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Abstract Neurons are believed to be non-proliferating cells. However, neuronal stem cells are still pre-

sent in certain areas of the adult brain, although their proliferation diminishes with age. Just as with other

cells, their proliferation and differentiation are modulated by various mechanisms. These mechanisms are

foundational to the strategies developed to induce neuronal proliferation and differentiation, with poten-

tial therapeutic applications for neurodegenerative diseases. The most common among these diseases are

Parkinson’s disease and Alzheimer’s disease, associated with the formation of b-amyloid (Ab) aggregates

which cause a reduction in the number of neurons. Compounds such as LiCl, 4-aminothiazoles, Pregnen-

olone, ACEA, harmine, D2AAK1, methyl 3,4-dihydroxybenzoate, and shikonin may induce neuronal

proliferation/differentiation through the activation of pathways: MAPK ERK, PI3K/AKT, NFkB, Wnt,

BDNF, and NPAS3. Moreover, combinations of these compounds can potentially transform somatic cells

into neurons. This transformation process involves the activation of neuron-specific transcription factors

such as NEUROD1, NGN2, ASCL1, and SOX2, which subsequently leads to the transcription of down-

stream genes, culminating in the transformation of somatic cells into neurons. Neurodegenerative dis-

eases are not the only conditions where inducing neuronal proliferation could be beneficial.

Consequently, the impact of pro-proliferative compounds on neurons has also been researched in mouse

models of Alzheimer’s disease.
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1. Introduction
Every cell in a multicellular organism is evolutionarily designed to
play a specific role, which needs to be precisely regulated.
Especially important is the regulation of the cell life cycle,
including their proliferation and differentiation. Therefore,
different mechanisms are evolutionarily designed for that purpose.
Moreover, some cells proliferate more often, while others, after
differentiation, usually do not proliferate. This situation takes
place in the case of neurons, which are highly specialized cells.
After being formed from stem cells during prenatal and early
postnatal life, they differentiate and lose the ability to proliferate.
Still, neural stem cells (NSCs) are present in the brains of adults,
and under favorable conditions or if necessary, they can start to
proliferate. Neural stem cells are primary progenitor cells at
different developmental stages that can initiate different cell lin-
eages, which finally lead to the formation of differentiated neurons
or glial cells1. However, NSCs are not randomly, nor uniformly
deployed in the brain. In the human brain, there are so-called
neurogenic niches, where higher concentrations of NSCs are
observed. As they are remnants of the embryonic germinal layer
region, the microenvironment in these areas is also pro-
neurogenic. In adults, two main areas of the brain are believed
to be places where neurons undergo intensive proliferation: the
subgranular zone (SGZ) of the hippocampus and the sub-
ventricular zone (SVZ)2. However, current research shows that
neurogenesis also takes place in several subcortical areas, such as
the hypothalamus, substantia nigra, striatum, amygdala, habenula,
and cerebellum. The first phase of adult neurogenesis is the so-
called precursor cell phase. At the beginning of this phase,
NSCs are radial glia-like cells with triangular somas. Moreover,
they express the undifferentiated neural progenitor cell (NPC)
marker nestin. Then they divide asymmetrically, giving rise to
transit amplifying cells, which are referred to as type II cells, and
are short and wide. Type-2 cells further differentiate into type-
3 cells, which are doublecortin (DCX)-positive and nestin-
negative. About 3 days after the initial cell division, the amount
of cells increases four times. At this stage, newly generated cells
enter a post-mitotic stage characterized by the expression of post-
mitotic neuronal markers: neuronal nuclei (NeuN), and calretinin.
Still, massive apoptosis reduces the number of cells during the
next 4 days. It is estimated that almost 80% of cells die3,4.
Newborn neurons migrate to the destination area of the brain by
following the long fibers of cells called radial glia or by chemo-
taxis following CCL2, CCL5, CCL12 and CC85. Immature neu-
rons produced in the SVZ can migrate along the rostral migratory
stream (RMS) connecting to the olfactory bulb, where they then
differentiate into mature neurons that process olfactory input,
including dopaminergic cells as well as g-aminobutyric acidergic
(GABAergic) and glutamatergic cells3,6. The SGZ gives rise to
granule cells of the dentate gyrus, which process information
relevant to learning and memory. After that, cells undergo
extensive neurite growth, during which their dendrites and axons
grow. This process is promoted by GABAergic input7. About
12e14 days after the generation of neurons, the first dendritic
synapses are formed. These processes seem to be modulated by
small Rho GTPases, shifts in mitochondrial metabolism, and the
disrupted in schizophrenia 1 protein (DISC1). Furthermore, sur-
rounding cells, like astrocytes, also modulate this process8.

In light of the above-mentioned processes, the topic of
neuronal proliferation and differentiation appears to be particu-
larly relevant to a full understanding of the nervous system, with
particular emphasis on the pathomechanisms of CNS diseases
such as Alzheimer’s and Parkinson’s diseases. Despite the fact that
the number of neuronal stem cells is rather stable, and even in old
people, their number is similar to young adults, their proliferation
is lower in older people, as is suggested by the lower expression of
Ki679, which can be caused by fluctuations in growth regulators
during aging. Neuronal proliferation and differentiation are
generally regulated by different growth factors like fibroblast
growth factor 2 (FGF2), transforming growth factor-alpha
(TGFa), and epidermal growth factor (EGF)9e12. Among them,
the production of EGF and FGF2 is different in older people
compared to younger individuals. Moreover, they show high
correlation with the expression of proliferation markers in stem
cells. Nevertheless, insulin-like growth factor-1 (IGF-1) and glial-
derived neurotrophic factor (GDNF) may also induce the prolif-
eration of neurons13. On the other hand, p16. INK4a, interleukin
(IL)-6, and TGF-b1 act in the opposite way and decrease the
proliferation of neurons13,14.

EGF, FGF, NGF, estrogens, and G-protein receptors (GPCRs)
ligands regulate neurogenesis through mitogen-activated protein
kinase (MAPK) activation15. Activation of the Rat sarcoma virus/
Rapidly Accelerated Fibrosarcoma/Mitogen-activated protein ki-
nase kinase/extracellular signal-regulated kinases mitogen-
activated protein kinase (Ras/Raf/MEK/ERK MAPK) pathway
increases cell proliferation but also differentiation16,17. Never-
theless, despite the fact that the Ras/Raf/MEK/ERK MAPK
pathway is believed to be the main regulator of neuron prolifer-
ation, other MAPKs are also involved in cell proliferation and
differentiation. Also, activation of MAPK c-Jun N-terminal kinase
(JNK) generally promotes apoptosis and inhibits proliferation of
cells18e21. Regulation of neuron proliferation may also occur in a
MAPK-independent manner. For example, tumor growth factor b
(TGFb) and Smad increase neuron proliferation through their own
specific mechanisms22. On the other hand, FGF2 and TGFa
activate another important pathway: the phosphatidylinositol 3-
kinase/AKT serine/threonine kinase/mammalian target of rapa-
mycin kinase (PI3K/AKT/mTOR) pathway, which prevents
apoptosis and promotes proliferation23.

The aforementioned pathways are precisely regulated, but
some factors can interfere with them, leading to increased or
decreased neurogenesis. Among them, small molecules can be
especially interesting, as it is known that some of them are able to
modulate signaling pathways that are crucial in the regulation of
neurogenesis, such as: SMAD, VEGF, FGF, PDGF, WNT, MAPK
Erk1/2, and PI3K/Akt/mTOR signaling. Consequently, the usage
of these compounds, or their mixtures, may lead to increased
neurogenesis. As they are relatively easy to obtain and deliver to
the brain, they may also have therapeutic properties in various
diseases, in particular those linked with neuronal loss, like
neurodegenerative diseases. Therefore, for a better understanding
of the regulation of neurogenesis by small molecules, and their
potential therapeutic properties, the exact mechanisms of action of
the most promising ones are described in the following chapters.

2. Neurodegenerative pathomechanism of the most common
diseases associated with the loss of neurons

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the
most common diseases associated with impaired neurogenesis
and, consequently, loss of neurons. Neurogenesis is affected by
intrinsic cellular changes at the level of epigenetic, transcriptional
or metabolic alterations24. Disturbances in controlling the protein
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quality through changes in the functioning of the autophagy-
lysosome system, chaperone activity and the processing of pro-
tein aggregates contribute to neuronal death and reduced
neurogenesis25e27. Neural stem cells (NSCs) in the hippocampus
are located mainly in the subgranular zone (SGZ) of the dentate
gyrus (DG) and have the ability to form new neurons. This process
is impaired in AD, however, the understanding of the mechanisms
underlying the reduced neurogenesis in the course of the disease is
still not accurate27. AD is characterized by neuronal loss in the
cerebral cortex and certain subcortical regions of the CNS, leading
to degeneration and atrophy of the parietal and temporal lobes,
cingulate gyrus, and parts of the frontal lobe28. The neurodegen-
erative pathomechanism of AD is mainly associated with the
occurrence of two pathologies, namely the formation of b-amyloid
(Ab) aggregates and the presence of neurofibrillary tangles
(NFTs)29. The Ab-associated pathology results from the abnor-
malities in the amyloid precursor protein (APP) cleavage, leading
to the formation of Ab monomers, which in turn link into oligo-
meric forms of Ab, and eventually aggregate forming Ab fibrils
and plaques30. In normal conditions, the APP is subjected to non-
amyloidogenic proteolytic cleavage by the enzymes a-secretase
and l-secretase, resulting in the production of soluble peptides31.
In the scenario where APP is proteolyzed by l-secretase and
b-secretase instead of a-secretase, insoluble peptides of amyloid b

are produced, which, due to poor clearance, aggregate in the brain
in the form of Ab plaques30,32. However, the exact role of amyloid
b in the pathogenesis of AD still remains unclear and requires
further explanation as it may take up to a decade of Ab aggregates
accumulation before the first symptoms of AD occurs29.

NFTs, the second main pathology related to the development
of AD, is associated with the hyperphosphorylation of the tau
Figure 1 Effect of Alzheimer’s disease on neurons. It has been suggest
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processing or elimination of altered proteins46. When these sur-
veillance mechanisms fail, native and non-native proteins tend to
form aggregates, thus disturbing the homeostasis of cells
(Fig. 2)47.

The main role in the pathogenesis of PD is attributed to
a-Synuclein (aSyn), which is a protein disturbing the above
mentioned surveillance mechanisms, leading to formation of ag-
gregates accumulated mainly in Lewy bodies (LB) or Lewy neurites
(LN). The alterations of aSyn include its phosphorylation, which
increases the formation of inclusions in LB, and its misfolding,
which leads to the aggregation of the protein, thus damaging the
neurons in the SNpc48,49. One of the components of surveillance
mechanisms which are reported to be affected by aSyn aggregates
are heat shock protein 70 (Hsp70) and heat shock protein 40
(Hsp40), which in PD are sequestered in the LB along the aSyn,
leading to loss of their function in nerve cells50. Furthermore, the
aggregates of aSyn may inhibit RAB1A protein and the proteasome
complex, thus causing impairments in the autophagy processes45,51.
Another mechanism underlying the development of PD is associ-
ated with impairments of mitochondrial functions, in particular
oxidative stress, as indicated by post-mortem studies of brains of
PD patients52. The significant role of mitochondrial dysfunction in
the pathogenesis of PD was suggested based on the fact that the
exposure to 1-methyl-4-phenyl-1,2,3,4-tertahydropyridine (MPTP)
results in loss of dopaminergic neurons and appearance of features
characteristic of PD, which is attributed to irreversible inhibition of
mitochondrial complex I53. The induction of PD phenotype by
administration of mitochondrial complex I inhibitors, such as
MPTP or rotenone, is implicated in one of the most frequently used
animal models of PD in preclinical studies54.

Targeting mechanisms of neuronal proliferation and differen-
tiation may lead to the development of new therapeutic strategies
for the above-mentioned diseases. Therefore, it is important to
develop agents that can safely and effectively promote neural cell
development.
Figure 2 Implications of AD and P
3. Single molecules affecting neurons

Neural stem cells (NSCs) and neural progenitor cells (NPC) have
been identified in various regions of the adult brain, including the
subventricular zone and the dentate cortex of the hippocampus (in
the subgranular zone of the SGZ)55. NSCs found in both devel-
oping and adult brains are multipotent cells capable of prolifer-
ating and differentiating into primary nervous system cell types,
such as neurons, astrocytes, and oligodendrocytes (Fig. 3). It is
possible to functionally integrate in vivo obtained nervous system
cells into an existing neural network56. However, differentiating
NSCs into neuronal lineages without the action of exogenous
factors, such as retinoic acid (RA) or leukemia inhibitory factor
(LIF), in the absence of basic fibroblast growth factor, is
challenging.

NPC-mediated neurogenesis involves at least three different
processes: NPC proliferation, NPC differentiation, and survival of
differentiated NPCs into neurons57. This mechanism provides a
continuous neuronal plasticity in the brain. However, during the
neurogenesis processes, many immature neurons die. Therefore,
supporting the neuronal maturation process is one pathway lead-
ing to neuronal proliferation.

Each of these processes can be modulated by small molecules.
There have been reports that the use of the antidepressant selective
serotonin reuptake inhibitor drug, fluoxetine, is able to reverse the
reduction in cell proliferation forced by the inevitable shock (IS)
experiment 65. There are also reports that small molecules such as
VPA can somehow enhance neuroblast cellular reprogramming in
SOX2-induced neurogenesis (in vivo conversion of astrocytes to
neurons in the injured adult spinal cord)58 and promote neuronal
maturation59. Deciphering the molecular mechanisms that regulate
NPCs allows better tailoring of small molecules that can either
inhibit or stimulate them, while affecting all the constituent
parts of neurogenesis. The Wnt signalling pathway plays a
nonnegligible role in controlling neurogenesis and NSC
D on the central nervous system.



Figure 3 Mechanism of neural cell differentiation.
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differentiation60. Its activation is associated with the accumulation
of b catenin its downstream moleculedin the cytoplasm, which is
mediated also by glycogen synthase kinase 3 (GSK3), a member
of receptor tyrosine kinase family. There are two subtypes of
GSK3, a and b, encoded by different genes. The target of GSK3b
is b catenin, whose level of phosphorylation is associated with
neurodegeneration. When stem cell proliferation decreases, and
cholinergic neuronal differentiation begins to dominate, the
phosphorylation level of b catenin increases. Activation of
glycogen synthase kinase 3b caused by b-catenin degradation
inhibits cell proliferation, but increases cell differentiation.
GSK-3b antagonizes the Wnt signaling pathway, playing a key
role in central nervous system (CNS) development. The gene
encoding the neural protein NPAS3 is another molecular target
involved in adult mammalian neurogenesis, as suggested by
experiments on Npas3�/� mice, which exhibit behavioral abnor-
malities and loss of neurogenesis. Similarly, NFkB and JAK/STAT
signaling participate in regulating the proliferation and differen-
tiation of self-renewing cells, including NCS61.

The search for low-molecular-weight drugs with proliferative
effects on the nervous system is important for their potential
therapeutic applications in neurological diseases such as Parkin-
son’s disease, Alzheimer’s disease or multiple sclerosis. By
stimulating proliferative processes in nerve cells, these drugs can
contribute to the regeneration of damaged nerve tissue and in-
crease the level of neurotrophins, which can have a positive effect
on the functioning of the nervous system. The search for small
molecules with proliferative effects on the nervous system is also
essential to understand proliferative processes in the nervous
system and develop more effective methods of treatment of
neurological diseases. Therefore, continued research on the search
for low-molecular-weight drugs with proliferative effects on the
nervous system is crucial for progress in the field of neurology and
neuropharmacology.

In the following section, compounds with documented prolif-
erative and differentiating effects on neurons are presented. Their
structures are listed in Fig. 4.

3.1. Lithium chloride

Lithium chloride is a simple inorganic compound used to treat
mood disorders, in particular bipolar affective disorder. It also
inhibits GSK3b, promoting neurogenesis during early CNS
development62. The effects of lithium chloride on cell viability,
cycle dynamics, proliferation, and differentiation of NSCs derived
from rat cerebral cortex in vitro and in vivo have been
reported63,64.

It has been shown that therapeutic lithium induces hippocampal
neurogenesis and NPC proliferation in the dentate cortex65,66.
However, transplanted NPCs have poor survival rates and mainly
differentiate into glial phenotypes. Therefore, the studies demon-
strating that lithium compounds enhance NPC neuronal differenti-
ation in vitro and after transplantation into the dissected ventral
horn of adult rats were of particular importance63,64. It was
concluded that lithium-induced NPC neurogenesis in vivo is
mediated by the brain-derived neurotrophic factor (BDNF)
signaling pathway. ELISA, RT-PCR, and Western blotting assays
revealed that lithium treatment increases the production of BDNF
by NPCs in culture. Moreover, anti-BDNF antibody application
decreases neurogenesis levels but does not affect NPC proliferation.

It was also demonstrated that milimolar doses of lithium
chloride increase b-catenin expression, significantly increasing the
number and size of neurospheres. NSC proliferation also signifi-
cantly increases after lithium salt treatment. This study



Figure 4 Compounds with proliferative effects: Neuropathiazole, KHS101, P7C3, Pregnenolone, ACEA, Harmine,

D2AAK1, MDHB, Shikonin.
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demonstrates that lithium chloride promotes NSC stem cell pro-
liferation, survival, and maintenance in vitro by activating the Wnt
signaling pathway.

The neuroprotective role of lithium in brain injury is probably
related to the increase in transcriptional expression of the cyto-
protective gene B-cell lymphoma 2 (Bcl2) and a decrease in the
transcription of the proapoptotic gene Bcl-2-like protein 4 (Bax)
as observed in rodent brain areas and cultured cells67. Increased
neuronal differentiation of embryonic hippocampal NPCs likely
occurs through an extracellular signal-regulated kinase and cAMP
response element binding protein-dependent pathway66.

In contrast, the primary hypotheses for the effect of lithium
chloride on signaling pathways are related to BDNF protein levels
and the Wnt pathway. Lithium treatment selectively activates the
BDNF IV promoter in neurons, up-regulating mRNA containing
exon IV of BDNF68,69. The relation between lithium chloride and
the Wnt signaling pathway is associated with the modulation of
b-catenin and GSK-3b levels. Lithium chloride significantly in-
creases b-catenin expression and effectively activates the Wnt
signaling pathway, whereas GSK3b expression decreases in a
dose-dependent manner.

In summary, the data obtained from the experiments allow to
draw the conclusion that the damaged environment of the CNS
lacks signals to induce neurogenesis. However, it was demon-
strated that lithium administration significantly enhances the
neuronal differentiation of transplanted NPCs in the removed
ventral horn, both in vitro and in vivo. This finding highlights
lithium’s capacity to increase neuronal differentiation in NPCs.
Additionally, it’s important to note that BDNF plays a significant
role in modifying the hostile environment of the mature CNS to
promote neuronal development and plasticity. Notably, its pro-
duction increases following lithium treatment, emphasizing its
therapeutic potential. Overall, these results suggest that lithium
could be a valuable candidate for stimulating neurogenesis and
promoting neural development in CNS injuries.

3.2. Neuropathiazole

A class of 4-aminothiazoles has been identified to selectively
induce the differentiation of multipotent neuronal stem cells in the
hippocampus, with neuropathiazole showing the highest activ-
ity70. Treatment of progenitor cells with it significantly decreases
cell proliferation, with more than 90% of cells differentiating into
neuronal cells. Prolonged treatment with neuropathiazole can
induce NSC cells to differentiate into mature neurons with a
characteristic morphology.

Neuropathiazole can also inhibit astroglial differentiation that
is induced by LIF and bone morphogenetic protein 2 (BMP2),
while RA cannot71,72. Neuropathiazole is a more selective inducer
of neuronal differentiation than RA and can competitively inhibit
astrogliogenesis by LIF/BMP2/FBS in a dose-dependent manner.

The tested small-molecule neuropathiazole induces neuronal
differentiation in multipotent adult hippocampal neural progenitor
cells. However, there is no evidence of direct pathological rele-
vance related to models of neurodegenerative diseases.

3.3. KHS101

KHS101, a small molecule that selectively induces neuronal dif-
ferentiation was found to promote NPC neuronal differentiation
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and inhibit their proliferation57. The level of NPC differentiation
induced by KHS101 was qualitatively similar to that induced by
the known neurogenic factors RA and BDNF under conditions of
adhesion and bead formation.

The effect of small molecules based on the structure of thia-
zoles on neurogenesis has been investigated by a targeted
structureeactivity relationship study (SAR). This study led to the
discovery of KHS101, a 4-aminothiazole compound with
enhanced activity and improved pharmacokinetic properties that
targets neuronal differentiation of cultured rat hippocampal stem
cells. KHS101 induced neuronal formation under conditions of
neurosphere formation from both the hippocampus and sub-
ventricular zone. This increase in neuronal differentiation from
progenitor cells was confirmed by increased expression of NeuroD
and panneuronal marker TuJ1, as measured by RT-PCR and im-
munostaining, respectively.

The mechanism of action of KHS101 was investigated using an
affinity-based purification method that demonstrated its physical
interaction with TACC3. TACC3 can sequester various transcrip-
tion factors into the cytoplasm or centrosome, preventing their
binding to gene promoters73. Alternatively, TACC3 can modulate
the proteolytic turnover of its binding partners, providing a target
for proteasome degradation. The study showed that KHS101
specifically accelerates neuronal differentiation by interacting
with the TACC3 protein and promotes a functional link between
KHS101 and the TACC3eARNT2 (neural transcription factor)
axis. KHS101 also inhibits astrocyte formation in cultured NPCs
and may override astrocyte-promoting BMP signaling. Accelera-
tion of neurogenesis is likely to occur through negative regulation
of the cell cycle combined with activation of the neuronal dif-
ferentiation program from progenitor cells.

The pharmacodynamic properties of KHS101 were also
investigated. Penetration of the bloodebrain barrier resulted in
very low systemic exposure, with a relative bioavailability of 69 %
after subcutaneous administration. Extensive distribution of the
test compound into the brain was observed. Animals treated with
KHS101 had no signs of disease, such as lethargy, weight loss, or
increased apoptosis in cells. The studies performed in this research
indicate that KHS101 administration leads to a significant increase
in neuronal differentiation, as evidenced by an increase in the
percentage of Brdu/NeuN double-positive cells. The resulting
cells exhibit normal neuronal morphology and spontaneous
spiking activity, confirming the presence of functional, maturing
neurons.

Previous studies on the expression of TACC3, a protein
considered as a potential molecular target for the treatment of
neurodegenerative diseases (for example, acting together with
Hsp70 proteins)74, have revealed a significant connection between
its function and the regulation of progenitor cell expansion and
terminal differentiation during development, as well as in the
development of hippocampal cells. Consequently, the binding of
KHS101 to TACC3 represents a crucial interaction that can be
leveraged to influence diseases pathomechanisms.

3.4. P7C3

To select molecules with properties that improve neurogenesis and
survival of immature neurons in the dentate bend of the mouse
brain, computational methods and in silico studies can be used.
Taking into account physicochemical and pharmacological prop-
erties, the selected compounds can be studied in vitro and in vivo.
Using this approach, eight compounds with proneurogenic
properties were discovered in 2010, with the active compound
P7C3 (aminopropylcarbazole) showing the highest potential for
beneficial pharmacological properties75. Its formulation for oral,
intravenous and i.p. administration was feasible; its half-life,
bioavailability and permeation across the bloodebrain barrier
were also determined.

Functional variants of the chemical derivatives of compound
P7C3 were then subjected to structureeactivity SAR studies (37
derivatives), resulting in one compound with superior performance
(P7C3A20), and several compounds with comparable proneuro-
genic propertiesdincluding P7C3-OMe. Animal studies
(Npas3�/� mice) were subsequently conducted, determining that
the relative number of DCXþ neurons increased significantly with
prolonged administration of P7C3, and did not affect the abun-
dance of hippocampal astrocytes and oligodendrocytes. This in-
dicates that the use of the test compound after the onset of neural
precursor cell proliferation enhances neuronal formation in the
hippocampus of adult mice. Additionally, the effect of P7C3 on
apoptosis in the hippocampus of the mice studied was investi-
gated. The compound was shown to facilitate the repair of the
granular layer of the dentate cortex by overcoming genotype-
specific enhancement of apoptosis. Moreover, P7C3 and the
tested derivatives P7C3A20 and R-P7C3-OMe protect mitochon-
drial membrane permeability and integrity, which explains the
enhancement of the death process of newborn neurons76. Finally, a
calcium-induced mitochondrial dissolution assay was performed,
demonstrating that the aminopropylcarbazole tested enhances
hippocampal neurogenesis, alleviating age-related cognitive
decline.

Comparison of compound P7C3 with two other classes of
compounds with likely anti-apoptotic propertiesdbrominated
carbazole compounds, capable of inhibiting Bid-mediated release
of cytochrome c in isolated mitochondria77, and the tetrahydro-
g-carboline (an antihistamine trade-named Dimebon)78,79d
revealed a much greater therapeutic potential of the test com-
pound, greater proneurogenic potency, and a lower dose of
efficacy.

It is well known that normal aging in rodents is associated with
impaired hippocampal neurogenesis, which, in turn, is due to an
increased number of apoptotic neurons in the aged rat brain80,81.
Therefore, Fisher’s elderly rat model was used to test whether the
compound P7C3 could mitigate the effects of aging in vivo. The
study assessed retention of cognitive decline, locomotor activity,
and pro-neurogenic efficacy in both short-term and chronic
administration tests. After sacrificing the rats, higher levels of
neurons (BrdUþ) were observed in the dentate gyrus of P7C3-
exposed rats. It can be hypothesized that the proneurogenic ac-
tivity of P7C3 in vivo can be attributed to its ability to protect
mitochondrial integrity and thereby mitigate the death of newborn
neurons between the time of their birth and their functional inte-
gration into the granular layer of the dentate cortex.

This example demonstrates the effectiveness of combining
high-throughput screening methods (including in silico ap-
proaches) with in vivo/in vitro testing, to identify and optimize
lead structures, allowing the design of a new class of promising
therapeutic agents.

3.5. Pregnenolone and its derivatives

Fatty acids, cholesterol, and steroid hormones play a key role in
the regulation of NSC proliferation and differentiation. For
example, linoleic acid and alpha-linolenic acid can enhance the
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proliferation and differentiation of embryonic NSCs82. In the
CNS, more specifically in the cerebral cortex, hippocampus, and
amygdala, cholesterol is converted into pregnenolone. Addition-
ally, its synthesis also occurs in neurons and glial cells. Preg-
nenolone derivatives inhibit the GABAA receptor in neurons of the
cerebral cortex of newborn rats83. Pregnenolone itself has growth-
stimulating properties in neuronal cells [via interaction with
microtubule-associated protein 2 (MAP2)], and neuroprotective
properties (protection against neurotoxic kainic acid in the hip-
pocampus). Pregnenolone metabolites, in turn, stimulate the pro-
duction of new myelin sheaths, induce cell proliferation and
neurogenesis in human NSCs and rat hippocampus, and a deriv-
ative, dehydroepiandrosterone (DHEA), increases the number of
new neurons in the rat dentate bend84.

The studies on the impact of pregnenolone on NSC prolifera-
tion and differentiation demonstrated that low concentrations of
pregnenolone increased NSC viability. Pregnenolone increased the
number of neurospheres and cells, as evidenced by Brdu labeling.
In the process of NSC differentiation under low doses of preg-
nenolone, cells first pass through the immature oligodendrocyte
state before becoming mature MBPþ cells. The effect of different
concentrations of the test chemical on astroglial and neuronal
differentiation was also tested. At concentrations of 15 mmol/L,
the number of astrocytes decreased, while at higher doses, the
number of neurons examined by beta 3þ tubulin cells increased
significantly85. The effects of the steroid pregnenolone sulfate
(Preg-S) on neurogenesis, a new form of plasticity, were also
investigated in young and old rats in vivo. Infusion of Preg-S was
found to stimulate neurogenesis and expression of polysialylated
forms of NCAM, PSA-NCAM, in the rat dentate bend. Preg-S
facilitated the production of new neurons in the hippocampus.
These effects on hippocampal plasticity are mediated by modu-
lation of GABAA receptor complex present on hippocampal
neuroblasts86. In addition, it was found that Preg-S partially pro-
tected newborn neurons from impaired survival.

Dehydroepiandrosterone (DHEA) is another derivative that
increases the number of newly generated neurons and antagonizes
the inhibitory effect of corticosterone on neuronal precursor pro-
liferation87,88. The mechanism of action involves pregnenolone
interacting with astrocyte cell surface receptors to induce the
production of various astrocyte subtypes involved in inflammation
within the nervous system. Pregnenolone modulates the tran-
scription of Notch1 and Pax6 genes89. Increased transcription of
these genes is associated with increased neuronal differentiation.
Inhibition of Notch1 has been reported to reduce neuronal dif-
ferentiation in adult rodents, demonstrating an important role in
neurogenesis, while also affecting the maintenance of hippocam-
pal stem cells. The signalling molecule Pax has also been impli-
cated in neuronal patterning and neurogenesis, being promoted by
the Notch1 pathway90,91.

3.6. ACEA

The cannabinoid receptor 1 (CB1) is a G-protein-coupled receptor
(GPCR) expressed mainly in the plasma membrane of neurons,
which tightly regulates neuronal metabolism, activity, and func-
tion92,93. Early studies have shown that the cannabis derivative
D9-tetrahydrocannabinol (THC) can induce neuroprotection by
up-regulating the CB1 receptor and maintaining mitochondrial
function94,95. However, the use of THC may be limited due to its
side effects such as addiction, psychoactivity, tolerance, and
cytotoxicity96. In the search for other compounds with similar
effects on the CB1 receptor, arachidonyl-2-chloroethylamide
(ACEA) was discovered to significantly increase mitochondrial
CB1 (mtCB1) expression in neurons and hippocampal tissue97.
In vitro, ACEA restored cell viability, inhibited reactive oxygen
species (ROS) generation, reduced lactate dehydrogenase (LDH)
release, and decreased apoptosis, improving mitochondrial func-
tion. In vivo, ACEA improved neurological outcomes, reduced the
number of TUNEL-positive neurons, and decreased the expression
of cleaved caspase 3, confirming its anti-apoptotic action. Addi-
tionally, mtCB1 activation attenuated Ca2þ-induced neuronal
mitochondrial damage97. However, it is worth mentioning that the
benefits induced by ACEA are partially blocked by the selective,
cell-impermeable haemopressin98, a CB1 receptor antagonist, and
completely blocked by the selective, cell-penetrating CB1 recep-
tor antagonist AM25199.

Influencing cannabinoid receptors may play a pivotal role in
affecting the pathomechanisms of neurodegenerative diseases.
These receptors regulate neurotransmitter release and synaptic
strength, and they undergo activation and overexpression during
disorders such as Alzheimer’s disease, multiple sclerosis, amyo-
trophic lateral sclerosis, Parkinson’s disease, and Huntington’s
chorea100. It is also known that oxidative stress and mitochondrial
dysfunction are the main features of degenerative brain diseases,
so affecting ROS may play an important role in treating CNS
diseases101.

3.7. Harmine

Ayahuasca is a plant with psychotropic effects that is used in local
ceremonies by Amazonian peoples. Careful study of the plant
decoction has identified the active agentsdharmine and harma-
line, b-carboline alkaloids102. Harmine has been shown to have
antidepressant and anti-anxiety effects. Preliminary studies in
rodents have shown that harmine reduces depressive symptoms
and restores normal levels of hippocampal neurotrophic factor
BDNF103,104.

Studies on the effects of harmine have shown that it signifi-
cantly affects human NPC proliferation, increasing the number of
cells by more than 70% at an optimal concentration of 7.5 mmol/L.
In addition, harmine treatment increases the specific pool of
neuronal precursors associated with neurogenesis in adults by
more than 60%. Notably, harmine use did not affect cell death and
did not cause damage to the DNA in the cells studied. The har-
mine studies also show that treatment with this alkaloid increases
the number of early progenitor cells expressing both GFAP and
nestin. This implies that harmine enhances the proliferation of
radial glial cells derived from NPCs, which can generate neurons
and astrocytes105. To assess the behavioral effects and hippo-
campal BDNF levels of this compound, rats were acutely exposed
to harmine. The use of this low-molecular-weight drug affected
the animals’ behavior in the forced swim and open field tests, with
no impact on locomotor activity. Additionally, increased BDNF
protein levels were observed in the rat hippocampus.

The study found that harmine is an inhibitor of tyrosine
phosphorylation-regulated kinase 1A gene with dual specificity
(DYRK1A) and monoamine oxidase (MAO)106,107. In neurode-
generative disorders, such as Parkinson’s and Alzheimer’s dis-
eases, monoamine oxidase type B (MAO-B) is believed to play a
significant role in generating reactive oxygen species during the
oxidation of amine substrates. It was known that treatment with
MAO inhibitors (deprenyl and rasagiline) usually results in up-
regulation of neurogenesis in the hippocampus, and MAO
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inhibition increases serotonergic neurotransmission in the adult
brain. The known treatment effect of INDY, a DYRK1A inhibitor
directly phosphorylates p53, attenuating the proliferation of rat
and human neuronal progenitor cells108.

It was tested whether there is an effect of harmine analogues on
hNPC proliferation related to the targets tested. The INDY in-
hibitor together with harmine increased hNPC proliferation,
whereas pargyline, an irreversible selective MAO inhibitor, did not
alter harmine-induced proliferation levels. It is therefore postu-
lated that harmine increases the pool of neuronal progenitor cells,
and DYRK1A inhibition is a possible mechanism involved in
these proliferative effects. DYRK1A is an even more important
target as it may affect neurogenesis not only through proliferation
but also by modulating migration and neuronal differentiation105.
The antidepressant effect of harmine may also be related to the
proliferation of hypothalamic neuronal precursors and hippo-
campal neuronal progenitors.

The authors postulate that the action of this compound is
attributed to the inhibition of monoamine reuptake. Considering
the observed increase in BDNF protein levels in vivo and the re-
sults of behawioral studies, there is potential for harmine to be
utilized as a compound affecting the mechanisms of depression
and impaired neurogenesis in the patient’s brain, as well as an
anxiolytic drug.

3.8. D2AAK1

The treatment of complex diseases such as schizophrenia and
other psychotic conditions requires the development of drugs that
target multiple receptors, especially multiple GPCRs109.
Computer-aided drug design techniques are the most promising
method for discovering active substances with such multidirec-
tional activities. Notably, structure- and ligand-based virtual
screening (VS) techniques, as well as molecular docking sup-
ported by advanced molecular dynamics (MD) techniques and
QSAR models, enable the determination of the most likely models
of the dynamic processes occurring in active receptors110. Using
these techniques, the multi-target molecule D2AAK1 [3-((4-
(5-methoxy-1H-indol-3-yl)-3,6-dihydropyridin-1(2H )-yl)methyl)
quinolin-2(1H )-one] was discovered111e113. Studies have
demonstrated its antipsychotic, anti-anxiety, and pro-cognitive
potential, explained by its multi-target nature of action, with af-
finity for D1, D2, D3, 5-HT1A, and 5-HT2A receptors113,114. In a
subsequent study it was also determined that D2AAK1 stimulates
neuronal growth and survival and promotes neuronal integrity
in vivo115.

A study conducted to assess the effects of D2AAK1 on neu-
rons, investigating responses related to memory, locomotor ac-
tivity, metabolic activity, proliferation levels, and neuronal
morphology showed that D2AAK1 and its derivatives115 affect
neuronal morphology, resulting in increased size, elongated den-
drites, and denser Nissel bodies. A single injection of D2AAK1
also affects memory-related processes, and long-term pharmaco-
therapy promotes pro-cognitive effects. Chronic treatment does
not result in changes in the hippocampus or an increase in
apoptotic cells; only an increase in the number of pyramidal
neurons in scrapings of treated animals was noted. The com-
pounds increase the proliferation of mouse hippocampal HT-22
neurons and do not increase the proliferation of immature neu-
roblastoma cells. Interestingly, the compounds protect neuronal
cells from heat by activating molecular chaperone proteins and
have antioxidant properties as they reduce the concentration of
both reactive oxygen species (ROS) and reactive nitrogen species
(RNS) in cells. Also worth mentioning is the reduced excitotox-
icity by decreasing the concentration of Ca2þ ions in cells.

To probe the mechanism underlying the observed effects of
D2AAK1 in silico, the molecular similarity of the D2AAK1
structure was matched with known structures with analogous
bioactivity according to the PASS program116. It was discovered
that one of the molecular targets of D2AAK1 may be the Ca2þ/
calmodulin-dependent protein kinase I (CaMKI) delta kinase,
which regulates axon elongation and growth cone motility in
hippocampal and cerebellar neuronal cells. The D2AAK1 com-
pound induces CaMKII up-regulation in SH-SY5Y and increases
CaMKI levels in HT-22. These kinases are important proteins
responsible for signal transduction, protein synthesis, synaptic
plasticity, development, and neuronal behavior117.

Antagonism of D2AAK1 towards the D2 and 5HT2A receptors
is responsible for the antipsychotic effect118. Partial agonism to-
wards the 5HT1A and D1 receptors is also observed, as this multi-
target action allows for the stimulation of D1 receptors in the
prefrontal cortex, which reverses cognitive decline. Additionally,
it controls the positive symptoms of schizophrenia caused by
mesocortical and mesolimbic blockade of D2 receptors111. The
anti-anxiety effect is likely related to the binding of D2AAK1 at
the allosteric site, which alters the opening width of the 5HT2A

receptor input, thereby changing the kinetics of orthosteric ligand
binding. High levels of neurotrophins are associated with neuronal
function, survival, and development, and are also associated with
the regulation of the tropomyosin-related kinase Trk signaling
pathway. Under the influence of D2AAK1, Trk and TrkA re-
ceptors are upregulated for SH-SY5Y cells, suggesting selective
inhibition of receptor kinase signaling119. The effects of D2AAK1
on long-term memory and neuronal activation have been linked to
the induction of CREB phosphorylation in the BDN/CaMK/CREB
signaling pathway by this compound120. In addition, the activation
of MAPK Erk1/2 and Pi3K/Akt/mTOR signaling pathways by
D2AAK1 has been confirmed121. Interestingly, neuroprotective
effects and effects on repair mechanisms at medium concentra-
tions of D2AAK1 are associated with Bcl-2 levels122. Further-
more, low levels of the transcription factor NFkB are responsible
for the lack of toxicity of the test compound against hippocampal
cells.

Taking all of the above information into account, D2AAK1 can
be used as a substance with a neuroprotective character and
increasing hippocampal cell proliferation. Its cognition-promoting
nature, as well as its anti-anxiety and antidepressant properties,
may benefit the treatment of symptoms of neurodegenerative
diseases.

3.9. MDHB

Methyl 3,4-dihydroxybenzoate (MDHB) is a low-molecular-
weight substance with known antioxidant properties, present in
extracts of classical herbs123. It is also known in the literature for
its effects on the CNS. MDHB accelerates neurite growth of pri-
mary cortical neurons in vitro by inducing brain-derived neuro-
trophic factor expression and protects primary cortical neurons
from induced apoptosis through the mitochondrial pathway124.

It was found that MDHB can act on the cholinergic neuro-
transmission system by replacing degenerated neurons with
cholinergic motor neurons125. Neurospheres were dissociated into
single NSCs, and after five days of MDHB compound treatment,
cells with morphological characteristics of neurons were observed.
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Cells were also identified using the neuronal marker Tuj1 and the
astrocyte marker GFAP. It was investigated whether MDHB in-
duces immature neurons to mature neurons using staining with the
markers MAP2 and NeuN. The experiments confirmed that
MDHB enhances the differentiation of NSCs into neurons, can
promote the differentiation of NSCs into mature neurons, and
inhibits the differentiation of NSCs into astrocytes.

The obtained neurons were mainly the neurons of the hippo-
campus, as evidenced by the immune response of the neuronal
markers Ctip2, Tbr1 and Prox1. Most MDHB-induced neurons
were immunopositive for the cholinergic neuron marker ChAT and
the motor neuron marker Isl1 and immunonegative for the marker
GABAergic neurons, the marker for dopaminergic neurons TH
and the marker for serotonergic neurons (5-HT). It follows that the
main subtype of MDHB-induced neurons produced are cholin-
ergic motor neurons. Induced neurons can form synapses and a
neural network, as evidenced by studies on synapsin I (SYN1) and
pre-additional postsynaptic early development125.

MDHB activates glycogen synthase kinase 3 (GSK3b)d
associated with the regulation of NSC differentiation into adult
motor neurons and the WNT pathwaydand causes degradation of
b-catenin, leading to an inability to enter the nucleus and initiate
the expression of cholinergic and cell cycle-related genes126. In
conclusion, MDHB can induce NSCs to differentiate into
cholinergic neurons by regulating cell cycle-related proteins and
the cholinergic signalling pathway.

As mentioned in Section 3.6, oxidative stress likely plays a
significant role in the pathogenesis of neurodegenerative diseases.
Consequently, antioxidant supplements have the potential to pre-
vent or delay the progression of such diseases and reduce ROS-
induced neuronal damage. Additionally, it is worth noting that
oxidative DNA damage can trigger apoptosis through the
endogenous apoptotic pathway in the mitochondria. Given the
information presented above, MDHB, with its neurotrophic,
anti-apoptotic, and anti-oxidative effects in nerve cells, holds
promise for influencing the treatment of neurodegenerative dis-
eases associated with oxidative stress. Furthermore, MDHB has
demonstrated the ability to protect primary cortical neurons
against induced apoptosis. Studies on MDHB have also revealed
that its implementation extends the lifespan of Caenorhabditis
elegans, providing a valuable avenue for researching aging and its
influence on the pathogenesis of age-related diseases127.

3.10. Shikonin

Shikonin, a phytochemical agent from the naphthoquinone family
and the main component of the root of Lithospermum erythro-
rhizon128 has anti-inflammatory, anti-pyretic, and anti-pain prop-
erties, and promotes wound healing129,130. Its pharmacological
effects are mainly attributed to its ability to block NFkB and
STAT3131,132.

Under conditions of ethanol-induced neurodegeneration, NFkB
and STAT3 inhibitors have a stimulating effect on NSC and NCP
proliferation. Shikonin stimulated the proliferation and speciali-
zation of NSCs and NCPs in both intact and chronically alco-
holized mice. In fact, the use of shikonin as a stimulator of
nervous tissue progenitor functions proved to be more effective
than the use of appropriate synthetic selective inhibitors of
signaling molecules133.

Blocking NFkB/STAT3 with shikonin in alcoholic encepha-
lopathy significantly increased NSC content in the subventricular
zone (SVZ) and NCP. This expansion of progenitor cells resulted
in increased mitotic activity and specialization of both types
of progenitors. Therefore, shikonin-mediated inhibition of
NFkB/STAT3 promoted activation of the brain’s cellular renewal
system under conditions of ethanol-induced neurodegeneration.
Moreover, blocking the NFkB and STAT3 pathways in NSCs and
NCPs stimulates their proliferation and synchronizes progenitor
specialization with each other. It is known that inactivation of
NFkB and STAT3 leads to increased production of neurotrophins,
including growth factors, by neuroglial cells133,134. Therefore, the
coordinated activity of various compartments of the cell renewal
system leads to the reconstruction of affected brain structures and
the correction of locomotor activity and cognitive functions of the
animals’ CNS135.

The obtained experimental data indicate the effectiveness of
neuroprotection and stimulation of neuroregeneration by inhibit-
ing NFkB/STAT3 using shikonin. Inducing the expression of the
NF-kB pathway, along with the synthesis of pro-inflammatory
mediators, leads to the activation of kinases responsible for pro-
tein hyperphosphorylation. One such protein is a t-protein, whose
aggregation is associated with one of the widely accepted patho-
mechanisms of AD136. Therefore, the documented effect of shi-
konin may be responsible for its neuroprotective effect, attributed
to its anti-inflammatory activity.

4. Ts65Dn mouse model associated with down syndrome
(DS)

Cognitive impairment and neuropathological features can be
modeled in vivo using the Ts65Dn mouse model of Down syn-
drome. This model exhibits key features of these disorders137e139,
including cognitive deficits, degeneration of cholinergic neurons
in the basal forebrain, and a deficit in ontogenetic neurogenesis, as
well as disturbed proliferation in various brain regions140,141.
Numerous studies aim to identify compounds that improve
cognitive function, increase hippocampal neurogenesis, and pro-
mote cell survival. Using the Ts65Dn model, several small mol-
ecules have been shown to have a significant impact on
neurogenesis, including P7C3, LiCl, fluoxetine, choline, for-
moterol, and fatty acids (Fig. 5).

4.1. P7C3

One promising proneurogenic molecule is the amino-
propylcarbazole P7C3, mentioned earlier75. P7C3 has the ability
to increase cell survival and decrease apoptosis, thereby prevent-
ing the decline of neurogenesis and cognitive function observed in
aging rats. Administration of the P7C3 compound to adult Ts65Dn
mice effectively reverses the decline of neurogenesis in the adult
hippocampus (measured by key markers, such as the number of
Ki67, DCXþ, BrdUþ cells, and the apoptotic index AC3þ)142.

4.2. Choline

Another approach is the use of choline143. It is known that choline
supplementation increases adult hippocampal neurogenesis in
normal rats144. An intriguing idea was to study the use of addi-
tional choline in the diet of mother rodents in the Ts65Dn
model e the addition of this low-molecular-weight active sub-
stance to the rodents’ food significantly improved spatial memory,
learning ability, and adult hippocampal neurogenesis of their
offspring. It is postulated that the increased demand for choline



Figure 5 Examples of compounds used in the Ts65Dn model study.
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during fetal development is related to its function as a precursor of
membrane phospholipids and the neurotransmitter acetylcholine.
Another aspect is the role of choline in DNA and histone
methylation reactions, which plays an important role in gene
expression regulation.145,146

4.3. Fluoxetine

The serotoninergic system plays a crucial role in neurogenesis and
dendritic development. However, it is altered in the trisomic brain.
The use of an SSRI drugdfluoxetinedrestored neurogenesis, the
number of granule cells, and dendritic morphology in the model,
as well as increased cell proliferation and survival in the sub-
granular zone and granule cells of the hippocampal layer147,148.
The potential mechanism by which fluoxetine restores dendritic
development in trisomic mice is based on the restoration of a
dysfunctional serotoninergic system. Treatment with the active
compound increases serotonin availability, which indirectly
reduces DSCAM protein levels and restores dendritic
branching147,149.

4.4. Formoterol

Behavioral analyses have shown that formoterol, a long-acting
agonist of the b2-adrenergic receptor, significantly improved
cognitive function in Ts65Dn mice150,151. Post-mortem analyses
have shown that the use of formoterol was associated with a
significant improvement in synaptic density and increased
complexity of newly born granule neurons in the dentate gyrus of
Ts65Dn mice, as well as significant improvement in cell prolif-
eration. Interestingly, the proliferative event was not related to the
number of new neurons, as there was no increase in the number of
DCXþ cells. Formoterol acts through Fgf2, a trophic factor syn-
thesized by hippocampal cells, increasing the proliferative and
migratory activity of glial and neuronal precursor cells. The use of
b2AR agonists leads to an increase in Fgf2 mRNA expression in
the hippocampus, and treatment with formoterol increases the
level of Fgf2 mRNA, increasing the rate of hippocampal
neurogenesis152,153.

4.5. Corn oil components

Linoleic acid (LA) and oleic acid (OA) are the main components
of corn oil that increase cognitive performance154,155. It has been
shown that treatment with corn oil improves hippocampal neu-
rogenesis and hippocampus-dependent memory in a Ts65Dn DS
model156. Evaluation of neurogenesis and dendritogenesis showed
that the number of new granule cells in the dentate gyrus of the
hippocampus and their dendritic pattern in treated Ts65Dn mice
became similar to those in euploid mice, and their body and brain
weight increased. OA supplementation has been shown to inhibit
the production of Ab peptide and amyloid plaques157. In vitro
studies suggest that fatty acids act on NPCs through receptors
activated by peroxisome proliferator-activated receptors b/d and g,
which physically interact with the Down syndrome critical region
2 (DSCR2), which may be related to the mechanism of impaired
neurogenesis in the patient’s brain158.

The substances described in the aforementioned chapters 3 and
4 have been compiled into a table that summarizes their effects on
neuronal cells and other activities (Table 1).

5. Mixtures of small compounds (cocktails)

Various lineage-specific transcription factors can induce the con-
version of somatic cells in mice or humans into neurons, bypassing
the pluripotent state both in vitro and in vivo161e163. For example,
NGN2 is an essential helixeloopehelix transcription factor that
regulates neuronal precursor differentiation into neurons during



Table 1 Summary of substances with pro-proliferative effects on neuronal cells.

Substance Mechanism of action Action on neuronal cells Other activity In vitro/in vivo models used Ref.

LiCl GSK3b inhibition; neurogenesis

is mediated by the BDNF

signaling pathway; activation the

Wnt signaling pathway

Enhancing the neuronal

differentiation of NPCs

Treatment of mood disorders Stem cell culture dissected out

from spinal cords from wild type

or transgenic SpragueeDawley

rats; embryonic NSCs collected

from gestational SD rats

62e64

Neuropathiazole Inhibition of astrogliogenesis by

LIF/BMP2/FBS

Selectively inducing the

differentiation of multipotent

neuronal stem cells

N/a Primary neural progenitor (HCN)

cells isolated from adult rat

hippocampus

70

KHS101 Inhibiting astrocyte formation in

cultured npcs, overriding

astrocyte-promoting BMP

signaling; promotion a functional

link between KHS101 and the

TACC3-ARNT2

Promoting the NPC neuronal

differentiation and inhibiting

their proliferation

Disrupting energy metabolism in

human glioblastoma cells and

reducing tumor growth in mice;

effects on contextual memory of

morphine

Hippocampal rat NPCs 57,159

P7C3 Protecting the mitochondrial

integrity (thereby mitigate the

death of newborn neurons)

Increasing cell survival and

decreasing apoptosis; enhancing

and reversing the loss of

neurogenesis

N/a Npas3�/� mice

Fisher’s elderly rat model; adult

Ts65Dn mice

75

Pregnenolone

derivatives

Inhibition of the GABA A

receptor in neurons; interaction

with MAP2; modulation of

Notch1 and Pax6 gene

transcription

Inducing cell proliferation,

differentation and neurogenesis,

modulating apoptosis

Anti-cancer activity Appswe/PS1dE9 transgenic mice 82e84,87e89

ACEA Significantly increasing MTCB1

expression in neurons; decreasing

the expression of cleaved caspase

3

Improvement of neurological

outcomes

ROS inhibition; reducing LDH Male C57BL/6 mice 97

Harmine DYRK1A and MAO inhibition;

restoring the correct level of

BDNF

Influencing proliferation and

neurogenesis

Antidepressant and anti-anxiety

effects;

Open-label trial conducted in an

inpatient psychiatric unit; male

adult Wistar rats

102e105

D2AAK1 Causing upregulation of

CAMKII;

D2 and 5-HT2A receptor

antagonism; partial 5-HT1A

agonism; affecting the induction

of CREB phosphorylation by the

5-HT2A receptor in the BDN/

camk/CREB signaling pathway;

activation of MAPK Erk1/2 and

PI3K/Akt/mtor signaling

pathways

Neuroprotective effect and

increasing the proliferation of

hippocampal cells

Cognitive-promoting potential;

antipsychotic, anti-anxiety and

antidepressant properties; control

the positive symptoms of

schizophrenia

Mouse hippocampal HT-22

neurons; SH-SY5Y cells; Naive

male Swiss mice

111e115

MDHB Inducing BDNF expression and

protecting primary cortical

neurons from induced apoptosis

via the mitochondrial pathway;

activation of GSK3b

Promoting the differentiation of

nscs into mature neurons

Anti-oxidant properties SH-SY5Y cells 123e125

Shikonin Blocking NFkB and STAT3,

affecting t protein aggregation

Neuroprotective effect, attributed

to its anti-inflammatory activity

Anti-pyretic, and anti-pain

properties, supporting wound

healing

C57B1/6 male mice; Zebrafish

tumor model

129e132

(continued on next page)
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neuron development and reprograms early postnatal astrocytes into
neurons, also playing a crucial role in determining motor neuron
differentiation during spinal cord development. Most studies on
glia-to-neuron conversion have been conducted using ectopic, viral
expression of transcription factors, which requires virus production
and advanced intracranial or spinal cord injection procedures. In
addition, the use of transcription factors is associated with risks
such as carcinogenicity and difficulty in delivering them to the
brain164. An alternative is to use small molecules whose biological
effects are generally reversible and precisely tuned. The challenge
remains in selecting a molecule or mixture of molecules (cocktails)
that can convert fibroblasts or neuronal NPCs or stimulate neuron
development and maturation.

A strategy based on the use of small molecules to induce cell
line reprogramming would be beneficial, as it would be non-
immunogenic, cost-effective, and easy to manipulate and stan-
dardize. Additionally, the application of small molecules is
reversible and does not require cell permeabilization. The obvious
drawbacks of such a procedure are the difficulties in conducting
sequential administration, the large number of required molecules,
and overall complications. Furthermore, the use of a cocktail may
cause unexpected interactions and adverse effects. However,
despite these problems, the introduction of small molecule drugs
is considered the future of solving the causes and consequences of
neurodegenerative diseases.

Astrocytes are considered an ideal starting cell type for
generating new neurons due to their origin from a single pro-
genitor cell lineage and ability to proliferate after brain injury165.
Moreover, the feasibility of small molecule-mediated conversion
of astrocytes to neurons has already been observed. Human adult
astrocytes cannot spontaneously convert into doublecortin (DCX)
or MAP2þ cells, so their changes induced by small molecules are
more spectacular164.

The following low-molecular-weight active ingredients used in
cocktails aimed at influencing neurogenesis can be included:
CHIR99021, forskolin, VPA, ISX-9, IBET-151 and others. The
action of individual molecules is well-described:

� ISX-9 activates the transcription of genes typical for neurons,
which leads to the activation of neuronal networks166;

� I-BET151 represses genes associated with astrocytes and dis-
rupts the primary transcriptional network of fibroblasts;

� VPA promotes neurogenesis and maturation of neurons by
activating neuronal genes167;

� forskolin reduces lipid peroxidation and promotes neuronal
remodeling168;

� CHIR99021 and inhibitors RepSox, GSK3b, and TGFb in-
crease the efficiency of transcription factor-directed neuronal
conversion169;

� DAPT, a g-secretase inhibitor that indirectly inhibits the Notch
signalling pathway, promotes neuronal differentiation170;

� Tzv, an inhibitor of Rho-associated kinase (ROCK), promotes
cell survival and improves reprogramming efficiency171;

� SB431542 is an inhibitor of TGFb/activin receptors, which are
involved in inhibiting neuronal fate and promoting glial
fate172;

� LDN193189 is an inhibitor of BMP receptors, which are
important for astroglial differentiation173;

� TTNPB is an agonist of RA receptors, which are crucial in
neuronal patterning174;

� SAG and Purmo have been used to induce neuronal
differentiation175.
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The challenge remains in selecting cocktail ingredients to
reduce undesirable effects, determine key components deter-
mining neurogenerative effectiveness, and analyze interactions
between molecules that significantly affect the mechanism of
neuronal proliferation and differentiation.

6. Conclusions

A great challenge in basic research as well as in treatment of
neurodegenerative diseases is the fact that neuron proliferation in
adults is very limited, and it decreases further during aging.
Therefore, different methods have been developed to induce the
proliferation and differentiation of neurons, as well as to induce the
differentiation of other cells into neurons. These methods can be
based on genetic engineering techniques, and on the usage of
different chemicals and theirmixtures. For therapeutic purposes, the
most promising compounds or mixtures are those that can induce
the proliferation of NSCs and their differentiation into functional
neurons. For research purposes, the ability to transform widely
used cells like fibroblasts into neurons seems to be more important.

The proliferation and differentiation of neural stem cells into
neurons are regulated by different pathways, among which the most
important ones involve MAPK ERK, Pi3K/AKT, NFkB, Wnt,
BDNF, and NPAS3. Therefore, the metabolism and life cycle of
neural stem cells may be modulated by molecules that interact with
these pathways, such as lithium chloride, 4-aminothiazoles, preg-
nenolone, ACEA, harmine, D2AAK1, methyl 3,4 dihydrox-
ybenzoate, and shikonin. Activation of BDNF by lithium chloride is
associated with the activation of anti-apoptotic and Wnt pathways,
which not only increases the viability of cells but also promotes
their differentiation into neurons. Pregnenolone also acts through
BDNF activation, but in this case, additional activation of MAPK
ERK, Notch1, Pax6, PI3K/Akt, and PLC is observed. Similarly,
MAPK ERK and PI3K/Akt activation are also responsible for
D2AAK1’s impact on neurons. As these pathways regulate cell
differentiation and proliferation, their activation may counteract the
decreased number and activity of neurons observed in older ages.

On the other hand, combinations of compounds may have more
spectacular effects, as they can transform somatic cells into fully
functional neurons, mostly through indirect interactions with
different genes. Every type of cell has its own individual pattern of
gene expression, so modifying it may lead to the transformation of
one cell into another. In the case of transforming somatic cells into
neurons, the activation of various neuron-specific transcription
factors like NEUROD1, NGN2, ASCL1, and SOX2 seems to be
especially important. This is achieved by a cascade of upstream
proteins, leading to the transcription of downstream genes and
finally the transformation of somatic cells into neurons.
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20. Wagner EF, Nebreda ÁR. Signal integration by JNK and p38 MAPK

pathways in cancer development. Nat Rev Cancer 2009;9:537e49.

21. Wang H, Zhou W, Zhang J, Li H. Role of JNK and ERK1/2 MAPK

signaling pathway in testicular injury of rats induced by di-N-butyl-

phthalate (DBP). Biol Res 2019;52:41.

22. Travis MA, Sheppard D. TGF-b activation and function in immunity.

Annu Rev Immunol 2014;32:51e82.

23. Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H, et al. Fibroblast

growth factors: biology, function, and application for tissue regen-

eration. J Tissue Eng 2010;1:218142.

24. Audesse AJ, Webb AE. Mechanisms of enhanced quiescence in

neural stem cell aging. Mech Ageing Dev 2020;191:111323.

25. Audesse AJ, Dhakal S, Hassel LA, Gardell Z, Nemtsova Y,

Webb AE. FOXO3 directly regulates an autophagy network to

functionally regulate proteostasis in adult neural stem cells. PLoS

Genet 2019;15:e1008097.

26. Vonk WIM, Rainbolt TK, Dolan PT, Webb AE, Brunet A, Frydman J.

Differentiation drives widespread rewiring of the neural stem cell

chaperone network. Mol Cell 2020;78:329e45.e9.

27. Babcock KR, Page JS, Fallon JR, Webb AE. Adult hippocampal

neurogenesis in Aging and Alzheimer’s disease. Stem Cell Rep 2021;

16:681e93.

28. Wenk GL. Neuropathologic changes in Alzheimer’s disease. J Clin

Psychiatry 2003;64(Suppl 9):7e10.

29. Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM,

Salazar AM, Lamb BT. Inflammation as a central mechanism in

Alzheimer’s disease. Alzheimers Dement Transl Res Clin Interv

2018;4:575e90.
30. Selkoe DJ. Normal and abnormal biology of the beta-amyloid pre-

cursor protein. Annu Rev Neurosci 1994;17:489e517.

31. Anderson JP, Chen Y, Kim KS, Robakis NK. An alternative secretase

cleavage produces soluble Alzheimer amyloid precursor protein

containing a potentially amyloidogenic sequence. J Neurochem 2006;

59:2328e31.

32. Butterfield DA, Swomley AM, Sultana R. Amyloid b-peptide

(1e42)-induced oxidative stress in Alzheimer disease: importance in

disease pathogenesis and progression. Antioxidants Redox Signal

2013;19:823e35.

33. Alonso AC, Grundke-Iqbal I, Iqbal K. Alzheimer’s disease hyper-

phosphorylated tau sequesters normal tau into tangles of filaments

and disassembles microtubules. Nat Med 1996;2:783e7.

34. Gong CX, Iqbal K. Hyperphosphorylation of microtubule-associated

protein tau: a promising therapeutic target for Alzheimer disease.

Curr Med Chem 2008;15:2321e8.

35. Garwood CJ, Pooler AM, Atherton J, Hanger DP, Noble W. Astro-

cytes are important mediators of Ab-induced neurotoxicity and tau

phosphorylation in primary culture. Cell Death Dis 2011;2:e167.

36. Guo T, Noble W, Hanger DP. Roles of tau protein in health and

disease. Acta Neuropathol 2017;133:665e704.

37. Iqbal K, Liu F, Gong CX, Grundke-Iqbal I. Tau in Alzheimer disease

and related tauopathies. Curr Alzheimer Res 2010;7:656e64.
38. �Simi�c G, Babi�c Leko M, Wray S, Harrington C, Delalle I, Jovanov-

Milo�sevi�c N, et al. Tau protein hyperphosphorylation and aggrega-

tion in Alzheimer’s disease and other tauopathies, and possible

neuroprotective strategies. Biomolecules 2016;6:6.

39. Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall D, et al.

Increased hippocampal neurogenesis in Alzheimer’s disease. Proc

Natl Acad Sci U S A 2004;101:343e7.
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