact

potentials can be quite significant, especially in conjunction with contact definitions that are

difficult to predict but highly informative. Further, we find that averaging contact potential

values across all sequences of an MSA (for a given pair of positions) produces significantly

higher improvements in performance. Thus, in summary, this work both points out the signif-

icant room for improvement that remains towards accurately predicting informative inter-res-

idue contacts and proposes a route towards attaining such improvement.

2 Results

2.1 Contact definition and interpretation

The best criterion for classifying a pair of residues as being in contact depends on the applica-

tion—i.e., the meaning that a contact is interpreted to have. For many applications, including

structure prediction and protein design, a reasonable interpretation of a contact would be a

pair of residues that are capable of participating in a direct physical interaction in such a way

as to have significant influence on each other’s amino-acid identities. Such an interpretation

would be particularly well aligned with the goal of predicting contacts based on mutational co-

variation. It follows then that spatial proximity should be an important but not the sole deter-

minant of a contact. The opportunity to establish an interaction, as determined by the sur-

rounding structural environment, should also be a contributor. Traditional distance-based

contact definitions capture the former but not the latter factors. Fig 1 shows several examples

of typical structural circumstances where a distance-dependent definition of contact does not

agree with structural intuition. In particular, we consider three different commonly-used con-

tact definitions: the one proposed by Morcos et al. in presenting the DCA method—i.e., two

residues with at least one pair of non-hydrogen atoms within 8 Å of each other (hereafter

referred to as the “any-heavy” definition) [12], the official CASP definition—i.e., two residues

with Cβ (or Cα in the case of Glycine) atoms within 8Å of each other (referred to as the “Cβ”

definition) [19], and a definition based on a metric used in coarse-grained modeling—two res-

idues with centroids within 6 Å of each other (referred to as the “centroid” definition) [26, 27].

The top row in Fig 1A–1C shows situations where each of these definitions, respectively,

would classify as contacting position pairs that, by structural intuition, should not directly

affect each other’s amino-acid identity; even with stricter thresholds than stated above. For

example, in Fig 1A, the two positions involved are on opposite sides of a β-sheet. On the other

hand, the bottom row in Fig 1A–1C demonstrates examples where each of the above defini-

tions, respectively, would fail to classify as contacting residue pairs that would be expected to

affect each other’s amino-acid identities and, therefore, would be expected to co-vary even

with more generous cutoffs that those typically used.

In order to overcome these flaws, we propose a more structurally informative definition of

a contact, based on the metric of a contact degree, which we have used in prior work [28, 29].

Rather than demarcate a contact based purely on distance, a contact degree considers all possi-

ble amino-acid and rotamer pair combinations for the position pair of interest and produces a

value between 0 to 1 that represents the fraction of interfering rotamer pairs (i.e., those with

non-hydrogen atoms within 3 Å of each other). More formally, the contact degree between
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two positions i and j, denoted CDi,j, is defined as follows:

CDi;j ¼
X

ri2Ri

X

rj2Rj

Cijðri; rjÞ � PiðriÞ � PjðrjÞ ð1Þ

Here, Ri is the set of every allowed rotamer from every amino acid at position i (based on

some rotamer library) that does not clash with the backbone. PiðriÞ is the probability of rota-

mer ri at position i, taken from the rotamer library and normalized to unity over all non-clash-

ing rotamers at i. Cij(ri, rj) is unity if rotamer ri placed at position i interferes with rotamer rj

placed at j (i.e., there are non-hydrogen atoms within 3 Å between the two rotamer side-

chains) and zero otherwise. Thus, if none of the sterically possible rotamer pairs at the two

positions interfere with each other, then CDi,j = 0. At the other extreme, if all sterically possible

rotamer pairs placed at i and j interfere, then CDi,j = 1. To create a binary definition of contact,

a cutoff c can be chosen so that all pairs of positions with a contact degree of at least c are con-

sidered to be in contact. In this study, we use c = 0.1. This gives an average of 4.1 contacts per

residue, which is in line with our structural intuition.

Contact degree addresses the limitations of the distance-based definitions discussed above.

Obviously, spacial proximity contributes to the criterion because position pairs far apart in

space cannot host mutually interfering rotamers. However, the opportunity to interact is also

accounted for by means of assessing contact via allowable rotamers (i.e., rotamers that are

compatible with the surrounding structural environment). For example, all of the cases in

Fig 1. Distance-based contact definitions can flag unreasonable contact geometries or fail to capture position

pairs likely to co-vary. A), B), and C) correspond to any-heavy, Cβ, and centroid-based contact definitions,

respectively. The top row show examples where residue pairs that would be classified as contacting, on the basis of a

rather strict distance cutoff in each case, do not appear to have immediate influence on each other. Whereas the

bottom row demonstrates cases where a rather loose distance cutoff, in each case, would miss an apparent contact (i.e.,

a pair of positions likely to co-vary). The value of the corresponding distance metric, along with the contact degree

value, are shown at the bottom of each panel. Residue pairs of interest are highlighted in thick cyan sticks, with their

Cα atoms shown with spheres. The contacts shown in the top row correspond to position pairs (A126, A141), (A328,

A344), and (V120, V128) from PDB structures 3JUM, 3JU4, and 1LM8 for A)-C), respectively, and those in the bottom

row correspond to position pairs (A55, A62), (C102, C201), and (B144, B153) from PDB structures 1JUH, 1JUH, and

4ACF for A)-C), respectively. These illustrative cases were identified by manual inspection of a random set of 100 PDB

structures. Molecular renderings created with PyMOL.

https://doi.org/10.1371/journal.pone.0199585.g001
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Fig 1 are classified appropriately with a contact-degree cutoff of 0.1 (i.e., the top row is classi-

fied as non-contacting and the bottom row as contacting; corresponding contact degree and

distance values are shown in each panel of Fig 1). As an added benefit, because contact degree

does not rely on the sidechain coordinates of a structure, it is sequence independent. That is,

one can assesses the possibility of a contact between two positions in a protein structural tem-

plate, independent of the specific sequence associated with it (unlike, for example, with the

centroid-based definition). This lends itself better to interpreting contacts as implying muta-

tional co-dependence, especially within an evolutionary protein family.

2.2 Contact potential as a quality measure of contact definition

Given any geometric definition of inter-residue contact, one can derive a corresponding con-

tact potential—a table of statistical pseudo-energies that reflect the relative propensity of differ-

ent amino-acid types to be in contact within native-like protein structures [22, 30, 31]. We

reasoned that a good quality metric for a contact definition would be the predictive power of

the resulting contact potential. Of course, this is not the only quality metric, particularly given

the fact that a contact potential alone is not sufficient to solve structure prediction [21]. Still,

all else being equal, if the contact potential emergent from one contact definition systemati-

cally outperforms that emergent from another definition, it would seem reasonable to con-

clude that the former contact definition is better. Indeed, if a particular definition often

classifies as contacting residue pairs that, in reality, do not significantly interact or influence

each other, the resulting contact potential should have little meaning or predictive power. A

similar argument would apply if a particular definition fails to classify many of the truly mutu-

ally influencing residues as contacting.

To evaluate the quality of our CD-based contact definition, we set out to compare the con-

tact potential emergent from it relative to potentials emergent from several commonly-used

distance-based contact definitions (see Table 1). To isolate just the effect of the contact defini-

tion, we used the same simple reference-state model in all cases. This model assumes random

redistribution of amino acids among contacts, such that the statistical potential associated with

the contact between amino acids a and b is:

Eða; bÞ ¼ � log
Ncða; bÞ

ð1þ Ia;bÞ f ðaÞf ðbÞNc

 !

ð2Þ

Here Nc(a, b) is the number of observed contacts between a and b, f(a) is the frequency of

amino acid a in the database, Nc is the total number of observed contacts (for all amino-acid

pairs), and Ia,b is an indicator variable that evaluates to unity if a and b are different and to

zero otherwise. As the structural database, we used the PISCES set prepared by the Dunbrack

lab that included 8106 structures, each with a maximum resolution of 2.2Å culled at 30%

Table 1. Contact definitions.

Name Superscript Description

CD-based CD contact degree greater than or equal to 0.1

any-heavy 1 at least one pair of non-hydrogen atoms within 8 Å of each other

Cβ 2 Cβ (or Cα in the case of Glycine) atoms within 8 Å of each other

centroid 3 residue sidechain centroids within 6 Å of each other

https://doi.org/10.1371/journal.pone.0199585.t001
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sequence identity [32]. Fig 2 shows the pairwise contact-potential values for the CD-based and

any-heavy-based potentials, which are generally well correlated (R = 0.81), but with non-negli-

gible differences. For example, the mean absolute energy for the CD-based definition is 0.39,

higher than the corresponding value of 0.23 for the any-heavy-based definition. This means

that the degree of over/under-representations in amino-acid identities at contacting positions

is generally higher for the CD-based definition, suggesting that it captures more of the under-

lying structural determinants of a true interaction. The same is also true when comparing the

CD-based definition with Cβ and centroid definitions, which have mean absolute energies of

0.17 and 0.35, respectively. Hereafter, we will refer to the CD-based, any-heavy-based, Cβ-

based, and centroid-based contact potentials as ECD, E1, E2, and E3, respectively (see Table 1).

2.3 Comparison of contact potentials via decoy discrimination

To evaluate the predictive performance of each contact potential, we turned to decoy discrimi-

nation. A common benchmark experiment for structure-prediction scoring functions, it tests

Fig 2. Statistical contact potential values for the CD-based definition of contact (upper right triangle and upper row for hetero- and homo-typic interactions,

respectively) and the looser any-heavy-based definition (lower left corner and left column for hetero- and homo-typic interactions, respectively). Cells are colored

blue to red in ascending order of statistical energies.

https://doi.org/10.1371/journal.pone.0199585.g002
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whether the correct native (or a native-like) protein structure for a given sequence can be iden-

tified from a set that additionally includes incorrect/decoy structures. Specifically, we used two

commonly employed decoy sets: the I-TASSER Decoy Set-II generated by the Zhang lab [33]

and the Rosetta decoy set by the Baker lab [34]. These have been broadly used to test a variety

of scoring methods [35–42]. The decoys in these two datasets were generated differently, and

therefore represent different test cases for a scoring function. I-TASSER decoys were generated

by refining I-TASSER ab initio predictions with the OPLS-AA force field in order to remove

clashes and optimize torsion angles. The Rosetta decoys were generated by swapping native

backbone dihedral angles with random ones from other native structures, filtering out struc-

tures with overly high radii of gyration or those with heavy atom clashes. The I-TASSER set

contains 56 proteins, with 300-500 decoys for each, and the Rosetta set has 59 proteins with

100 decoys for each.

For each protein, the native structure and all of its decoys were scored using each potential.

To evaluate performance, the rank of the native structure based on its score was determined

for each protein in the sets. A rank of 1 means that the native received the most favorable

score, whereas higher ranks indicate that some decoy structures scored better than the native.

Table 2 shows the performance on the I-TASSER Decoy Set-II [33]. Among the four contact

potentials considered, ECD assigns the lowest rank to the native structure (or is tied for the low-

est rank) in 37 cases, whereas E1, E2, and E3 do so in 4, 10, and 10 cases, respectively. Overall,

the ranks assigned by ECD are well below those for all other potentials, and these differences in

performance are highly statistically significant (see Table 2). Table 3 shows the performance

on the Rosetta decoy set [34]. In this case, ECD assigns the lowest rank to the native structure

(or is tied for the lowest rank) in 27 cases, whereas the same is true for E1, E2, and E3 in 7, 17,

and 25 cases, respectively. The Rosetta decoy set appears to be a significantly simpler set than

the I-TASSER one for all contact potentials, so differences in performance are less pro-

nounced. Thus, although ECD numerically outperforms all other potentials here as well, the dif-

ference is statistically significant only in comparison with E1, whereas E2 and E3 perform

similarly to ECD (see Table 3).

Because the only difference between these potentials is the definition of contact (the refer-

ence state is kept the same), the above results strongly suggest that CD is a more informative

criterion for determining residue interactions. Thus, it would appear to be more advantageous

for structural modeling to predict contacts defined via CD than the looser distance-based crite-

rion. To test this claim more directly, we measured the amount of information contributed by

each native contact to decoy discrimination. That is, we asked what fraction of decoys are elim-

inated (on average) by the knowledge of a single contact in the native structure. We found that

for the CD-based definition, an average contact eliminates 64% of the Rosetta decoys whereas

this fraction is 48%, 48%, and 63% for the any-heavy-, Cβ-, and centroid-based definitions,

respectively. Similarly, on average a CD-based contact eliminates 72% of the I-TASSER decoys

compared to 47%, 44%, and 66%, respectively, for the other three contact definitions. This

shows that it would be more advantageous, for the purposes of structure prediction, if evolu-

tionary MSA-based methods predicted contacts under the CD-based definition.

2.4 Contact prediction using different contact definitions

We next asked how well the more valuable CD-based contacts are predicted from MSAs using

the principle of co-evolution. As representative methods, we used 1) the Direct Coupling Anal-

ysis (DCA) approach by Morcos et al. [12], which has aided a number of structure prediction

tasks [43–46]; and 2) MetaPSICOV by Jones et al., a state-of-the-art consensus method that

combines three different co-evolution calculations (PSICOV [47], mean-field DCA [48], and
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CCMpred [49]) with other features (e.g., predicted secondary structure, solvent accessibility,

and others) into a neural network. MetaPSICOV has been among the best performers in the

contact prediction category of recent CASP competitions [19, 50]. In the DCA method, the

direct information (DI) metric computed for all position pairs in an MSA is used to order the

likelihood that each corresponds to a true contact, with a higher DI indicating a more likely

contact. In MetaPSICOV’s case, the output of the neural network produces a value between 0

and 1 termed the precision score, with a higher value indicating a more likely contact. Fig 3

shows the performances of DCA and MetaPSICOV in the context of either the CD-based or

the looser distance-based definitions of true contact. Shown is the positive predictive value

(PPV) as a function of either the number of pairs predicted as contacting (N, Fig 3A and 3C)

or the length-normalized number (i.e., fraction) of predicted contacts (f, Fig 3B and 3D),

respectively.

Though different datasets are used to evaluate DCA and MetaPSICOV in Fig 3 (thus, abso-

lute results are not directly comparable between the two; see Methods), in all cases, the

Table 2. Decoy-discrimination performance of ECD, E1, E2, and E3 potentials (in columns CD, any-heavy, CB, and centroid, respectively) on the the I-TASSER II

decoy set. Shown is the rank of native structure, in each sub-set, by the corresponding contact potential. The ranking of natives by ECD is significantly better than the rank-

ings using the other potentials, with the p-values from the Friedman test being 7.9 � 10−10, 1.3 � 10−5, and 4.5 � 10−5 when comparing ECD with E1, E2, and E3, respectively.

Name CD any-heavy Cβ centroid Name CD any-heavy Cβ centroid

1abv_ 100 221 366 320 1mkyA3 87 267 234 151

1af7__ 13 492 101 101 1mla_2 17 103 194 125

1ah9_ 392 450 212 152 1mn8A 196 392 373 503

1aoy_ 147 397 474 445 1n0uA4 171 269 266 277

1b4bA 3 322 52 6 1ne3A 76 498 537 503

1b72A 392 486 512 534 1no5A 2 36 2 84

1bm8_ 3 208 10 40 1npsA 214 385 363 365

1bq9A 8 389 298 7 1o2fB_ 4 248 246 19

1cewI 137 438 359 243 1of9A 1 507 432 31

1cqkA 2 282 23 76 1ogwA_ 240 333 243 192

1csp_ 220 305 195 255 1orgA 3 65 4 1

1cy5A 48 274 227 249 1pgx_ 379 157 452 349

1dcjA_ 72 2 289 69 1r69_ 17 2 208 110

1di2A_ 226 17 225 198 1sfp_ 61 309 7 211

1dtjA_ 18 284 90 282 1shfA 67 502 335 362

1egxA 83 156 20 13 1sro_ 85 476 6 86

1fadA 95 391 337 430 1ten_ 11 258 256 219

1fo5A 145 289 235 334 1tfi_ 264 234 94 103

1g1cA 32 290 135 35 1thx_ 4 228 40 6

1gjxA 32 474 283 256 1tif_ 12 422 367 486

1gnuA 10 467 441 238 1tig_ 201 478 466 397

1gpt_ 56 383 316 343 1vcc_ 9 550 414 398

1gyvA 12 229 5 60 256bA 335 445 336 335

1hbkA 172 265 234 178 2a0b_ 219 234 221 218

1itpA 376 473 445 250 2cr7A 102 257 101 101

1jnuA 6 236 11 161 2f3nA 274 455 442 274

1kjs_ 240 270 176 339 2pcy_ 249 324 249 354

1kviA 455 475 298 540 2reb_2 45 91 309 337

Median 79.5 297.5 244.5 228.5

https://doi.org/10.1371/journal.pone.0199585.t002
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performance is lowest with the CD-based contact definition. Thus, although CDs are more

informative, they appear harder to predict correctly. In general, unsurprisingly, contacts by

looser criteria appear easier to predict. Indeed, ~20%, ~10%, and ~6% of position pairs are

classified as contacting by the the any-heavy, Cβ, and centroid definitions, respectively,

whereas only ~4% are in contact by the CD-based definition. This is consistent with contact

prediction performance monotonically increasing in the order of CD, centroid, Cβ, and any-

heavy contact definitions (see Fig 3). Based on the above contact frequencies, a randomly cho-

sen position pair is, respectively, ~5.0, ~2.5, and ~1.5 times more likely to be a true contact by

the any-heavy-, Cβ-, and centroid-based definition than by the CD-based one. On the other

hand, the PPV for predicting CD-based contacts is reduced relative to that for other definitions

by significantly lower fractions (see Fig 3A). Thus, it would seem that predicting CD-based

Table 3. Decoy-discrimination performance of ECD, E1, E2, and E3 potentials (in columns CD, any-heavy, CB, and centroid, respectively) on the Rosetta decoy set.

Shown is the rank of native structure, in each sub-set, by the corresponding contact potential. The ranking of natives by ECD is significantly better than ranking by the all-

heavy potential (E1), and potentials E2 and E3 performing similarly to ECD (Friendman test p-values are 10−7, 0.17, and 0.78, respectively).

Name CD any-heavy Cβ centroid Name CD any-heavy Cβ centroid

1a19 8 26 14 22 1kpe 13 48 10 1

1a32 50 101 92 27 1lis 63 100 15 14

1a68 63 101 35 12 1lou 12 87 27 32

1acf 1 35 10 10 1nps 4 12 11 17

1ail 4 20 3 16 1opd 2 6 6 22

1aiu 61 101 67 64 1pgx 5 1 69 19

1b3a 16 80 48 38 1ptq 7 101 60 10

1bgf 35 76 15 11 1r69 38 1 54 37

1bk2 13 74 13 3 1rnb 1 18 1 22

1bkr 8 39 12 1 1scj 35 30 59 20

1bm8 1 34 10 1 1shf 25 68 22 38

1bq9 18 37 10 9 1ten 1 1 1 1

1c8c 15 49 34 13 1tig 5 48 2 25

1c9o 53 99 36 45 1tul 7 14 10 1

1cc8 29 35 8 17 1ubi 61 84 48 41

1cei 40 12 17 5 1ugh 4 46 33 57

1cg5 29 59 6 15 1urn 2 50 20 2

1ctf 53 1 14 4 1utg 100 101 101 100

1dhn 1 54 6 1 1vcc 6 94 20 9

1e6i 7 96 1 17 1vie 25 40 36 62

1elw 16 1 70 87 1vls 65 62 13 60

1enh 67 93 51 62 1who 1 10 1 1

1ew4 1 22 2 4 256b 62 1 28 76

1eyv 2 17 10 9 2acy 1 13 1 5

1fkb 1 14 4 1 2chf 23 87 36 72

1fna 19 33 27 14 2ci2 8 100 37 73

1gvp 6 76 41 15 2tif 1 1 1 1

1hz6 16 32 10 11 4ubp 1 33 1 1

1ig5 21 27 1 90 5cro 74 55 43 13

1iib 23 94 27 14

Median 13 40 15 15

https://doi.org/10.1371/journal.pone.0199585.t003
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contacts may still provide more information. Notably, the greatest discrepancies in perfor-

mance among the different definitions of contact occur for long-range contacts, defined as

those with a sequence separation of at least 23 (S1 Fig). Given that long-range contacts tend to

constrain the possible structure more than short-range contacts, these performance discrepan-

cies are particularly important to address.

The above results suggest that contact degree captures useful information about structure,

more so than other contact definitions, but the considerably lower precision of predicting it is

not desirable, so we next seek ways of improving it.

2.5 A statistical contact potential aids in contact prediction

A statistical contact potential provides a convenient line of additional evidence towards pre-

dicting contacts, because it quantifies the a priori expectation that any two amino acid types

Fig 3. Average PPV of contact prediction as a function of the number (N) or fraction (f) of predictions. Predictions labeled by CD refer to predictions when contacts

are defined by contact degree and those labeled by C1, C2, and C3 refer to predictions when contacts are defined by the other three definitions (see Table 1 for details).

(A, B) Predictions of DCA on the Pfam dataset. (C, D) Predictions of MetaPSICOV on the CASP12 dataset.

https://doi.org/10.1371/journal.pone.0199585.g003
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would be in contact. Looking at a particular pair of positions (i, j) in an MSA, we can ask

whether the amino-acid pairs found at these positions tend to correspond to favorable or unfa-

vorable contact-potential values. Qualitatively, if the former is the case, this should strengthen

our belief that (i, j) is a true contact, while the latter case would weaken this belief. To capture

this quantitatively, one could (for example) look at the average value of a contact potential

across all amino acid pairs at (i, j) in the MSA, which we will denote Êi;j. This metric could

then be used in combination with co-evolution scores (e.g., DI or precision score for DCA or

MetaPSICOV, respectively) to make a call about a particular position pair. To test this concept,

we propose a simple empirical metric:

Si;j ¼ Si;j 1 �
Êi;j

Smax

� �

ð3Þ

where Si,j is the MSA-based co-evolution score for the position pair (i, j) and Smax is the maxi-

mal value of the former for any pair of positions in the given alignment. The reasoning behind

this combination is that contact potential values are on a fixed scale, whereas we have empiri-

cally found co-evolution scores to vary considerably from case to case, depending significantly

on the depth and other properties of the MSA. Dividing Êi;j by Smax then serves to normalize

the two metrics with respect to each other, across different MSAs. The negative sign in front of

Êi;j reflects the fact that negative potential values correspond to favorable cases and the product

ensures that Si,j and Êi;j jointly contribute towards scoring a potential contact. Note that much

more sophisticated combinations of Si,j and Ei,j are possible. In fact, MetaPSICOV includes the

value of a statistical contact potential as one of the features that go into its neural network

model [19]. However, our focus here is to establish and quantify the value of using contact

potentials to augment co-evolution scores, under different contact definitions, so we chose a

simple functional form for ease of interpretation.

We consider each of the contact definitions discussed above and derive four corresponding

augmented S metrics, Si;j
CD and Si;j

1 , Si;j
2 , and Si;j

3 . Fig 4 compares the performance of these com-

bined metrics with that of unadjusted S towards predicted the corresponding contact types

(i.e., how well Si;j
CD predicts CD-based contacts and how well each distance metric predicts the

corresponding distance-based contacts). Encouragingly, the PPV for predicting CD-based

contacts increases by as much as ~18% and ~12% for the first few predictions using DCA and

MetaPSICOV, respectively (Fig 4A and 4B). The performance also increases for the distance-

based contact definitions (Fig 4C–H). These increases are smaller that with CD-based contacts,

with the exception of the centroid definition in conjunction with MetaPSICOV improving

PPV by a comparable amount (~14% for the first few contacts). The PPV using the any-heavy

definition is close to perfect—over 90% for the first few contacts—but incorporating the any-

heavy potential still systematically improves the performance, demonstrating the general bene-

fit of incorporating a contact potential.

We next ask whether there is benefit in averaging the statistical contact potential values

over all sequences of an MSA. That is, we ask whether comparable performance improvements

are observed when the contact potential is computed only in the context of a single sequence

(e.g., the sequence for which contacts are being predicted). To that end, Fig 5 shows the perfor-

mance improvement (averaged over five trials) when contact-potential energies are calculated

in the context of only a single sequence randomly selected from the corresponding MSA. For

DCA applied to the Pfam dataset (see Methods) incorporating these energies systematically

improves the PPV (Fig 5A). For MetaPSICOV applied to the CASP12 dataset (see Methods)

the improvement is marginal at best (in fact, the performance drops slightly for larger N;

Fig 5B). This suggests that averaging contact potential values over the MSA does provide a
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significant benefit over evaluation in the context of a single sequence (compare Figs 4A

and 5A). On the other hand, average contact-potential values on their own do not provide suf-

ficient information for effective contact prediction (e.g., see S2 Fig for the performance of the

CD-based contact potential on the DCA dataset).

We further test how the diversity of predicted contacts changes when different contact

potentials are combined with co-evolution scores. Higher contact diversity is desirable because

if a method’s predicted contacts cover many regions in the contact map, each predicted contact

can independently restrain the possible structures the sequence might fold into. To assess

Fig 4. The effects of incorporating a contact potential into contact prediction. In plots A, C, E, and G, DI refers to

predictions made using direct information alone. In plots B, D, F, and H, MPC refers to MetaPSICOV’s predictions

alone. DICD and MPCCD respectively refer to DI and MPC’s predictions augmented by contact degree (see Eq (3)).

Similarly, for n 2 {1, 2, 3}, DIn and MPCn respectively refer to DI and MPC’s predictions augmented by contact

definition n.

https://doi.org/10.1371/journal.pone.0199585.g004
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contact diversity, we adopted the definition used by He et al., wherein the contact map of each

target was divided into a 10 x 10 grid of equal-sized regions and the diversity D was quantified

as the Shannon entropy of the distribution of the top N/2 contacts over these regions (where N
is the length of the MSA) [51]:

D ¼ �
X100

i

pi log 2pi ð4Þ

Here, pi is the fraction of contacts that fall within region i. Table 4 shows the mean D over

all targets when contacts are either ranked by co-evolution scores alone or by hybrid scores

that combine the different contact potentials. Clearly, for both DCA and MetaPSICOV, diver-

sity increases upon adding all contact potentials, but it increases the most when the CD-based

contact potential is added.

3 Discussion

In this study we show that contact prediction performance depends critically on the underly-

ing geometric definition of a contact. The previously reported high prediction rates have relied

on relatively loose, distance-based definitions of contact. The definitions tested in this study—

any heavy atoms within 8 Å, Cβ atoms within 8 Å, and centroid pseudoatoms within 6 Å–

respectively classify ~20%, ~10%, and ~6% of the residue pairs in a protein as contacting.

Though this aids in achieving a high positive predictive rates, the looseness comes at the

expense of information contributed towards structure prediction. This is evident when com-

paring these contact definitions to a stricter one we propose, based on the quantity of contact

Fig 5. Contact predictions made using (A) DCA and (B) MetaPSICOV alone are compared against predictions

that combine co-evolution scores with the CD-based contact potential energies from a single randomly-chosen

sequence in each alignment. This procedure was repeated five times. Each point displayed corresponds to the mean

PPV and the error bars show the standard deviation.

https://doi.org/10.1371/journal.pone.0199585.g005

Table 4. The effect of incorporating contact potentials on contact diversity. Contact diversity was quantified by applying Eq (4) to the top N/2 contacts in each align-

ment and then averaging over every alignment in the dataset (first row: DCA on the Pfam dataset; second row: MetaPSICOV on the CASP12 dataset, see Methods), where

N is the length of an alignment. The “alone” column contains the diversities when no contact potential is applied (that is, when DCA or MetaPSICOV scores alone are

used to rank contacts). The remaining columns contain the diversities resulting from ranking contacts by hybrid scores that combine the corresponding co-evolution

score and a contact potential (based on the four contact definitions in Table 1, respectively).

alone with ECD with E1 with E2 with E3

DCA 3.36 3.67 3.51 3.48 3.61

MetaPSICOV 3.38 3.65 3.54 3.49 3.61

https://doi.org/10.1371/journal.pone.0199585.t004
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degree (CD, Eq (1)). Indeed, only ~4% of position pairs are classified as contacting based on

CD (with the cutoff of 0.1 used throughout this study) and a single CD-based contact elimi-

nates 5, 2.5, and 1.5 times more decoy structures than a contact defined by the any-heavy, Cβ,

and centroid definitions, respectively. Also, a statistical contact potential corresponding to the

CD-based contact definition exhibits a significantly better performance in decoy discrimina-

tion than do contact potentials derived from distance-based contact definitions.

Though more informative, CD-based contacts are also harder to predict (see Fig 3).

Encouragingly, however, we show that combining the co-evolution score of a given residue

pair with the statistical contact potential energy for the pair, averaged over all sequences in the

MSA, results in a significantly more predictive metric. The performance boost is particularly

pronounced in the prediction of CD-based contacts. For example, the CD-based potential

increases the precision of the DCA method by ~18% for the first few contacts (see Fig 4A).

Such a performance increase is highly relevant given that the knowledge of only a few of con-

tacts is often sufficient to aid structure prediction [52].

While the performance improvements were largest for CD-based contacts, incorporating a

contact potential improved performance for every definition of contact using both methods,

with the exception of the Cβ-based potential not improving the performance of MetaPSICOV.

Notably, of the three distance-based contact definitions we have considered, the centroid-

based definition exhibits considerable advantages: 1) it performs best (or tied for best) in

decoy discrimination (see Tables 2 and 3), 2) contact-prediction improvement resulting from

the incorporation of its corresponding contact potential is the highest (see Fig 4H), 3) it elimi-

nates the highest fraction of decoys based on a single contact, and 4) it leads to the highest con-

tact diversity increase when augmenting a co-evolution score (see Table 4). It can be argued

that these advantages, to some extent, are a result of the centroid-based definition using more

information–i.e., the location of the side-chain. Indeed, side-chains positions must be known

(or appropriately modeled) to even apply this definition of a contact. On the other hand, the

CD-based definition achieves better performance in all of the above criteria without requiring

side-chain information. Possible side-chain positioning is accounted for explicitly within the

CD calculation procedure itself, in a sequence independent manner, resulting in a contact defi-

nition that can be applied to full-atom or backbone-only models alike.

4 Methods

4.1 Contact degree

CDs were calculated according to Eq (1) using the 2010 backbone-dependent Dunbrack rota-

mer library [53]. Rotamers were labeled as clashing with the backbone (and removed from

consideration) if at least one non-hydrogen atom in the rotamer sidechain was within 2.0Å of

any non-hydrogen backbone atom of the structure (except its own backbone). ConFind, a pro-

gram that computes CDs, can be found at http://www.grigoryanlab.org/confind/.

4.2 Decoy discrimination

The I-TASSER II decoy set was downloaded from https://zhanglab.ccmb.med.umich.edu/

decoys/decoy2.html [33]. The Rosetta decoy set was downloaded from https://zenodo.org/

record/48780#.WqAU-HWnFhF [54].

4.3 DCA

As described by Morcos et al., 131 protein families were selected from Pfam’s homologous

sequence datasets based on the number of non-redundant sequences, fraction of sequences
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belonging to bacterial organisms, and the availability of high quality PDB structures [12] (see

S1 Data for the accession number and sequence range of each sequence in each family’s align-

ment). This resulted in 856 corresponding PDB structures. DI for all residue pairs was calcu-

lated using Matlab code obtained from Dr. Morcos (see S1 Script for this script). To map the

856 PDB structures to their Pfam families, each PDB sequence was compared against all

sequences in all of the above Pfam families. To account for point mutations introduced in

PDB structures, a sequence-to-structure match was established if the sequence similarity was

at least 95%. If no sequence was found to be a match for a particular PDB structure, the

sequence that gave the highest sequence similarity score was considered as the match. In this

way, each PDB structure in the list was mapped onto at least one of the 131 Pfam families. The

MSAs and structures used for this analysis are exactly as those used in the original study, so

the results in Fig 3A for the loose contact definition reproduce the PPVs reported in that work.

4.4 MetaPSICOV

To evaluate MetaPSICOV’s contact prediction, the sequences of each CASP12 target listed in

Table 1 in Buchan et al. were submitted to the MetaPSICOV server (http://bioinf.cs.ucl.ac.uk/

MetaPSICOV/) and the precision scores were extracted from the Stage 2 results [50]. Because

not all CASP12 target sequences have publicly available structures, which are needed to deter-

mine which pairs of positions are in contact, only those sequences with corresponding PDB

entries were considered, resulting in 19 sequences. Each sequence’s PDB ID was taken from

the CASP website (http://predictioncenter.org/casp12/targetlist.cgi) and the corresponding

PDB file was downloaded from the PDB. To acquire the alignments used to produce MetaPSI-

COV’s precision scores, MetaPSICOV was downloaded from http://bioinfadmin.cs.ucl.ac.uk/

downloads/MetaPSICOV/ and run locally. Due to technical difficulties, the alignment for tar-

get T0918 could not be computed, resulting in a dataset of 18 sequences: T0859, T0862, T0863,

T0864, T0866, T0868, T0869, T0870, T0886, T0892, T0896, T0897, T0898, T0900, T0904,

T0941, T0943, T0945.

4.5 Contact potential

See S2 Data for the list of PDB IDs and chains comprising the dataset that the contact poten-

tials were constructed from. See S3 Data for CSV files containing the energies of each contact

potential.

4.6 Contact definitions

Contacts in each structure were identified using either the CD-based metric, with a cutoff of

0.1, or one of the three distance-based metrics specified in Table 1, C1, C2, and C3. For

C1—“any-heavy”—a pair of positions was considered in contact if at least one non-hydrogen

atom from the residue at one position was less than 8 Å of one non-hydrogen atom from the

residue at the other position, backbone atoms included. For C2—“Cβ”—a pair of positions was

considered in contact if the Cβ atom from one position was less than 8 Å from the Cβ atom

from the other position. For C3—“centroid”—a pair of positions was considered in contact if a

pseudoatom located at the mean coordinates of one position’s sidechain atoms was less than 6

Å from the corresponding pseudoatom of the other position. For the Pfam dataset, a pair of

positions in an MSA of a protein family was considered to be a true contact if the correspond-

ing pair of positions was in contact within any PDB structure mapped to the family. For the

CASP12 dataset, a pair of positions in an MSA was considered to be a true contact if the corre-

sponding pair of positions was in contact in the PDB structure of the target sequence. To

enable direct comparison between the results in this paper and those in [12], a contact in the
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Pfam dataset was treated as a contact only if the two positions were separated in sequence by at

least five positions. On the other hand, a contact in the CASP12 dataset was treated as a contact

only if the two positions were separated in sequence by at least six positions, in accordance

with CASP protocol (see http://predictioncenter.org/casp12/doc/rr_help.html).

4.7 Contact prediction

To predict contacts, all residue pairs separated by at least the minimum sequence separation

(see the previous paragraph for details) were ranked in descending order of calculated co-evo-

lution scores and top-ranking pairs were predicted as contacting. Top pairs were selected

either based on a fixed rank cutoff (i.e., the first N pairs predicted as contacting for each pro-

tein, as in Figs 3A, 3C, and 4) or a length-normalized rank cutoff (i.e., for a protein of length

N, the first f × N pairs predicted as contacting, with f 2 [0, 1], as in Fig 3B and 3D). Positive

predictive value (PPV) was assessed as the fraction of true contacts out of the predicted con-

tacts. Since the set of true contacts depends on the geometric contact definition, PPV was a

function of contact definition.

Supporting information

S1 Data. Protein family alignments. Each file in the ‘alignments’ directory herein corre-

sponds to a protein family’s alignment and contains the accession number and sequence range

of each sequence in the alignment.

(TAR.GZ)

S2 Data. PDB dataset. A text file containing the PDB ID and chain ID of each structure used

in the construction of contact potentials.

(TXT)

S3 Data. Contact potentials. Each contact potential is stored as a CSV file, wherein each line

specifies the energy for a pair of amino acids. The files are named according to the contact

potential they encode, e.g. cp-1.csv is the contact potential for definition 1 in Table 1.

(TAR.GZ)

S1 Fig. Average PPV of contact prediction as a function of sequence separation. Average

PPV of contact prediction as a function of the number (N) of predictions broken down by the

sequence separation of the contacts. Predictions labeled by CD refer to predictions when con-

tacts are defined by contact degree and those labeled by C1, C2, and C3 refer to predictions

when contacts are defined by the other three definitions (see Table 1 for details). Contacts are

partitioned into three categories based on sequence separation: (A, B) short-range

(6� sequence separation� 11); (C, D) medium-range (12� sequence separation� 23); (E,

F) long-range (23� sequence separation). Plots A, B, and E depict the predictions of DCA on

the Pfam dataset. Plots B, C, and F depict the predictions of MetaPSICOV on the CASP12

dataset.

(PDF)

S2 Fig. Performance of DCA vs CD-based contact potential alone. DCA performance on

the Pfam dataset compared to the performance of the CD-based contact potential alone. Pre-

dictions labeled by DI refer to DCA’s predictions without the incorporation of a contact poten-

tial and those labeled by CD refer to the predictions made using the contact potential alone.

(PDF)
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S1 Script. DCA script. A MATLAB script written by Morcos et al. that computes direct infor-

mation.
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