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Formation of spatial gene expression patterns in development depends on transcriptional responses mediated by gene
control regions, enhancers. Here, we explore possible responses of enhancers to overlapping gradients of antagonistic
transcriptional regulators in the Drosophila embryo. Using quantitative models based on enhancer structure, we
demonstrate how a pair of antagonistic transcription factor gradients with similar or even identical spatial
distributions can lead to the formation of distinct gene expression domains along the embryo axes. The described
mechanisms are sufficient to explain the formation of the anterior and the posterior knirps expression, the posterior
hunchback expression domain, and the lateral stripes of rhomboid expression and of other ventral neurogenic
ectodermal genes. The considered principles of interaction between antagonistic gradients at the enhancer level can
also be applied to diverse developmental processes, such as domain specification in imaginal discs, or even eyespot
pattern formation in the butterfly wing.
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Introduction

With the availability of complete genome sequences and
quantitative gene expression data, it becomes possible to
explore the relationships between sequence features of
regulatory DNAs and the transcriptional responses of their
associated genes [1–7]. Developmental genes regulated by
multiple enhancer regions and their spatio–temporal dynam-
ics of expression are of particular interest [8–11]. The
enhancers of developmental genes, such as gap and pair-rule
genes, interpret maternally deposited information and
participate in the formation of progressively more complex
expression patterns, thus increasing the overall spatial
complexity of the embryo. In part, the information required
to generate these downstream patterns (e.g., gap and pair-
rule) is present in the enhancer sequences.

Much attention has been paid to the investigation of
transcription factor binding motifs and motif combinations,
and to interpreting their role in the formation of spatial gene
expression patterns. [5,12,13]. However, some early enhancers
of Drosophila contain virtually identical sets of binding motifs,
yet they produce distinct expression patterns [6,14]. It has
been argued extensively that binding site quality (affinity) and
site arrangement within enhancers (grammar) contributes to
the levels and precision of enhancer responses [6,15–21]. In
fact, some experimental studies of differentially arranged
binding sites confirm the dependence of enhancer response
on distances between binding sites and on binding site
orientation [6,16,22–24], and some structural enhancer
features such as motif spacing preferences and characteristic
binding site linkages. ‘‘Composite elements’’ and other
syntactical features were identified in many model organisms
using computational analyses of binding site distributions
throughout entire genomes [5,25,26]. Recent studies involving
in vivo selection of optimal binding-site combinations in
yeast also revealed a number of preferred motif combinations
and structural features [27]. Nevertheless, some phylogenetic

studies indicate significant flexibility in the regulatory code
[28–31].
The analysis of unrelated, structurally divergent, but

functionally similar enhancers aids in defining the balance
between the stringency of the functional cis-regulatory
‘‘code’’ and its flexibility as demonstrated by changes in
primary enhancer sequence over the course of evolution.
[6,18,32]. Requirements for multiple cofactors that influence
transcription via protein–protein interaction complicate
computational predictions and studies of enhancers. While
known binding motifs are easy to find, most protein–protein
interactions leave no clear footprints in the DNA sequence of
enhancers—some developmental coregulators such as CtBP
(C-terminal binding protein) and Groucho influence the
transcriptional response through interactions with sequence-
specific transcription factors (e.g., [33]). Finally, regulatory
signals from enhancers must be transmitted to the basal
transcriptional machinery; this involves enhancer–promoter
communication of some sort, as well as the recruitment of
mediator complexes [2,21,34–36]. Both aspects further
complicate the in silico prediction and analysis of enhancer
activity.
Until recently, most models explaining enhancer responses

in development were largely qualitative [37,38]. Davidson’s
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group [2,39] and Hwa’s group [21] undertook quantitative
modeling of enhancer–promoter interactions and investi-
gated the responses of architecturally complex regulatory
units. The elaborate nature of developmental enhancers in
Drosophila was described in quantitative models introduced by
Reinitz’s group [1,7]. Here, we summarize some basic
structural considerations and investigate mechanisms of
enhancer regulation to demonstrate how such features may
affect the transcriptional responses. Our quantitative analy-
ses involve models based on the fractional occupancy of
transcription factor binding sites present within enhancers
[2,21,40,41]. On the one hand, the described models are
similar to those developed by Hwa’s group [21] as they
consider structural enhancer details. On the other hand, the
models include biological assumptions for developmental
enhancers (i.e., quenching), similar to those introduced by
Reinitz’s group [7]. Technically, our models use a homotypic
array (a unit containing a number of identical sites) of
binding sites as an elementary unit for modeling.

Based on quantitative analysis of transcriptional responses,
we analyze some models for developmental pattern forma-
tion. In particular, we explore the outcome of the interplay
between two antagonistic transcription factors, an activator
and a repressor. We demonstrate that a pair of antagonistic
gradients with similar or even identical spatial distributions is
sufficient to initiate stripes of expression of a downstream
gene. Given that the antagonistic gradients may be deposited
by the same localized or terminal signal (e.g., in the fly
embryo) [42] or by a focal signal (e.g., in the case of a butterfly
eyespot) [43], the models explain how initiation from a single
point in space can lead to efficient gains in spatial complexity.

Results/Discussion

Successful Transcriptional States of Enhancers
The transcriptional state of enhancers of developmental

genes is among major factors in developmental pattern
formation [6–8,10]. If a transcription factor is present in a
concentration gradient, the probability of that factor
occupying a binding site in a target enhancer at a given
position along the gradient depends on the factor’s concen-
tration at that position (coordinate). This logic suggests that
in the case of activator and repressor gradients, calculating
the probability of activator, but not repressor, binding (i.e.,

the successful transcriptional state resulting in transcription)
may serve well to model the spatial expression patterns of the
early developmental genes.
Let us consider an elementary enhancer, which contains

two binding sites: one for an activator and one for a repressor.
Let us assume that binding of the activator A in the absence
of the repressor R brings the elementary two-site regulatory
unit i (the enhancer; see Figure 1A) into a successful
transcriptional state.
The equilibrium probability of the successful state pi

depends on the binding probabilities of A (pA) and R (pR),
which depend on the concentrations of the regulators ([A]
and [R]) and on the binding constants (KA and KR) of the
binding sites for the corresponding transcription factors (see
Equations S1–S5 in Protocol S1):

pi ¼ pAð1� pRÞ ¼
KA½A�

1þ KA½A�

� �
1

1þ KR½R�

� �
ð1Þ

Figure 1. Known Elements of Enhancer Structure

(A) A simple regulatory unit, containing an activator (green) and a
repressor (blue) binding site. Binding of an activator, but not a repressor,
is sufficient for transcriptional activation (indicated by ‘‘þ’’).
(B) A cooperative array and a single repressor site. Red arrow shows the
cooperative interaction between transcription factors. Repressor binding
blocks enhancer activity (indicated by ‘‘�’’).
(C) A competitive array. Blue arrows show the competition between the
activator and the repressor; red arrows show cooperativity.
(D) A two-module enhancer (modules a and b) is able to respond to two
groups of independent inputs. While the module b is repressed, the
module a is active and the enhancer is active, as long as the short-range
repression from module a does not reach module b.
(E) A short-range repression can reach sites within the same module a,
but fails to completely repress an activator site in the distant module b.
The outcome of this interaction is a partial inactivation (6 sign).
doi:10.1371/journal.pcbi.0030084.g001
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Author Summary

The early development of the fruit fly embryo depends on an
intricate but well-studied gene regulatory network. In fly eggs,
maternally deposited gene products—morphogenes—form spatial
concentration gradients. The graded distribution of the maternal
morphogenes initiates a cascade of gene interactions leading to
embryo development. Gradients of activators and repressors
regulating common target genes may produce different outcomes
depending on molecular mechanisms, mediating their function.
Here, we describe quantitative mathematical models for the
interplay between gradients of positive and negative transcriptional
regulators—proteins, activating or repressing their target genes
through binding the gene’s regulatory DNA sequences. We predict
possible spatial outcomes of the transcriptional antagonistic
interactions in fly development and consider examples where the
predicted cases may take place.

Pattern Formation in Development



Extending this formula to multiple different activators or
repressors may be easily obtained with the same logic (see
Equation S6 in Protocol S1). Bintu and coworkers recently
introduced a number of similar models, describing DNA–
protein and protein–protein interactions on proximal
promoters [21], where the authors used an ‘‘effective
dissociation constant,’’ which is the inverse of the binding
constant (K) used in this study.

Cooperativity and Competition in Binding Site Arrays
Developmental enhancers usually contain homotypic or

heterotypic binding site arrays for multiple activators and
repressors [44]. The probability of achieving a successful
transcriptional state for the binding site array (enhancer) i,
containing M identical, noninteracting activator sites and N
identical, noninteracting repressor sites, is equal to (see
Equation S7 in Protocol S1):

pi ¼
ð1þ KA½A�ÞM � 1

ð1þ KA½A�ÞMð1þ KR½R�ÞN
¼ WM

A � 1
WM

A WN
R

ð2Þ

Here, W is the sum of the statistical weights of molecular
microstates for a homotypic site array and the denominator
WA

MWR
N is the sum of the statistical weights for all micro-

states of the system (i.e., the partition function; see Protocol
S1, ‘‘Binding site arrays’’).

In such site arrays, bound transcription factors may
cooperate or compete for binding. Let us consider a
cooperative array as an element of enhancer architecture
(Figure 1B). Assuming presence of lateral diffusion [41,45],
equal binding affinities for all sites in the array and
expressing cooperativity C as the ratio between the second
and the first binding constants, one can approximate the sum
of statistical weights W of all possible molecular microstates
for a cooperative array as follows (see Equations S8 and S9 in
Protocol S1):

WM
X ¼ 1þ

XM
k¼1
ðM � kþ 1ÞC k�1

X ðKX ½X�Þk ð3Þ

Binding sites for an activator and a repressor may overlap,
and the corresponding proteins compete for binding. Well-
known examples in Drosophila development include Bicoid
and Krüppel [46], Caudal and Hunchback [44], and Twist and
Snail [6]. The classic example outside Drosophila is the
competition between CI and Cro in the phage lambda switch
[47]. The sum of microstates for a competitive site array,
containing M overlapping A/R binding sites (Figure 1C; also
see Figure S1 and Equations S8–S12 in Protocol S1), can be
approximated by:

WM
AR ¼ 1þ

XM
k¼1
ðM � kþ 1ÞðCk�1

A ðKA½A�Þk þ Ck�1
R ðKR½R�ÞkÞ ð4Þ

In addition to competitive interactions, this model also
includes homotypic cooperative interactions between the
regulators (see Equations S10–S12 in Protocol S1).

Independent Modules, Distances, and Short-Range
Repression

Structural elements within an enhancer (single sites or
entire site arrays) may be distributed over extended genomic
regions (thousands of bases, e.g., the Drosophila sna enhancer)
[48,49]. In these cases, the distant regulatory elements within

the enhancer may represent relatively independent units—
modules [15,26] (see Figure 1D). Each independent module
may include a single binding site or a binding site array.
Redundancy of the enhancer elements (binding sites and
modules) is a well-known biological phenomenon [44]. If the
modules within an enhancer are independent from one
another, bringing any one module into a successful tran-
scriptional state may be sufficient for bringing the entire
enhancer into a successful state, even if another module(s) is
repressed.
Given the probabilities pi of successful states of all i

independent modules or enhancers (Equations 1–4), the
probability PEnc of the multimodule enhancer being in a
successful state is equal to:

PEnc ¼ 1� P
K

i¼1
ð1� piÞ ð5Þ

This is the reverse probability of the enhancer being in an
inactive state, which is the product of the probabilities of
each independent module being in an inactive state (1 � pi);
Reinitz’s group [1,7] implemented similar expressions for the
quenching mechanism. While distinct modules may provide
simultaneous responses to different inputs, multiple equiv-
alent modules may allow for the boosting of an enhancer’s
overall response to a single input [50] (see Figure S1E and
S1F).
In practice, however, the modules may not be completely

independent from each other. Short-range repression and
other factors (discussed below) may be involved in distance-
dependent module responses [22–24,48]. Let us consider an
enhancer containing two modules, a and b. Module a contains
an activator site and a repressor site; module b contains an
activator site only (see Figure 1E). Potentially successful
enhancer states include all combinations in which at least one
activator molecule is bound. However, the mixed state
Ka

A[A]K
a
R[R] is always inactive as the repressor, and the

activator sites in the module a are ‘‘close’’. If module b is not
‘‘too far’’ from module a, short-range repression from a may
reach the activator site in b. We can account for this
possibility (and for its extent) by introducing a multiplier d,
depending on distance between the modules a and b (see also
Equations S14–S16 in Protocol S1):

PEnc ¼
Wab �Wab

of f � ð1� dÞðKb
A½A�Ka

R½R� þ Ka
A½A�Kb

A½A�Ka
R½R�Þ

Wab

ð6Þ

In this formula, Wab is the sum of weights for all microstates,
and Wab

off is the sum of weights for the microstates that are
always inactive (see Protocol S1, Equation S14). If modules a
and b are ‘‘far,’’ d¼ 1; if they are ‘‘close,’’ d¼ 0. If the distance
between a and b is somewhere in between, so that a repressor
bound in a partially affects the activator bound in b, we could
introduce a distance function d ¼ f(x) (0 � d � 1), where d
depends on the distance x between a and b (and perhaps other
variables, such as the repressor type). However, all we
currently know about the distance function is that short-
range repression is effective at distances less than 150–200
bases, and long-range repression may spread through entire
gene loci (i.e., 10–15 kb [23,24,48]). Without exact knowledge
about the distance function, the module concept (Equation 5)
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allows modeling of distance-dependent responses, but only in
a binary close/far (yes/no) fashion.

Embryo Axis Patterning by a Pair of Antagonistic
Regulators

Most of the enhancer response models (Equations 1–6)
consider inputs from two antagonistic gradients, but
enhancers may be under the control of a larger number of
regulators (see Figure 1D). However, gradients of some of
these regulators may either have similar spatial distributions
(e.g., Dorsal and Twist) [51], or non-overlapping spatial
expression domains (e.g., Krüppel and Giant) [37]. Therefore,
in many cases the combination of all inputs may be parsed
down to one or more pairs of antagonistic interactions. Based
on the described quantitative models approximating en-
hancer responses (see above), we analyzed possible spatial
solutions produced by gradients of two antagonistic regu-
lators.

The examples in Figure 2A–2C demonstrate that the
spectrum of possible enhancer responses is quite rich. One
surprising result of these simulations is that even identically
distributed antagonistic gradients can yield distinct spatial
expression patterns such as stripes (Figure 2B). We identified
conditions for the ‘‘stripe’’ solutions using differential
analysis of the site occupancy function shown in Equation
1. For example, if both regulators are distributed as identical
gradients and if their concentrations and binding constants
are equal (KA ¼ KR; [A] ¼ [R]), then it is sufficient to identify
conditions for the maximum of a site-occupancy function y(x)
depending on the spatial coordinate x:

yðxÞ ¼ k f ðxÞ ð1þ k f ðxÞÞ �2 ð7Þ

In this variant of Equation 1, k is the product of absolute
concentration of the regulators [Abs] and the binding
constant KA (k¼KA[Abs]). The function f(x) is the distribution
of the relative concentration (0 � f(x) � 1) of the tran-
scription factors along the spatial coordinate x (i.e., the
embryo axis). The function’s maximum y9(x)¼0; x . 0 is f (x)¼
1/k. In the Gaussian, logistic, and exponential decay forms of
the function f(x) (see details in [52]), the maximum 1/k exists
only if KA[Abs] . 1 (i.e., if binding constants and/or the
absolute concentrations are high) (see also Figure S2). In the
simple case (Equation 7), the absolute value of the fractional
occupancy at the maximum is not very high (0.25); adding
more sites or modules (see Figure S1) allows for the function’s
values to approach 1 (see Figure 2B).

However, if the antagonistic gradients are not identical
(e.g., if the activator gradient is ‘‘wider’’ than the repressor
gradient), the solutions for the stripe expression are more
robust (Figure 2A). Shifting the peak of the activator gradient
relative to the repressor gradient produces even more robust
stripe patterns, as in the case of classical qualitative models
[37], where a repressor ‘‘splits’’ or ‘‘carves out’’ the expression
of a target gene (Figure 2C).

The formation of distinct gene expression domains (e.g.,
stripes) in response to similarly or even identically distributed
gradients is of interest because this mechanism can lead to
the very efficient gain of spatial complexity in just a single
step: based on primary sequence, enhancers of target genes
can translate two similarly distributed gradients into distinct
gene expression domains or stripes. Such similarly distrib-
uted antagonistic gradients may come about by induction due

to a single maternal gradient or due to a terminal (focal)
signal emanating from a discrete point or embryo pole. The
general pattern formation mechanism in the case described
can be represented as follows: (1) maternal/terminal signal
initiates two antagonistic gradients; and (2) interactions
between the two gradients produce multiple stripe patterns.
In an extreme case (e.g., Figure 2B), the described ‘‘antago-
nistic’’ mechanism could use only a single gradient/polar
signal to produce multiple stripes of target gene expression.
The interaction between two antagonistic gradients is an

example of a feed-forward loop. Due to a cascade organ-
ization of the developmental transcriptional networks, feed-
forward loops are among the most common network
elements (network motifs); a detailed analysis of the feed-
forward networks and potential solutions can be found in a
recent work by Ishihara et al [53].

Requirements for rhomboid and knirps Expression
To explore the interplay of antagonistic gradients in detail,

we considered particular examples, such as the regulation of
rhomboid (rho) by gradients of Twist and Snail and the
regulation of knirps by the maternal gradients of Hunchback
and Bicoid [54].
The enhancer associated with rho directs localized expres-

sion in ventral regions of the neurogenic ectoderm (vNEs)
[51]. The rho vNE enhancer, as well as enhancers of other vNE
genes such as ventral nervous system defective (vnd), is activated by
the combination of Dorsal and Twist, but is repressed by Snail
in the ventral mesoderm [13,51]. Both Twist and Snail are
targets of the nuclear Dorsal gradient, which is established by
the graded activation of the Toll receptor in response to
maternal determinants [55]. The Twist and Snail expression
patterns occupy presumptive mesodermal domains in the
embryo, yielding slightly distinct protein distributions. Our
recent quantitative analysis indicates that the boundaries of
rho and vnd expression are defined largely by the interplay of
the two antagonistic Twist and Snail gradients (see Figure 2D
and 2F) [6], and the expression patterns of rho and vnd
resemble the predicted solutions shown in Figure 2A. The
patterning mechanism in this case can be represented as
follows: (1) a terminal signal (Toll/Dorsal gradient) initiates
two similar antagonistic gradients, Twi and Sna; and (2) Twi
and Sna gradients produce multiple (distinct) stripe patterns
(rho, other vNE genes).
Another example of the interplay between an activator and

a repressor gradient is the early expression of the gap gene
knirps in response to maternal gradients of Bicoid and
Hunchback. Bicoid and Hunchback are deposited maternally
and have similar, but distinct distributions—high in the
anterior and low in more posterior regions of the embryo (see
Figure 2E). The graded drop-off of the knirps repressor
Hunchback at 50%–60% egg length is steeper than that of the
knirps activator Bicoid. This is similar to the theoretical case
shown in Figure 2C, where a narrow repressor ‘‘splits’’ a wider
activator expression domain, thus producing two peaks of
expression of the downstream gene. Known enhancer
elements of knirps drive kni expression in the anterior and
the posterior embryo domains and contain binding sites for
Bicoid, Hunchback, Caudal, Tailless, and Giant [44,56–58].
However, tailless, caudal, and giant are downstream of Bicoid; it
is likely that these and some other genes participate in the
later maintenance of kni expression. It has been extensively
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argued that gap genes (and hunchback) stabilize their patterns
along the anterior–posterior axis by mechanism of mutual
repression [49]. At later stages (after cycle 14), the inputs from
Bicoid and Hunchback into knirps regulation may stabilize
fluctuations in knirps expression and fluctuations in the entire
gap gene network due to mutual repression. Dynamic models
from Reinitz’s group based on slightly different logistic
response functions support the sufficiency of Bicoid and
Hunchback in the establishment of the early knirps expression
[59].

To explore the role of Bicoid and Hunchback interplay in
the early expression of knirps, quantitative expression data for
Bicoid, Hunchback, and Knirps were downloaded from the
FlyEx database [60], and models simulating the knirps
enhancer response were generated based on Equations 1–4.
One model assumed that Bicoid and Hunchback bind
independently from each other; another model assumed that
there is an interference (possibly competition) between the

Bicoid and the Hunchback sites (Equation 7: competitive
binding). Fitting the available quantitative data with the
models (see parameter values in Table 1) shows that both
models are sufficient to explain the posterior expression of
knirps. However, the competitive model (Figure 2G) also
predicts the anterior expression of knirps. This result was
especially striking, as the anterior knirps expression data were
not included in some of the fitting tests. Bicoid and
Hunchback motifs are quite different, so it is unlikely that
this is a case of direct competition for overlapping binding
sites. Other mechanisms may account for the negative
interaction between the two regulators; for instance, binding
of Bicoid may prevent Hunchback dimerization [61] and/or
efficient binding.
Shifting the knirps expression data by more than 5% along

the anterior–posterior axis (see Materials and Methods)
results in reduction of the data-to-model fit quality for the
posterior kni expression domain (see Table 1 for exact

Figure 2. Outcomes of Two Antagonistic Gradients

(A–C) Possible spatial distributions of activator (red), repressor (blue), and the corresponding predicted responses (green). Input gradients here were
approximated as Gaussian functions (see other functions in Figure S2).
(A) The activator has a slightly wider expression domain.
(B) The activator and the repressor have identical distributions.
(C) The peak of the repressor gradient is shifted relatively to the peak of the activator; expression of the downstream gene is ‘‘split’’ into two domains.
(D) Spatial patterns of Twist (red) and Snail (blue).
(E) Spatial patterns of Bicoid (red) and Hunchback (blue).
(F) Spatial pattern of rho (green) and the rho model (in red).
(G) Spatial pattern of Knirps (green) and a knirps model (red).
doi:10.1371/journal.pcbi.0030084.g002
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parameter values). The robustness of knirps regulation was
emphasized earlier [59,62], and the present analysis using site
occupancy confirms that the interplay of the two antagonistic
gradients, Bicoid and Hunchback, is sufficient to explain the
initial formation of both the anterior and the posterior strips
of knirps expression.

Response of Mutagenized rho Enhancers In Vivo
To test the models describing gene response to antagonistic

gradients, we introduced mutations in the rho enhancer and
compared the expression patterns produced by the reporter
gene in vivo with the simulated expression patterns simulated
in silico (Equations 1–6). Specifically, the models for rho and
vnd expression predicted the following [6]: (1) The position of
the dorsal expression border of rho is highly sensitive to Twist
and/or its cooperativity with Dorsal. Reducing Dl–Twi
cooperativity or Twist–Twist cooperativity shifts the dorsal
border ventrally. (2) The number of independent elements
(groups of closely spaced Dorsal-Twist-Snail sites, or ‘‘DTS’’
elements) contributes to the expression pattern of rho and vnd
according to Equation 5 (boost): a higher number of DTS
elements in vnd is responsible for the shift of the ventral vnd
expression border relatively to rho [6].

These two specific predictions, based on the model analysis
and simulations, were tested by modifying the structure of the

minimal rho enhancer. First, the distance between the Dorsal
and the Twist sites in the DTS element was increased (see
Figure 3). The increased distance between the two sites
reduced the cooperative potential between the Dorsal and
Twist sites. Indeed, the observed effect in vivo is consistent
with the effect of the same mutation simulated in silico,
causing a ventral shift of the dorsal border of the reporter
gene expression (compare Figure 3E with 3A). An additional
mutation eliminating the weaker Twist site from the DTS
element affects Twist–Twist cooperativity in the enhancer
and shifts the dorsal rho–lacZ expression border. In fact, the
combined effect produced by these two mutations in vivo
(Figure 3G; compare with 3C) and the deletion of the weak
Twist site alone (Figure 3F; compare with 3B) demonstrate
shifts of the dorsal expression border of the rho-lacZ transgene
in concordance with the models. Last, a second DTS module
was introduced into the rho enhancer in the context of the
previous two mutations. The predicted in silico effect is a
‘‘boost’’ in expression, resulting in the shift of both ventral
and dorsal expression borders. Again, the predicted changes
in the expression pattern were observed in vivo—not only
were the positions of the ventral and the dorsal border
shifted (Figure 3H; compare with 3D), but the overall level of
expression of this transgenic construct appears higher
(unpublished data).

Table 1. Successful Parameter Combinations for knirps

Model Fitting Range Knirps Shift

(Percent)

Agreement �Log(1�r) Peak Log(Ka) Log(Kr) Log(Ca) Log(Cr) N Sites

Bcd-Hb

competitive

Posterior domain only — 2.95 0.58 9 9.75 1.2 0.5 3

— 2.89 0.72 9 9.25 1.3 1.3 3

— 2.84 0.74 9 9 1.3 1.7 3

— 2.81 0.70 9 9.5 1.3 0.9 3

— 2.63 0.73 9.25 9 0.8 1.6 3

�5 2.02 0.80 9.25 8.75 1.3 1.9 3

�2.5 2.52 0.27 9.25 9.75 1.1 1 2

0 2.98 0.27 9.5 10 0.7 1 2

2.5 2.81 0.66 10 10 0.4 1.1 3

5 2.46 0.80 10.5 10.5 0.1 0.9 3

Anterior and posterior — 1.42 0.59 9.25 9.5 1.4 1.7 2

— 1.38 0.63 9.25 9.75 1.6 1.3 2

— 1.32 0.6 9.25 10 1.6 0.8 2

— 1.31 0.6 9.5 10 1 0.7 2

— 1.26 0.67 9.25 10.25 1.9 0.5 2

Bcd-Hb

noncompetitive

Posterior domain only — 3.25 0.68 9 9 1 0.2 4

— 2.96 0.71 9 9 1.3 0.4 3

— 2.71 0.80 9 8.75 1.4 0.9 3

— 2.59 0.75 8.75 9 1.8 0.4 3

— 2.54 0.77 9.25 8.75 0.9 0.9 3

Anterior and posterior — 0.97 0.61 9 9 1.7 1.3 2

— 0.97 0.67 9 8.75 1.8 1.8 2

— 0.96 0.63 9.25 8.75 1.1 1.8 2

— 0.96 0.61 9.25 9 1.1 1.2 2

Shows the best combinations of parameters for each of the explored models (competitive model is shown in Figure 2G).
‘‘Agreement’’ shows goodness of fit (using Pearson correlation, r).
‘‘Peak’’ shows the values of the site occupancy function at the maxima (Penc).
‘‘Log’’ columns show binding constants and cooperativity values.
‘‘N Sites’’ shows the number of binding sites in a model (equal number for the activator and the repressor).
Overall, the competitive model produced better fits with the quantitative data, low agreement values in the case of the noncompetitive model, ‘‘anterior and posterior’’ are due to the
absence of the anterior peak. Shifting Knirps data by more than 5% produced no solutions (see the ‘‘Knirps shift’’ column).
doi:10.1371/journal.pcbi.0030084.t001
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The described in vivo tests of the in silico predictions using
site-directed mutagenesis of the rho enhancer have demon-
strated that though the quantitative models based on
fractional site occupancy are approximations, they can
produce reasonable predictions for the response of complex
regulatory units (such as fly enhancers) to gradients of
transcriptional regulators.

The Interplay of Two Gradients May Explain a Broad
Spectrum of Developmental Patterns

Using transcriptional response models and quantitative
expression data, we demonstrated how two similar terminal
gradients can determine stripes of expression of downstream
genes. Related examples are quite frequent in development.
For instance, the posterior stripe of hunchback is the result of
activation by Tailless and repression by Huckebein [63,64]. As
in the case with Twist and Snail, the posterior gradient of
Tailless is slightly broader than the gradient of Huckebein.
Therefore, the mechanisms of posterior hunchback expression
may be similar to the mechanisms shown in Figure 2A, 2B, 2D,
and 2F. However, while the examples above involve direct
transcriptional regulation in the embryonic syncytial blasto-

derm, extracellular morphogen gradients may produce
similar outcomes if the cellular response is transcriptional
in nature.
Formation of eyespot patterns in butterfly wings is an

elegant example of axial (here focal) patterning in a cellular
environment (see Figure 4A). The interplay between Notch
and Distalless specifies the position of focal spots and
intervein midline patterns in the butterfly wing [65].
Subsequent Hedgehog signaling from the focal spots is
believed to induce the formation of concentric rings of gene
expression and the pigmentation of the eyespots in the adult
butterfly wing [66]. Known targets of the Hedgehog gradient
are the butterfly homologs of engrailed and spalt [67]. Initially,
both genes are expressed around the focal spot, but at later
stages an external ring of engrailed expression appears around
the spalt expression pattern (see Figure 4B and 4C). In the
case of engrailed pattern formation, a simplified mechanism
[67] may include elements of the following feed-forward
network: (1) focal signal (focal spot/Hedgehog signaling)
initiates two antagonistic gradients, the activator Engrailed
and the repressor Spalt; and (2) subsequent interactions
between Engrailed and Spalt produce multiple ring patterns.

Figure 3. In Vivo Versus In Silico Responses of a Modified Enhancer

Predicted responses in silico (A–D) and the observed responses in vivo as quantified in transgenic flies (E–H) of mutagenized rho enhancers.
(I) Mutations incorporated in the enhancer structure (see Materials and Methods for sequences). Reducing Dorsal-Twist cooperativity in silico or
increasing the distance between the Dorsal and the Twist sites in vivo results in a slight ventral shift of the dorsal expression border (compare (A) with
(E)). Deleting a weak Twist site shifts the dorsal border ventrally (B,F). The combined effect of both mutations is similar to the deletion of Twist (C,G).
Creation of a second DTS element (red boxes) results in an expected overall ‘‘boost’’ in expression, thereby shifting both the ventral and dorsal
expression boundaries, ‘‘widening’’ the rho stripe (D,H).
doi:10.1371/journal.pcbi.0030084.g003

PLoS Computational Biology | www.ploscompbiol.org May 2007 | Volume 3 | Issue 5 | e840832

Pattern Formation in Development



An extension of the model in Equation 1, (k is the rate of
synthesis and c is the rate of decay; d[R]/dt¼ 0) reproduces the
dynamic changes in the engrailed pattern (Figure 4A, 4D–4E):

d½A�
dt
¼ k

KA½A�Þ
1þ KA½A�Þ

� �
1

1þ KR½R�Þ

� �
� c½A� ð8Þ

Examples of axial or focal patterning using a single source of
signaling or a combination of similar antagonistic gradients
are common. The interplay between maternal hunchback and
maternal nanos during development of the short germ-band
insect Schistocerca is an example of axial patterning similar to
the interplay between Bicoid and Hunchback [68]. Specifica-
tion of segments during insect limb development is com-
parable to the mechanisms of Twist/Snail interplay and the
butterfly eyespot formation [69]. Nature uses many combi-
nations of signals and gradients in pattern formation, but the
most effective mechanism/combination may be one that
allows maximal informational gain in a minimal number of
steps. From this perspective, the interplay between similar or
identical gradients is of significant interest.

Materials and Methods

Quantitative expression data. Quantitative distribution data for
Dorsal, Twist, and Snail were published previously [6]. Quantitative
expression data for mRNA levels of mutated rho enhancers were
generated by in situ hybridization (the data are available at the DVEx
database: http://www.dvex.org). Multiplex in situ hybridization probes

were used for colocalization studies, including co-stainings for the
endogenous mRNAs and lacZ reporter gene expression as described
previously, and confocal microscopy and image acquisition were
performed as described [6]. In short, signal intensity profiles of sum
projections along the dorso–ventral axis of mid-nuclear cleavage
cycle of 14 embryos were acquired using the ImageJ analysis tool
(National Institutes of Health, http://rsb.info.nih.gov/ij). Background
signals were approximated by parabolic functions and subtracted
according to existing methods [70]. Online programs for the
automated background subtraction and data alignment are available
from the University of California Berkeley Web resource (http://
webfiles.berkeley.edu/;dap5). After background subtraction, the data
were resampled and aligned according to the position of Snail
gradient and the distribution of endogenous rho message. Expression
datasets for anterior–posterior genes were downloaded from the
FlyEx database (with options: integrated, without background) [60]. In
all cases, signal amplitude was normalized to the 0–1 range, and the
data was resampled to 1,000 datapoints along the coordinate of the
corresponding axis. In all models, we used the relative concentration
multiplied by a maximal absolute concentration. This absolute
concentration is an independent unknown parameter (range, 10�8–
10�9 M) equal for all reaction components.

Mutagenesis of rho enhancers. The minimal rho enhancer [6] was
mutated via site-directed mutagenesis in pGem T-Easy (Promega;
http://www.promega.com) using the following primers: Dl-Twi dis-
tance, RZ65mut: 59-GTTGAGCACATGTTTACCCCGATTGGG-
GAAATTCCCGG-39; deletion of Twist site, RZ66mut: 59-
GGCACTCGCATAGATTGAGCACATG-39; creation of a second
DTS, RZ67mut: 59-GCAACTTGCGGAAGGGAAATCCCGCTGCAA-
CAAAAAG-3 9; and RZ68mut : 5 9-CACACATCGCGACA-
CATGTGGCGCAACTTGC-39.

Mutated enhancers were cloned into the insulated P-element
injection vector E2G as described previously [13]: constructs were
introduced into the D. melanogaster germline by microinjection as
described previously [71]. Between three and six independent

Figure 4. Possible Extensions of the Antagonistic Model

(A) Feed-forward network motif (left) and the motif with a feedback to the activator (right).
(B,C) Expansion of the engrailed expression pattern in the eyespot of the developing butterfly wing (image adapted from C. Brunetti [67]: engrailed
expression, green; spalt expression, purple and red). White arrowheads signify initial engrailed pattern.
(D) A dynamic model for the network motif with feedback reproduces the outward expansion of the engrailed ring in the eyespot. The initial response
of engrailed is equivalent to that shown in Figure 2A; consequently. the engrailed extends itself ‘‘outward’’ from the focus.
(E) 2.5-Dimensional plot of (D) for time points t ¼ 1 and t ¼ 4.
doi:10.1371/journal.pcbi.0030084.g004
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transgenic lines were obtained and tested for each construct; results
were consistent across lines.

Fitting models to data and exploration of parameter space. To fit
our models with actual quantitative data, we maximized the agree-
ment r (Pearson association coefficient) between the model output
predictions and the observed (measured) expression patterns:

X� ¼ argX2I max rðXÞ ð9Þ

The best set of parameters X* from the parameter space I is defined
by the binding constants, cooperativity values, and the number of
binding sites. We used a standard hill-climbing algorithm (full
neighborhood search) for the main parameter space (e.g., [72]). For
each identified maximum, we measured the value of the site
occupancy function and discarded maxima that produce site
saturation values below selected thresholds, as well as such that are
located beyond selected realistic parameter ranges for binding
constants and cooperativity values. All maxima producing the highest
data-to-model agreement were found multiple times, suggesting that
exhaustive mapping of the parameter space was achieved. Fitting
‘‘shifted data’’ (wrong data) for Knirps was performed by exploring
exactly the same parameter space and exactly the same number of
seed points for each shift value. Quantitative gene expression data for
dorso–ventral genes are available at http://www.dvex.org; the analysis
tool ‘‘E-response,’’ fitting utilities, and online data-treatment pro-
grams are available at the University of California Berkeley Web
resource http://webfiles.berkeley.edu/;dap5.

Supporting Information

Figure S1. Dependence of Enhancer Response on Models, Structural
Elements, and Mechanisms

Panels on the left, (A,C,E,G,I), show transcriptional responses; panels
on the right (B,D,F,H,J) show ratios between the response functions.
(A) Disagreement between two models for a cooperative array
(Equations S8 and S9).
(B) Ratio between the two models for different numbers of sites, M.
(C) Disagreement between models for cooperating competitive arrays
(blue, Equation S10; green, Equation S11; red, Equation S12).
(D) Ratio between model Equation S11 and model Equation S12 for
different values of M.
(E) Responses of one-, two-, and three-module configurations for a
six-site cooperating competitive array.

(F) Ratios between model Equation S11 to model Equation S10
(green) and Equation S12 to Equation S10 (red).
(G) Response of two modules next to each other (in blue), at a
distance of 80 bases and at infinite distance (in green).
(H) Ratio between models for separated and neighboring modules.
Numbers show the distance between the modules in bases; the
distance dependence (d) is an arbitrary sigmoid function with
saturation at ;150 bases.
(I) Dependence of enhancer response on molecular mechanism of
repression.
(J) Ratios for direct competition (in green), short-range repression (in
red), and the long-range repression (in purple). Repressor concen-
tration is constant in all cases.

Found at doi:10.1371/journal.pcbi.0030084.sg001 (543 KB TIF).

Figure S2. Dependence of Response on the Shape of Identical
Gradients

(A–D) Similar antagonistic gradients may have different shapes,
which correspond to different form of the function (f(x) in Equation
7. However, the presence of the response function maximum (y(x) in
Equation 7 is independent from the form of the function f(x). All
simulations were performed with the same concentration values and
the same binding constant values.

Found at doi:10.1371/journal.pcbi.0030084.sg002 (543 KB TIF).

Protocol S1. Detailed Model Description

Found at doi:10.1371/journal.pcbi.0030084.sd001 (156 KB DOC).

Acknowledgments

We thank Mike Levine for stimulating discussion and help with the
manuscript’s preparation. We also thank John Reinitz for critical
reading of the manuscript.

Author contributions. RPZ and DP conceived and designed the
experiments, analyzed the data, contributed reagents/materials/
analysis tools, and wrote the paper. RPZ performed the experiments.

Funding. The work was supported by a grant from the National
Institutes of Health (GM46638) to Michael Levine and the Center for
Integrative Genomics at the University of California Berkeley.

Competing interests. The authors have declared that no competing
interests exist.

References
1. Reinitz J, Hou S, Sharp DH (2003) Transcriptional control in Drosophila.

Complexus 1: 54–56.
2. Bolouri H, Davidson EH (2003) Transcriptional regulatory cascades in

development: Initial rates, not steady state, determine network kinetics.
Proc Natl Acad Sci U S A 100: 9371–9376.

3. Ramsey S, Orrell D, Bolouri H (2005) Dizzy: Stochastic simulation of large-
scale genetic regulatory networks. J Bioinform Comput Biol 3: 415–436.

4. Philippakis AA, Busser BW, Gisselbrecht SS, He FS, Estrada B, et al. (2006)
Expression-guided in silico evaluation of candidate cis regulatory codes for
Drosophila muscle founder cells. PLoS Comput Biol 2: e53.

5. Zhu Z, Shendure J, Church GM (2005) Discovering functional transcription-
factor combinations in the human cell cycle. Genome Res 15: 848–855.

6. Zinzen RP, Senger K, Levine M, Papatsenko D (2006) Computational
models for neurogenic gene expression in the Drosophila embryo. Curr Biol
16: 1358–1365.

7. Janssens H, Hou S, Jaeger J, Kim AR, Myasnikova E, et al. (2006)
Quantitative and predictive model of transcriptional control of the
Drosophila melanogaster even skipped gene. Nat Genet 38: 1159–1165.

8. Levine M, Davidson EH (2005) Gene regulatory networks for development.
Proc Natl Acad Sci U S A 102: 4936–4942.

9. Stathopoulos A, Levine M (2005) Genomic regulatory networks and animal
development. Dev Cell 9: 449–462.

10. Michelson AM, Bulyk ML (2006) Biological code breaking in the 21st
century. Mol Syst Biol 2: 2006.0018.

11. Reeves GT, Muratov CB, Schupbach T, Shvartsman SY (2006) Quantitative
models of developmental pattern formation. Dev Cell 11: 289–300.

12. Estrada B, Choe SE, Gisselbrecht SS, Michaud S, Raj L, et al. (2006) An
integrated strategy for analyzing the unique developmental programs of
different myoblast subtypes. PLoS Genet 2: e16.

13. Markstein M, Zinzen R, Markstein P, Yee KP, Erives A, et al. (2004) A
regulatory code for neurogenic gene expression in the Drosophila embryo.
Development 131: 2387–2394.

14. Ochoa-Espinosa A, Yucel G, Kaplan L, Pare A, Pura N, et al. (2005) The role
of binding site cluster strength in Bicoid-dependent patterning in
Drosophila. Proc Natl Acad Sci U S A 102: 4960–4965.

15. Makeev VJ, Lifanov AP, Nazina AG, Papatsenko DA (2003) Distance
preferences in the arrangement of binding motifs and hierarchical levels in
organization of transcription regulatory information. Nucleic Acids Res 31:
6016–6026.

16. Fu D, Wen Y, Ma J (2004) The co-activator CREB-binding protein
participates in enhancer-dependent activities of bicoid. J Biol Chem 279:
48725–48733.

17. Erives A, Levine M (2004) Coordinate enhancers share common organiza-
tional features in the Drosophila genome. Proc Natl Acad Sci U S A 101:
3851–3856.

18. Papatsenko D, Levine M (2005) Quantitative analysis of binding motifs
mediating diverse spatial readouts of the Dorsal gradient in the Drosophila
embryo. Proc Natl Acad Sci U S A 102: 4966–4971.

19. Senger K, Armstrong GW, Rowell WJ, Kwan JM, Markstein M, et al. (2004)
Immunity regulatory DNAs share common organizational features in
Drosophila. Mol Cell 13: 19–32.

20. Cave JW, Loh F, Surpris JW, Xia L, Caudy MA (2005) A DNA transcription
code for cell-specific gene activation by notch signaling. Curr Biol 15: 94–
104.

21. Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, et al. (2005)
Transcriptional regulation by the numbers: Models. Curr Opin Genet
Dev 15: 116–124.

22. Cai HN, Arnosti DN, Levine M (1996) Long-range repression in the
Drosophila embryo. Proc Natl Acad Sci U S A 93: 9309–9314.

23. Kulkarni MM, Arnosti DN (2005) cis-regulatory logic of short-range
transcriptional repression in Drosophila melanogaster. Mol Cell Biol 25:
3411–3420.

24. Struffi P, Arnosti DN (2005) Functional interaction between the Drosophila
knirps short range transcriptional repressor and RPD3 histone deacetylase.
J Biol Chem 280: 40757–40765.

25. Hvidsten TR, Wilczynski B, Kryshtafovych A, Tiuryn J, Komorowski J, et al.
(2005) Discovering regulatory binding-site modules using rule-based
learning. Genome Res 15: 856–866.

26. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, et al. (2006)
TRANSFAC and its module TRANSCompel: Transcriptional gene regu-
lation in eukaryotes. Nucleic Acids Res 34: D108–D110.

PLoS Computational Biology | www.ploscompbiol.org May 2007 | Volume 3 | Issue 5 | e840834

Pattern Formation in Development



27. Ligr M, Siddharthan R, Cross F, Siggia E (2006) Gene expression from
random libraries of yeast promoters. Genetics 172: 2113–2122.

28. Ludwig MZ, Bergman C, Patel NH, Kreitman M (2000) Evidence for
stabilizing selection in a eukaryotic enhancer element. Nature 403: 564–567.

29. Ludwig MZ, Palsson A, Alekseeva E, Bergman CM, Nathan J, et al. (2005)
Functional evolution of a cis-regulatory module. PLoS Biol 3: e93.

30. Berman BP, Pfeiffer BD, Laverty TR, Salzberg SL, Rubin GM, et al. (2004)
Computational identification of developmental enhancers: Conservation
and function of transcription factor binding-site clusters in Drosophila
melanogaster and Drosophila pseudoobscura. Genome Biol 5: R61.

31. Papatsenko D, Kislyuk A, Levine M, Dubchak I (2006) Conservation
patterns in different functional sequence categories of divergent Drosophila
species. Genomics 88: 431–442.

32. Hallikas O, Palin K, Sinjushina N, Rautiainen R, Partanen J, et al. (2006)
Genome-wide prediction of mammalian enhancers based on analysis of
transcription-factor binding affinity. Cell 124: 47–59.

33. Zhang H, Levine M (1999) Groucho and dCtBP mediate separate pathways
of transcriptional repression in the Drosophila embryo. Proc Natl Acad Sci
U S A 96: 535–540.

34. MerikaM,ThanosD (2001)Enhanceosomes.CurrOpinGenetDev11: 205–208.
35. Blazek E, Mittler G, Meisterernst M (2005) The mediator of RNA

polymerase II. Chromosoma 113: 399–408.
36. Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, et al. (2005)

Transcriptional regulation by the numbers: Applications. Curr Opin Genet
Dev 15: 125–135.

37. Stanojevic D, Small S, Levine M (1991) Regulation of a segmentation stripe
by overlapping activators and repressors in the Drosophila embryo. Science
254: 1385–1387.

38. Stathopoulos A, Levine M (2004) Whole-genome analysis of Drosophila
gastrulation. Curr Opin Genet Dev 14: 477–484.

39. Istrail S, Davidson EH (2005) Logic functions of the genomic cis-regulatory
code. Proc Natl Acad Sci U S A 102: 4954–4959.

40. Ackers GK, Johnson AD, Shea MA (1982) Quantitative model for gene
regulationby lambdaphage repressor. ProcNatlAcadSciUSA79: 1129–1133.

41. von Hippel PH, Berg OG (1989) Facilitated target location in biological
systems. J Biol Chem 264: 675–678.

42. de Las Heras JM, Casanova J (2006) Spatially distinct downregulation of
Capicua repression and tailless activation by the Torso RTK pathway in the
Drosophila embryo. Mech Dev 123: 481–486.

43. Brakefield PM, Gates J, Keys D, Kesbeke F, Wijngaarden PJ, et al. (1996)
Development, plasticity and evolution of butterfly eyespot patterns. Nature
384: 236–242.

44. Lifanov AP, Makeev VJ, Nazina AG, Papatsenko DA (2003) Homotypic
regulatory clusters in Drosophila. Genome Res 13: 579–588.

45. Slutsky M, Mirny LA (2004) Kinetics of protein–DNA interaction:
Facilitated target location in sequence-dependent potential. Biophys J 87:
4021–4035.

46. Small S, Kraut R, Hoey T, Warrior R, Levine M (1991) Transcriptional
regulation of a pair-rule stripe in Drosophila. Genes Dev 5: 827–839.

47. Ptashne M (2005) Regulation of transcription: From lambda to eukaryotes.
Trends Biochem Sci 30: 275–279.

48. Gray S, Szymanski P, Levine M (1994) Short-range repression permits
multiple enhancers to function autonomously within a complex promoter.
Genes Dev 8: 1829–1838.

49. Jaeger J, Reinitz J (2006) On the dynamic nature of positional information.
Bioessays 28: 1102–1111.

50. Wu X, Vakani R, Small S (1998) Two distinct mechanisms for differential
positioning of gene expression borders involving the Drosophila gap protein
giant. Development 125: 3765–3774.

51. Ip YT, Park RE, Kosman D, Bier E, Levine M (1992) The dorsal gradient

morphogen regulates stripes of rhomboid expression in the presumptive
neuroectoderm of the Drosophila embryo. Genes Dev 6: 1728–1739.

52. Bergmann S, Sandler O, Sberro H, Shnider S, Schejter E, et al. (2007) Pre-
steady-state decoding of the Bicoid morphogen gradient. PLoS Biol 5: e46.

53. Ishihara S, Fujimoto K, Shibata T (2005) Cross talking of network motifs in
gene regulation that generates temporal pulses and spatial stripes. Genes
Cells 10: 1025–1038.

54. Hulskamp M, Pfeifle C, Tautz D (1990) A morphogenetic gradient of
hunchback protein organizes the expression of the gap genes Kruppel and
knirps in the early Drosophila embryo. Nature 346: 577–580.

55. Moussian B, Roth S (2005) Dorsoventral axis formation in the Drosophila
embryo—Shaping and transducing a morphogen gradient. Curr Biol 15:
R887–R899.

56. Pankratz MJ, Busch M, Hoch M, Seifert E, Jackle H (1992) Spatial control of
the gap gene knirps in the Drosophila embryo by posterior morphogen
system. Science 255: 986–989.

57. Rivera-Pomar R, Lu X, Perrimon N, Taubert H, Jackle H (1995) Activation
of posterior gap gene expression in the Drosophila blastoderm. Nature 376:
253–256.

58. Schroeder MD, Pearce M, Fak J, Fan H, Unnerstall U, et al. (2004)
Transcriptional control in the segmentation gene network of Drosophila.
PLoS Biol 2: E271.

59. Jaeger J, Sharp DH, Reinitz J (2007) Known maternal gradients are not
sufficient for the establishment of gap domains in Drosophila melanogaster.
Mech Dev 124: 108–128.

60. Poustelnikova E, Pisarev A, Blagov M, Samsonova M, Reinitz J (2004) A
database for management of gene expression data in situ. Bioinformatics
20: 2212–2221.

61. McCarty AS, Kleiger G, Eisenberg D, Smale ST (2003) Selective dimeriza-
tion of a C2H2 zinc finger subfamily. Mol Cell 11: 459–470.

62. Jaeger J, Surkova S, Blagov M, Janssens H, Kosman D, et al. (2004) Dynamic
control of positional information in the early Drosophila embryo. Nature
430: 368–371.

63. Margolis JS, Borowsky ML, Steingrimsson E, Shim CW, Lengyel JA, et al.
(1995) Posterior stripe expression of hunchback is driven from two
promoters by a common enhancer element. Development 121: 3067–3077.

64. Greenwood S, Struhl G (1997) Different levels of Ras activity can specify
distinct transcriptional and morphological consequences in early Drosophila
embryos. Development 124: 4879–4886.

65. Reed RD, Serfas MS (2004) Butterfly wing pattern evolution is associated
with changes in a Notch/Distal-less temporal pattern formation process.
Curr Biol 14: 1159–1166.

66. Keys DN, Lewis DL, Selegue JE, Pearson BJ, Goodrich LV, et al. (1999)
Recruitment of a hedgehog regulatory circuit in butterfly eyespot
evolution. Science 283: 532–534.

67. Brunetti CR, Selegue JE, Monteiro A, French V, Brakefield PM, et al. (2001)
The generation and diversification of butterfly eyespot color patterns. Curr
Biol 11: 1578–1585.

68. Lall S, Ludwig MZ, Patel NH (2003) Nanos plays a conserved role in axial
patterning outside of the Diptera. Curr Biol 13: 224–229.

69. Bolinger RA, Boekhoff-Falk G (2005) Distal-less functions in subdividing
the Drosophila thoracic limb primordium. Dev Dyn 232: 801–816.

70. Myasnikova E, Samsonova M, Kosman D, Reinitz J (2005) Removal of
background signal from in situ data on the expression of segmentation
genes in Drosophila. Dev Genes Evol 215: 320–326.

71. Jiang J, Cai H, Zhou Q, Levine M (1993) Conversion of a dorsal-dependent
silencer into an enhancer: Evidence for dorsal corepressors. EMBO J 12:
3201–3209.

72. Hosoyama N, Nasimul N, Iba H (2003) Layout search of a gene regulatory
network for 3-D visualization. Genome Inform Ser 14: 104–113.

PLoS Computational Biology | www.ploscompbiol.org May 2007 | Volume 3 | Issue 5 | e840835

Pattern Formation in Development


