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Deep subsurface petroleum reservoir ecosystems harbor a high diversity of
microorganisms, and microbial influenced corrosion is a major problem for the
petroleum industry. Here, we used high-throughput sequencing to explore the microbial
communities based on genomic 16S rDNA and metabolically active 16S rRNA
analyses of production water samples with different extents of corrosion from a
high-temperature oil reservoir. Results showed that Desulfotignum and Roseovarius
were the most abundant genera in both genomic and active bacterial communities of all
the samples. Both genomic and active archaeal communities were mainly composed
of Archaeoglobus and Methanolobus. Within both bacteria and archaea, the active
and genomic communities were compositionally distinct from one another across the
different oil wells (bacteria p = 0.002; archaea p = 0.01). In addition, the sulfate-
reducing microorganisms (SRMs) were specifically assessed by Sanger sequencing of
functional genes aprA and dsrA encoding the enzymes adenosine-5′-phosphosulfate
reductase and dissimilatory sulfite reductase, respectively. Functional gene analysis
indicated that potentially active Archaeoglobus, Desulfotignum, Desulfovibrio, and
Thermodesulforhabdus were frequently detected, with Archaeoglobus as the most
abundant and active sulfate-reducing group. Canonical correspondence analysis
revealed that the SRM communities in petroleum reservoir system were closely related
to pH of the production water and sulfate concentration. This study highlights the
importance of distinguishing the metabolically active microorganisms from the genomic
community and extends our knowledge on the active SRM communities in corrosive
petroleum reservoirs.
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INTRODUCTION

Metal corrosion is a major problem for oil production systems,
leading to serious economic and safety as well as human
health problems (Koch et al., 2002; Guan et al., 2014). It is
well-recognized that the majority of corrosion of oil pipelines
is associated with microorganisms (Almahamedh et al., 2011).
Microbial groups of sulfate-reducing microorganism (SRM),
acid-producing fermentative microorganisms, metal-reducers
and methanogens are frequently detected in oil transporting
pipeline systems (Duncan et al., 2009; Stevenson et al., 2011;
Liang et al., 2014). The presence of hydrocarbons and their
degradation intermediates, such as volatile fatty acids, as electron
donors and carbon sources, and the supply of sulfate from
injection water as electron acceptors promote the proliferation of
microorganisms in anoxic subsurface oil reservoirs and related oil
drilling equipment and transport pipeline system (Biderre-Petit
et al., 2011; Vigneron et al., 2016).

Bastin et al. (1926) first reported the presence of
sulfate-reducing bacteria in oil field waters. Sulfate reduction
can have a deleterious impact on crude oil quality by reservoir
souring and biocorrosion of the oil infrastructures (Lewandowski
and Beyenal, 2008). The SRM, encompassing members affiliated
with four bacterial [Proteobacteria (class Deltaproteobacteria),
Nitrospira, Firmicutes, Thermodesulfobacteria] and two archaeal
phyla (Euryarchaeota, Crenarchaeota) are commonly considered
to be main culprits of MIC under anaerobic conditions (Beech
and Sunner, 2004; Enning and Garrelfs, 2013; Müller et al., 2014).
SRM contribute to chemical microbial influenced corrosion
(CMIC) by reducing sulfate to sulfide using organic electron
donors such as organic acids (Dinh et al., 2004; Venzlaff et al.,
2012). The produced sulfide can then react with carbon steel to
form FeS, resulting in dissolution of metal iron and formation
of hydrogen which is then also used by SRM as an electron
donor (Voordouw et al., 2016). Recent studies showed that some
SRM were capable of iron corrosion via electron extraction
from Fe0 and the process is referred to as electrical microbial
influenced corrosion (EMIC) (Enning et al., 2012; Enning and
Garrelfs, 2013). Other microorganisms, such as metal-reducers,
acid-producing fermentative microorganisms and methanogens
may also contribute to corrosion through different biochemical
processes (Zhang et al., 2003; Enning and Garrelfs, 2013; Kip and
Veen, 2014; Usher et al., 2014). The acid-producing fermentative
organisms and methanogens might indirectly increase corrosion
through the production of organic acids or syntrophy with
corrosion promoting microorganisms (Kip and Veen, 2014).
Studies have found high numbers of methanogens associated
with pitting corrosion of steel pipes (Uchiyama et al., 2010;
Park et al., 2011). Furthermore, the anaerobic biodegradation of
labile fuel components coupled with sulfate respiration greatly
contributed to the biocorrosion of carbon steel (Liang et al.,
2016). Moreover, it has been reported that thiosulfate-utilizing,
sulfide-producing fermentative bacteria such as Anaerobaculum
sp. were implicated with the biocorrosion of a high-temperature
petroleum facility (Liang et al., 2014).

Recently, multiplex dsrA and dsrB amplicon sequencing
approach by using new primers and mock community-optimized

bioinformatics have been demonstrated to be adequate for
monitoring the spatial distribution and temporal abundance
dynamics of sulfite- and SRMs (Pelikan et al., 2015). The
molecular approach to track SRM is primarily based on
functional genes encoding the key selective enzymes including
adenosine-5′-phosphosulfate (APS) reductase (Apr) (Meyer and
Kuever, 2007) and dissimilatory sulfite reductase (Dsr) (Muyzer
and Stams, 2008). The application of these two different genes
(aprA and dsrA) is complementary for the characterization
of sulfate-reducing communities and have been studied in
different environmental conditions, such as marine sediments
(Blazejak and Schippers, 2011), mangrove sediments (Varon-
Lopez et al., 2014), and hydrothermal vents (Frank et al.,
2013). The composition and activity of microbial communities
may depend on a range of factors, including temperature,
and availability of electron donors and acceptors (Duncan
et al., 2009; Davidova et al., 2012). Accurate and more
specific detection and characterization of microbial communities
associated with oil souring and pipeline corrosion are crucial
to the development of management strategies to minimize or
prevent biocorrosion.

In this study, the diversity and composition of microbial
community in production water of Jiangsu oil reservoir were
explored by analysis of both 16S rDNA and 16S rRNA. In
addition, potentially active SRM were also investigated by using
the aprA and dsrA gene transcripts to gain insights for SRM.
Three blocks (six different oil wells) with known reservoir souring
and pipeline corrosion history were selected in this investigation
for a better understanding of microbial communities and SRM in
a high temperature and corrosive petroleum reservoir.

MATERIALS AND METHODS

Sampling and Chemical Analysis
Production water samples were obtained on 19 November
2015 from three different blocks (six wells) of Jiangsu oilfield
(Yangzhou, Jiangsu, China), including Block W2 (2-53, 2-71),
W9 (9-18, 9-14) and W11 (11-7, 11-6). The depths of these
wells ranged from 1499 to 2143 m below ground surface, with
temperature from 66.2 to 79.6◦C. Blocks W2 (2-53, 2-71) and
W11 (11-7, 11-6) oil wells have been water-flooded for about
18 and 10 years, respectively. At W9 block, 9-14 has been
water-flooded for about 15 years, while 9-18 has never been
water-flooded. Corrosion rates of the wells are shown in Table 1.

Twenty liters of the production water from each production oil
well were collected directly from the production valve at the well
head into sterile bottle. Production water of each sample for RNA
analysis was filtered through 0.1-µm-pore-size polycarbonate
membrane filters (Whatman, United Kingdom). Samples were
collected within 30 min and stored with a stop solution (95%
ethanol, 5% Trizol) for RNA preservation. All samples were
stored on ice and immediately transported back to laboratory for
further analysis.

Cations and anions and volatile fatty acids in the water
samples were quantified by Ion Chromatography (IC DX-
600, Dionex, United States). The detailed description of the
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TABLE 1 | Physicochemical properties of the samples from Jiangsu oil reservoirs.

Block W2 Block W9 Block W11

2-53 2-71 9-18 9-14 11-7 11-6

Depth (m) 1538 1499 1809 1837 2143 2057

Temperature (◦C) 67.6 66.2 79.6 75.8 72.3 71.5

pH 8.12 8.23 8.03 7.82 7.90 7.84

Water flooding (year) 18 18 0 15 10 10

Corrosion rate (mm year−1) 0.066 0.064 0.031 0.039 0.101 0.236

TDS (g l−1) 23.01 24.49 24.41 25.04 25.4 24.45

Water content (%) 79.3 89.4 96.1 79.4 75.4 94.5

Na+ (g l−1) 4.14 4.06 5.12 5.68 5.54 3.36

Mg2+ (mg l−1) 11.54 8.86 18.23 23.31 28.72 16.53

Ca2+ (mg l−1) 28.17 33.19 36.12 78.65 101.92 63.92

NH4
+ (mg l−1) 64.8 24.82 56.84 69.83 58.96 60.18

K+ (mg l−1) 200.07 24.51 175.13 227.82 215.89 215.29

SO2−
4 (mg l−1) 244.0 83.4 182.2 297.0 533.7 193.4

NO−3 (mg l−1) 1.50 9.11 2.22 1.97 5.97 0.81

CO2−
3 (g l−1) 3.12 2.95 1.90 1.49 1.10 1.16

S2− (mg l−1) 9.39 8.42 9.69 9.87 8.37 6.86

SO2−
3 (mg l−1) nd nd nd 10.63 nd nd

Cl− (g l−1) 4.03 4.37 6.82 8.23 8.22 4.75

S2O2−
3 (mg l−1) 92.14 89.65 149.6 126.8 38.54 4.11

Formate (mg l−1) 2.36 2.16 12.88 22.08 18.71 0.76

Acetate (mg l−1) 48.75 24.48 84.73 108.6 159.26 46.96

Propionate (mg l−1) 13.36 5.79 7.92 8.49 12.51 3.98

Butyrate (mg l−1) 0.73 0.92 1.12 1.06 1.19 0.86

nd, not detected; TDS, total dissolved salinity.

method used is available elsewhere (Li C.-Y. et al., 2016).
The oil well-characteristics were obtained from Jiangsu Oilfield
Company. The corrosion rate (at the oil well-temperature) was
determined according to the weight loss method for 1 week.
Briefly, carbon steel coupons (20#) were immersed in 250 ml
serum bottles filled with each of the well-production water
(70 ml) under anaerobic conditions. Serum bottles with 70 ml of
filtered production water (by 0.22-µm-pore-size polycarbonate
membranes) were used as a control. The bottles were closed with
butyl stoppers and aluminum seals after purging with pure N2
to remove the O2 from the corrosion test. The samples were
incubated at oil well-temperature in the dark (Okoro et al.,
2014).

Detection and Enumeration of Bacterial
Cells
The number of microorganisms in these samples was quantified
after fluorescent staining with 4′-6-diamidino-2-phenylindole
(DAPI). 5 ml of production water sample was stained with
25 µL of DAPI (5.0 mg mL−1) as described before (Purkamo
et al., 2013). Stained samples were concentrated on a black
0.2 µm pore-size polycarbonate membrane filter (Millipore,
United States) and rinsed twice with 1 ml of sterilized
0.9% NaCl and examined with an epifluorescence microscope
(Olympus BX60, China). The number of cells was enumerated
from 30 randomly chosen fields on the filter. The total cell
number in the samples was then calculated based on filtering

sample volume, the observed area of the filter and total
surface area of the filter as described in Nyyssönen et al.
(2012).

DNA, RNA Extraction, and cDNA
Synthesis and Sequencing
Total DNA and RNA were extracted from each sample
using the genomic DNA Kit (Axygen Biosciences, United
States) and High Pure RNA Isolation Kit (Roche, United
States) according to the manufacturer’s instructions, respectively.
Genomic DNA was removed during the RNA extraction
with RNase-Free DNase reagents (TakaRa Bio, Japan). Total
extracted RNA was checked for residual genomic DNA
by performing a polymerase chain reaction (PCR) using
the primers 8F (5′-AGAGTTTGATYMTGGCTCAG-3′) and
805R (5′-GACTACCAGGGTATCTAATCC-3′) to ensure that no
amplified product was detectable after running on 1.5% agarose
gels (Savage et al., 2010). Total RNA was reverse-transcribed
to cDNA using M-MLV reverse transcriptase and random
hexamer primers (Sangon Biotech, China). The quality and
quantity of cDNA was determined using a NanoDrop2000
spectrophotometer (Thermo Fisher Scientific, United States). All
DNA and cDNA were stored at−80◦C before PCR amplification
and sequencing were performed sequentially.

The bacterial hypervariable regions V4–V5 of the 16S
rRNA genes were amplified using the primers 515F (5′-GTG
CCAGCMGCCGCGG-3′) and 907R (5′-CCGTCAATTCMTT
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TRAGTTT-3′) containing a barcode sequences (Ren et al.,
2014). Archaeal libraries were built using the primers 344F
(5′-ACGGGGYGCAGCAGGCGCGA-3′) and 915R (5′-GTGC
TCCCCCGCCAATTCCT-3′) (Ohene-Adjei et al., 2007). PCRs
were carried out in triplicate of 25-µl reaction volume using
30–40 ng of template DNA or cDNA. The amplifications
were run under the following thermocycling conditions: initial
denaturation at 94◦C for 3 min; 30 (bacteria) or 42 (archaea)
cycles of denaturation at 94◦C for 30 s, annealing at 55◦C
(bacteria) or 58◦C (archaea) for 30 s, elongation at 72◦C for
30 s, and a final extension at 72◦C for 10 min. Triplicate
reactions were pooled for each sample prior to purification with
AxyPrep DNA Kit (Axygen, United States) and quantification
with QuantiFluorTM -ST (Promega, United States). Paired-
end sequencing was performed on Illumina Miseq platform
(Majorbio, China).

Sequences were quality filtered and processed using the
UPARSE (Edgar, 2013) and QIIME software package (Caporaso
et al., 2010). Paired-end reads were first merged by using FLASH
(minimum overlap 10 bp, maximum mismatch 0.25) (Magoč and
Salzberg, 2011). PCR primers were detected and trimmed using
Cutadapt (Martin, 2011) allowing for one mismatch. Reads not
matching the primers or with read lengths below 200 bp were
discarded. Trimmed reads were quality-filtered using USEARCH
fastq_filter function with a maximum predicted sequences errors
rate (maxee) of one (Edgar, 2013). High-quality sequences were
aligned against the SILVA reference database and clustered into
operational taxonomic units (OTUs) at a 97% similarity levels
using uclust (Edgar, 2010). OTUs with only one sequences
(singleton) were removed from the dataset for all downstream
analyses.

Construction and Analysis of aprA and
dsrA Gene Transcripts Clone Libraries
Clone libraries of aprA and dsrA genes were constructed from
cDNA samples obtained from the six different oil wells. aprA
gene was amplified using primer pair aprA-1-FW (5′-TGGC
AGATCATGATYMAYGG-3′) and aprA-5-RV′ (5′-GCGCCAA
CNGGDCCRTA-3′, a slightly modified version of aprA-5-RV)
(Aoki et al., 2015) with initial denaturation at 95◦C for
2 min followed by 35 cycles of 94◦C for 30 s, annealing at
55◦C for 30 s, and extension at 72◦C for 30 s. Similarly,
the dsrA gene was amplified with the primers DSR-1Fdeg
(5′-ACSCAYTGGAARCACG-3′) and PJdsr853Rdeg (5′-CGGTG
MAGYTCRTCCTG-3′) (Quillet et al., 2012). Thermal cycling
was performed as follows: initial denaturation at 94◦C for 2 min;
30 cycles of denaturation at 94◦C for 30 s, annealing at 54◦C
for 30 s, elongation at 72◦C for 30 s, and a final extension at
72◦C for 10 min. The PCR products (approximately 400 and
450 bp for aprA and dsrA, respectively) were confirmed by
electrophoresis in a 1% (w/v) agarose gel in 1× TAE, and the
expected-size PCR products were purified using gel extraction
kit. After purification, the products were cloned into Escherichia
coli using pMD

R©

19-T simple vector kit (Takara Biotechnology,
Japan) according to the manufacturer instructions. White clones
were picked into 1 ml Luria Broth (LB) medium added

with ampicillin and incubated at 37◦C for 24 h. Primer
set M13-47 (5′-CGCCAGGGTTTTCCCAGTCACGAC-3′) and
RV-M (5′-GAGCGGATAACAATTTCACACAGG-3′) was used
to determine the positive clones. Sequencing of the positive
clones was performed on an ABI 377 automated sequencer.
Vector sequences were removed and nucleotide sequences were
checked for possible chimeric artifacts by BLASTn alignment
analysis (Nilsson et al., 2010). OTUs were classified using the
BlastClust tool1 with the 97% similarity and one representative
sequence from each OTU was selected for phylogenetic tree
construction. The OTUs of aprA and dsrA functional genes were
translated into amino acids using EMBOSS Transeq2 and aligned
using MAFFT version 7 (Katoh and Standley, 2013). A neighbor-
joining tree was constructed using MEGA version 6 (Tamura
et al., 2013). The resulting trees were displayed using the FigTree
version 1.4.23.

Quantification of 16S rRNA and dsrA
Gene Transcripts by Real-Time PCR on
cDNA
The total number of bacterial 16S rRNA and dsrA gene transcripts
was determined for each sample of this study. The quantification
was performed using a CFX96 thermalcycler (Bio-Rad, United
States) with the SYBR Green system. The reactions for the two
genes were performed using 25 µl reaction volume with 12.5 µl
SYBR Green Master Mix (Takara, Japan), 9.5 µl of ddH2O,
0.5 µl of each PCR primers, and 2 µl of cDNA sample. The
16S rRNA gene transcript was amplified using the following
primer sets: 338F (5′-ACTCCTACGGGAGGCAG-3′) and 805R
(5′-GACTACCAGGGTATCTAATCC-3′) (Yu et al., 2005). The
amplification was carried out as follows: an initial denaturation
step of 4 min at 94◦C, 40 cycles of denaturation at 94◦C for
30 s, annealing at 57◦C for 30 s and extension at 72◦C for
1 min. The dsrA gene transcripts were amplified with the same
primers (Quillet et al., 2012) as described above for the clone
library. The PCR reaction conditions were as follows: initial
denaturation at 94◦C for 2 min; 40 cycles of denaturation at
94◦C for 30 s, annealing at 54◦C for 30 s, extension at 72◦C for
30 s, and a final extension step at 72◦C for 5 min. Annealing
temperature was experimentally optimized to maximize the
specificity of amplification (data not shown). The specificity of
this primer pair was checked using the ProbeCheck4 against
dsrAB database which contains 7,695 publicly available partial
(6403) and full length (1,292) sequences (Müller et al., 2014). The
standard curves for RT-qPCR were generated through 10-fold
serial dilutions of plasmids carrying the specific target gene
inserts (each run in triplicate). No-template negative controls
were used to check for cross contamination. The size of the PCR
product was checked with agarose gel electrophoresis. Melting
curve (range: from 65 to 95◦C) analysis was also conducted
following each assay to confirm the specificity of the primer pairs.
Amplification efficiency was calculated based on the respective

1http://toolkit.tuebingen.mpg.de/blastclust
2http://www.ebi.ac.uk/Tools/st/emboss_transeq/
3http://tree.bio.ed.ac.uk/software/figtree/
4http://131.130.66.200/cgi-bin/probecheck/probecheck.pl
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standard curve. Results were expressed in gene copy numbers per
ml of production water.

Bioinformatics and Statistical Analysis
aprA and dsrA diversity calculations were performed with the
EstimateS (Colwell et al., 2012) including Shannon and reciprocal
of Simpson index. Sampling coverage was evaluated by using
non-parametric richness estimators ACE (abundance-based
coverage estimator) (Chao and Yang, 1993), Chao1 (Chao, 1984;
Hughes et al., 2001) and Coverage. Rarefaction curves were
generated using GraphPad Prism 6. Bubble plots were made
using the software R v3.2.4 (R Core Team, 2013) with the ggplot2
(Wickham, 2009) and reshape2 (Wickham, 2012) package.
The Pearson correlation coefficients (r) between the gene copy
numbers and environmental variables and Spearman

′

s rank
correlations (rs) between the relative abundance of individual
taxa and environmental factors were investigated via in R
software with Hmisc package (Harrell, 2012). Differences
in total and active microbial community composition were
visualized through Non-metric Multi-Dimensional Scaling
(NMDS) using Bray–Curtis similarity index by PAST software
(version 3.09) (Hammer et al., 2001). OTU abundances for
bacteria and archaea underwent square-root transformation to
reduce the stress. Two-way PERMANOVA was performed to
tests the differences in bulk and active bacterial and archaeal
communities and location of community. The Bray–Curtis
dissimilarity was calculated for each bacterial and archaeal
genomic and active community based on OTU abundance and
analyzed via PERMANOVA (999 permutations) in the PAST.
Canonical correspondence analysis (CCA) was performed in
CANOCO 4.5 for windows to identify the relationships between
sulfate-reducing community structure and environmental
parameters (Braak, 1988).

Nucleotide Sequence Accession
Numbers
High-throughput raw sequences data have been deposited in the
NCBI BioProject database under accession number SRP075241.
The 966 nucleotide sequences of the aprA and dsrA genes
reported in this study were deposited in GenBank under the
accession numbers KX299071 to KX300036.

RESULTS

Geochemical Characteristics
of Production Water
The production water samples possessed high Na+
(3.36–5.68 g l−1), Cl− (4.03–8.23 g l−1), and CO2−

3
(1.10–3.12 g l−1). The SO2−

4 concentrations of the six production
water samples ranged from 83.4 (2-71) to 533.7 mg l−1 (11-7),
and the S2O2−

3 concentrations from 4.11 to 149.6 mg l−1. The
amount of S2− ranged from 6.86 to 9.87 mg l−1. Volatile fatty
acids including formate, acetate, propionate, and butyrate were
detected in all samples (Table 1).

Total Microbial Cell Numbers and Gene
Transcript Copy Numbers
Bacterial cell numbers were high in samples 2-53 (4.8 × 107

cells ml−1) and 9-18 (4.3 × 107 cells ml−1) and they ranged
from 2.5 × 106 to 5.4 × 106 cells ml−1 in other samples
(Figure 1A). The gene transcript levels of bacterial 16S rRNA and
dsrA were assessed with quantitative PCR. DSR-1Fdeg is either a
perfect match or contains only a single mismatch and is likely to
amplify to 6228/7695= 81% of sequences, PJdsr853Rdeg matches
perfectly with almost all sequences in the Müller database and the
coverage was 92%. Therefore, the exclusion of some sequences
by these primers could result in a slight underestimate of dsrA
transcript abundance. The efficiency values for 16S rRNA and
dsrA gene transcripts were 93.7 and 80.5% with R2 values
of 0.996 and 0.993, respectively. The abundance ranged from
1.46 × 107 to 3.85 × 107 copies ml−1 for 16S rRNA gene
transcripts and from 2.06 × 105 to 3.73 × 105 copies ml−1

for dsrA gene transcripts (Figures 1B,C). The ratios of dsrA
to the 16S rRNA gene transcripts copy numbers were used to
determine the relative abundances of active SRMs in the whole
community, and the ratios ranged from 0.54 to 1.02% in these
samples (Figure 1D). The correlation analyses showed that the
log-transformed dsrA gene transcripts were negatively correlated
with the concentration of acetate and propionate significantly
(r < −0.7, p ≤ 0.05). The dsrA/16S rRNA ratios were negatively
correlated with the concentration of S2− (r = −0.85, p = 0.03)
and propionate (r =−0.86, p= 0.03) (Supplementary Table S1).

Bacterial and Archaeal Sequencing and
Richness
Supplementary Table S2 shows the results of sequencing of
the genomic community (16S rRNA gene amplicons, DNA)
and the active community (16S rRNA amplicons, RNA) in the
production water of the six oil wells. Our data set consisted
of 28,3246 bacterial reads, which clustered into 5,923 bacterial
OTUs. Shannon indexes were ranged from 2.15 to 5.75 and
Simpson indexes between 0.50 and 0.95 in bacterial libraries. The
highest DNA diversity was measured in sample 9-18 and the
lowest diversity in sample 11-7 with Shannon indexes 5.75 and
3.15, respectively. The highest RNA diversity was found in sample
11-6 (Shannon index: 4.99) and the lowest in sample 9-14 (1.79).
Genomic DNA-based bacterial communities exhibited higher
diversity than those of RNA-based active bacterial communities
(pairwise t-test: t = 2.39, p = 0.037). The archaeal DNA and
cDNA dataset had 26,2116 reads, 1,589 archaeal OTUs. The
biodiversity (Shannon index) in genomic DNA-based archaeal
communities were significantly more diverse than RNA-based
active communities (p= 0.01). The Chao 1 richness were between
76 and 276, the Simpson indexes were 0.60–0.93 (Supplementary
Table S2).

Bacterial and Archaeal Community
Structure
Non-metric Multi-Dimensional Scaling ordination shows a
clear separation for both genomic DNA and the active RNA
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FIGURE 1 | Total microbial cell numbers (A), gene transcript levels of bacterial 16S rRNA (B) and dsrA (C) from each well with different corrosion rate, ratios of
dsrA/16S rRNA copy number (D). Error bars represent standard errors of the means across three replications.

based communities as shown in Figure 2. Bacterial community
composition differed between the genomic DNA and the active
RNA based communities (F = 7.9, p = 0.002). No significant
difference was detected in bacterial community structures
between sites across the oil well blocks of this study (F = 1.6,
p = 0.1) (Figure 2A). A two-way PERMANOVA analysis also
revealed significant differences between the genomic and active
archaeal communities (F = 4.3, p = 0.01) as well as between oil
wells across the oil well block (F = 4.1, p= 0.003) (Figure 2B).

The Genomic and Active Communities
and Composition
Figure 3 shows that the genomic bacterial communities
(DNA-based) were dominated by Proteobacteria (44–69%
of sequences) and Firmicutes (7.1–38%). Other phyla, such
as Bacteroidetes (1.4–8.0%), Deferribacteres (0.050–0.23%),
Chloroflexi (0.45–2.6%), Thermotogae (0.51–2.5%), and
Spirochaetes (0.29–1.7%) were also represented in the
samples. Desulfotignum, Desulfovibrio, Desulfarculus, and
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FIGURE 2 | Non-metric Multi-Dimensional Scaling (NMDS) of the Bray–Curtis similarity of the relative abundance of bacterial (A) and archaeal (B) communities reveal
spatial variation by reservoir blocks and between the genomic and active communities. Each point represents an individual sample in the NMDS charts. Full circles
represent the genomic communities (DNA-based); empty circles symbol active communities (cDNA-based). Sites are represented by different shapes, block W2
(circle), block W9 (square), block W11 (triangle).

Thermodesulforhabdus dominated in both the genomic and
the active SRM detected in oil reservoirs. Desulfotomaculum,
Thermodesulfovibrio, and Desulfoglaeba were detected with low
abundance (Supplementary Figure S1). A total of 17 genera of
the genomic SRM were inferred from the genomic bacterial
community accounting for 19.89, 15.51, 17.47, 17.14, 4.55,
and 11.91% of total bacteria in 2-53, 2-71, 9-18, 9-14, 11-7,
and 11-6 oil wells (Supplementary Table S3), respectively. The
genomic archaeal communities were dominated by Archaeoglobi
(26–86%), Methanobacteria (1.7–10%), and Methanomicrobia
(3.3–57%). In addition, minor amounts of sequences related
to Thermococci (0.97–2.1%), Crenarchaeota (0.070–13%),
Woesearchaeota (0.14–3.9%), and Thermoplasmata (0.37–6.7%)
were also obtained from the production waters.

The potentially active bacterial communities (RNA-based)
were dominated by Proteobacteria, which represented 78–98%
of the total sequences, followed by Firmicutes (0.050–5.1%),
Bacteroidetes (0.23–2.9%), and Thermotogae (0.34–8.2%)
(Figure 3). The 16S rRNA bacterial (RNA-based) sequencing
also resulted in 17 genera of active SRM. Those SRM occupied
23.90, 2.99, 19.97, 18.57, 20.62, and 25.53% in 2-53, 2-71, 9-18,
9-14, 11-7, and 11-6 oil wells, respectively (Supplementary
Table S5). Active archaeal communities were dominated by
Archaeoglobi (37–99%) and Methanomicrobia (0.31–62%) as
shown in Figure 3.

Comparison of Relative Abundances in
the Genomic and Active Communities
At bacterial class level, Gammaproteobacteria,
Deltaproteobacteria, and Alphaproteobacteria dominated
the production water communities (Figure 4). The relative
abundances of class in the active and the genomic bacterial
communities were correlated (Spearman correlation: r = 0.63,
p < 0.005), Gammaproteobacteria were more represented in
the RNA amplicon libraries compared with the genomic DNA
amplicon libraries (pairwise t-test: t = 2.42, p = 0.035), while

Betaproteobacteria were more represented in the genomic DNA
amplicon libraries (t = 3.82, p = 0.003). Bacilli (t = 5.54,
p < 0.001), Clostridia (t = 4.63, p < 0.001), Anaerolineae
(t = 4.96, p < 0.001) were less abundant in the RNA amplicon
libraries compared to the genomic DNA amplicon libraries. At
genus level, the correlation of relative abundances between the
genomic and the active communities was weaker (Spearman
correlation: r = 0.50, p < 0.005) (Figures 4B,D). Desulfotignum
and Roseovarius were highly abundant in both the genomic
and the active communities. Thermodesulfobacterium (t = 2.27,
p = 0.046) and Tepidiphilus (t = 2.39, p = 0.038) were more
abundant in RNA amplicon libraries, while Pseudomonas
(t = 4.84, p < 0.001), Alcanivorax (t = 2.59, p = 0.027),
Achromobacter (t = 6.74, p < 0.001), Bacillus (t = 3.74,
p = 0.0038), and Arthrobacter (t = 3.37, p = 0.0071) were more
abundant in the genomic DNA amplicon libraries than the RNA
amplicon libraries.

Compared with the bacterial communities, the correlation
of relative abundances between genomic and active archaeal
communities was stronger (Spearman correlation: r = 0.86,
p < 0.001) (Figure 4). Thermococci (t = 9.25, p < 0.001) and
Methanobacteria (t = 6.54, p < 0.001) were more represented
in the genomic DNA amplicon libraries compared with the RNA
amplicon libraries. Relative abundances of all detected archaeal
genera are shown in Supplementary Table S3. Archaeoglobus and
Methanolobus dominated the archaeal community at genus level,
and the correlation of relative abundances between the genomic
and the active communities was weak (r = 0.59, p < 0.001).
Thermococcus (t = 9.24, p < 0.001) and Methanothermobacter
(t = 4.83, p < 0.001) were more abundant in genomic DNA
amplicon libraries than RNA amplicon libraries.

Relationships between Environmental
Variables and Microbial Taxa
Correlations between taxa and geochemical data provide
insight into the relationship between microbial taxa and
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FIGURE 3 | Composition of the genomic (DNA) and active (RNA) communities of production water from six different oil wells. DNA and RNA represent the
abundance of rDNA and rRNA-derived 16S sequences of bacteria and archaea.

environmental factors. Supplementary Table S4 shows
that Gammaproteobacteria, Bacteroidia, Chlorobia, and
Thermotogae of the genomic DNA were positively correlated
with S2− and S2O2−

3 (rs > 0.75) and negatively correlated
with corrosion rate (rs < −0.75). Thermodesulfobacteria were

negatively correlated with pH and CO2−
3 (rs < −0.80) and

positively correlated with oil reservoirs depth (rs = 0.94).
Deferribacteres were positively correlated with S2− (rs = 0.88),
Betaproteobacteria were positively correlated with TDS and
Ca2+ (rs > 0.75) and negatively correlated with CO2−

3
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FIGURE 4 | Correlation of relative abundances of taxa in bulk and active microbial communities at class (A,C) and genus (B,D) level. (A,B) represent bacterial
communities (C,D) represent archaeal communities. The abundance shown was averaged across all samples. Relative abundances were log-transformed to reduce
skewness of the data. Points above the diagonal indicated those taxa enriched in the RNA amplicon libraries. Gray points indicate taxa, which occurred in low
numbers.

(rs = −0.94). Methanobacteria, Thermoplasmata, and
Woesearchaeota were positively correlated with pH (rs > 0.75).
For genomic DNA, Archaeoglobi were positively correlated
with oil reservoirs depth, TDS, Mg2+, Ca2+, and Cl− and
negatively correlated with CO2−

3 (rs = 0.89). Methanococci were
negatively correlated with corrosion rate (rs = −0.88), whereas
Crenarchaeota were positively correlated with corrosion rate
(rs = 0.90).

Supplementary Table S5 shows the active Betaproteobacteria
and Deferribacteres were negatively correlated with NO−3
(rs < −0.75). Active Thermodesulfobacteria were positively
correlated with SO2−

4 (rs = 0.89) and negatively correlated
with pH (rs = −0.89). Thermococci, Methanomicrobia, and
Crenarchaeota were negatively correlated with formate and
acetate (rs < −0.80). Active Archaeoglobi were positively
correlated with Mg2+, SO2−

4 , Na+, formate, and acetate
(rs > 0.80).

Sequence Analysis of aprA Gene
A total of 391 aprA gene clones were clustered into 29 OTUs
based on sequence similarity at 97% threshold value. The
rarefaction curves for samples 9-18 and 11-7 aprA gene clone
libraries reached saturation (100% coverage) and others did
not plateau with coverage values ranged from 93.5 to 99.1%
(Supplementary Figure S2A and Table 2). aprA sequences
related to known SRM comprised 92.5% of total aprA gene

sequences (23 OTUs), only four OTUs (4.1% of all aprA gene
sequences) corresponded to sulfur-oxidizing microorganisms
(SOM), and they all fell within cluster genus Thiobacillus. The
remaining 13 clones, 2 OTUs (3.3%) without close affiliation to
either SOM or SRM lineage, were grouped into aprA11-6-24
and aprA11-7-10, only found in Block W11 as shown in
Figure 5.

At the genus level, the relative abundance of Archaeoglobus-
affiliated aprA genes comprised 66, 77, 85, 25, 64, and 74%
of the clone libraries from the production water of 2-53,
2-71, 9-18, 9-14, 11-7, and 11-6, respectively (Figure 6A).
Desulfotignum-affiliated aprA genes were detected in 2-71 (4.5%)
and 9-18 (3.8%) samples. aprA2-53-11 and aprA2-53-105 which
belonged to the genus Desulfovibrio and Thermodesulforhabdus
were detected in sample 2-53. In addition, sequences related
to Desulfacinum (9.1%) and Desulfotomaculum (2.3%) were
detected in 2-71. Desulfonauticus, Thermodesulfobacterium,
and Thermodesulforhabdus were also found in 11-7 with a
relatively low frequency, resulting in 11, 5.7, and 2.9% of all
clones, respectively. Sequences related to Desulfotignum and
Desulfacinum were less abundant, but were detected at 9-18,
accounting for about 3.8 and 9.4% of the clones, respectively.
aprA9-14-101 and aprA9-14-23 related to Thermodesulforhabdus
and Desulfonauticus were detected in sample 9-14, which
represented 63 and 4.2% of total aprA gene sequences,
respectively.
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TABLE 2 | Biodiversity and predicted richness of the aprA and dsrA gene sequences.

Samples No. of sequences OTUs Coverage Shannon diversity index Simpson (inverse) index Schao1 SACE

aprA 2-53 116 4 0.991 0.86 1.96 4 5.09

2-71 44 5 0.977 0.83 1.63 5 5.44

9-18 106 5 1 0.97 1.96 5 5

9-14 24 4 0.958 0.98 2.17 4 4.94

11-7 70 6 1 1.25 2.48 6 6

11-6 31 5 0.935 0.88 1.74 5.48 7.22

dsrA 2-53 77 4 1 1.17 2.77 4 4

2-71 50 3 1 0.57 1.44 3 3

9-18 114 4 1 0.71 1.53 4 4

9-14 86 2 1 0.5 1.46 2 2

11-7 136 5 0.985 0.56 1.39 5.99 8.67

11-6 112 2 1 0.59 1.67 2 2

Sequence Analysis of dsrA Genes
A total of 575 dsrA gene clones were grouped into 20 OTUs, and
the rarefaction curves for dsrA gene clone libraries reached clear
saturation except for W11-7 (98.5% coverage) (Supplementary
Figure S2B). Richness and diversity as supported by Shannon
index and Chao 1 values were low in samples from different wells
(Table 2). The majority of dsrA sequences were affiliated to those
of Archaeoglobus (286 sequences, 8 OTUs). 109 sequences (4
OTUs) were related to Desulfotignum and 51 sequences (3 OTUs)
clustered with Desulfovibrio. 41 sequences (2 OTUs) were related
to Thermodesulforhabdus and 88 sequences (2 OTUs) belonged to
Desulfotomaculum as shown in Figure 7.

dsrA9-18-1 and dsrA11-7-128 were 95% identical
to Archaeoglobus profundus, other OTUs belonging to
Archaeoglobus were 97–99% identical to Archaeoglobus fulgidus,
which is known to reduce both sulfate and thiosulfate (Lenhart
et al., 2014). Sequences related to Archaeoglobus were detected
in all samples and also identified as the major component in
9-18 and 11-7 with 89 and 86% of the clone library, respectively.
Sequences affiliated to Desulfotignum were detected in 9-18,
9-14, 2-53, and 11-7 (Figure 6B). Their closest relative was
Desulfotignum balticum, and Desulfotignum group was dominant
in 9-14 (80% of dsrA clones in library). Four samples (2-53,
2-71, 9-18, and 11-7) were detected for sequences affiliated to
Desulfovibrio, with the highest abundance (82% of the dsrA
gene clone library) detected in 2-71. In contrast, in 2-53,
Thermodesulforhabdus was the most abundant (52% of all
clones), which was also detected in W11-7 (0.74% of the clone
library). The genus Desulfotomaculum comprised of 14 and 72%
of the dsrA gene clone libraries obtained from 2-71 and 11-6,
respectively (Figure 6B).

Relationships of Sulfate-Reducing
Communities with Environmental
Parameters
Based on variance inflation factors with 999 Monte Carlo
permutations, five environmental variables, temperature, pH,
concentration of S2−, S2O2−

3 , and SO2−
4 were selected in

the CCA biplot. The length of an environmental factors

arrow in the ordination plot indicates the strength of the
relationship of that parameter to community composition.
In the aprA gene CCA plot (Figure 8A), concentration of
SO2−

4 appeared to be the most important environmental
parameter, and the genus Desulfonauticus was closely associated
with the SO2−

4 . Desulfovibrio were associated with S2O2−
3

and S2− levels. The genera Desulfotignum and Desulfacinum
were correlated with pH. The relationship of dsrA gene-based
community with environmental factors (Figure 8B) showed that
Archaeoglobus were positively correlated to temperature and
Thermodesulforhabdus were associated with both S2O2−

3 and S2−

levels.

DISCUSSION

Oil reservoirs are generally characterized with a high content
of hydrocarbons and anoxic conditions. Previous studies of
oil reservoirs reported that this unique ecosystem harbored
diverse and variable microbial communities (Pham et al., 2009;
Mayumi et al., 2011; Mbadinga et al., 2012; Tang et al., 2012;
Wang et al., 2014; Li X.-X. et al., 2016). This study aimed to
characterize genomic and active microbial populations, especially
sulfate reducer in oil reservoir production water collected from
Jiangsu oilfield which is known for reservoir souring and pipeline
corrosion, and contains high sulfate (Guan et al., 2014). Results
broaden our understanding on the microorganisms contributing
to MIC in extreme environment and development of more
specific treatment strategies for mitigation of problems with SRM
in such environments.

Comparative Analysis of DNA and
RNA-Derived Communities
In this study, DNA- and RNA-based libraries revealed a
diverse microbial community in the production water of six
different oil wells which suffered reservoir souring and pipeline
corrosion. The DNA-derived bacterial and archaeal communities
analyzed by the 16S rRNA gene sequences represent the
whole communities including groups that are dormant or
inactive, spore and dead (Blagodatskaya and Kuzyakov, 2013;
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FIGURE 5 | Phylogenetic tree of deduced amino acid sequences of aprA gene amplicons from six different oil wells of production water. The topology of the tree
was obtained by the neighbor-joining method. Bold black letters indicated the OTUs detected in this study. The OTUs are shown with clone names, the number of
clones of each OTU and accession numbers. The bootstrap values at the nodes of >80% (n = 1000 replicates) are reported. The scale bar represents 5% sequence
divergence.

Blazewicz et al., 2013). In contrast, the RNA-based community
represents the active community (Moeseneder et al., 2005; Angel
et al., 2013; Blazewicz et al., 2013) using ribosomal RNA as
an indicator of microbial activity has limitations, including
non-linear relation between growth rate and cellular rRNA
content, as well as ribosomal content in dormant cells that could
be high in some bacteria (Blazewicz et al., 2013). However,
although this analysis has several weaknesses, comparison of
the DNA- and RNA-based libraries provides for more complete
characterization of microorganisms and new insights into activity
in environmental communities (Frenk et al., 2015; Nazina et al.,
2017).

Compared with RNA libraries, a higher species richness
in the bacterial and archaeal DNA libraries was observed

(Supplementary Table S2), which is consistent with a study
in hydrothermal vent (Lanzén et al., 2011). One major
difference between DNA and RNA-based bacterial community
composition was that Firmicutes were more abundant in
DNA samples, while fewer sequences in RNA samples were
identified as Firmicutes (Figure 3). It has been reported
that Firmicutes is an important component of microbial
communities in water-injected and pristine oil reservoirs
in Russia based on 16S rRNA gene (Frank et al., 2016).
In Dagang oilfield, most sequences belonged to members
of the phyla Firmicutes and Proteobacteria according to
DNA-derived bacterial clone library. While, in RNA-based clone
library, Proteobacteria were the most abundant (Nazina et al.,
2017), which is consistent with our results. The dominant
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FIGURE 6 | Bubble plots of aprA (A) and dsrA (B) gene community structures showing the relative abundances across samples. The size of each bubble indicate
the relative abundance (percentage) of identified aprA and dsrA gene sequences falling within taxonomic group (at the genus level).

FIGURE 7 | Phylogenetic tree of deduced amino acid sequences of dsrA gene of production water from six different oil wells. The topology of the tree was obtained
by the neighbor-joining method. Bold black letters indicated the OTUs detected in this study. The OTUs are shown with clone names, the number of clones of each
OTU and accession numbers. The bootstrap values at the nodes of >80% (n = 1000 replicates) are reported. The scale bar represents 5% sequence divergence.

bacterial genera were Desulfotignum and Roseovarius, with
the relative abundances ranging from 7.0 to 18.1% and 0.8
to 17.7% respectively (Supplementary Table S3). Tian et al.
(2017) also found Desulfotignum was one of the dominant

populations with its relative abundances in the different high
temperature petroleum reservoirs ranging from 9.7 to 43.2%.
In archaeal community, the most noticeable difference was
that Methanobacteria and Thermococci were more abundant
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FIGURE 8 | Canonical correspondence analysis (CCA) for the relationships between community structure based on aprA (A) and dsrA (B) genes and environmental
factors in the six samples. Arrows indicate the direction and magnitude of measurable variables associated with sulfate-reducing community structures. Each circle
represents sampling sites.

in DNA amplicon datasets (Figure 3). The majority of the
archaeal OTUs were related to the Archaeoglobus (26.1–99.4%)
and Methanolobus (0.09–60.6%) (Supplementary Table S3)
in DNA- and RNA-based libraries. In a hyper-temperature
Japanese oil well, the major populations were Thermotoga,
Thermodesulfobacterium, and Archaeoglobus (Yamane et al.,
2011).

Archaeoglobus as Dominant Active
Sulfate-Reducer
16S rDNA and rRNA tag sequencing, as well as phylogenetic
analyses of aprA and dsrA gene transcripts showed that
Archaeoglobus was the dominant and active sulfate-reducer
in production water of corrosive petroleum reservoirs in this
study. Archaeoglobus, with close relatedness to Archaeoglobus
fulgidus and Archaeoglobus profundus, were found in all
production water samples. Three Archaeoglobus species are
known to contain the complete pathway for dissimilatory sulfate
reduction: Archaeoglobus fulgidus, Archaeoglobus profundus,
and Archaeoglobus lithotrophicus (Speich and Trüper, 1988;
Dahl et al., 1990). The genus Archaeoglobus may play a
major role in sulfate reduction in production waters of high
temperature reservoirs because of the high numbers of aprA
and dsrA gene transcript clones related to Archaeoglobus.
Interestingly, Archaeoglobus was also found and dominated the
sulfate-reducing communities in the production water of North
Sea high-temperature oil reservoir (Gittel et al., 2009).

Sulfate-reducing members of Desulfotignum, Desulfovibrio,
and Thermodesulforhabdus genera were also prevalent groups
in the investigated samples. Desulfotignum related sequences
were closely related to Desulfotignum balticum, which is known
for anaerobic benzoate degradation coupled with sulfate
reduction (Habe et al., 2009). Desulfovibrio species can use

hydrogen, formate, and many other organic compounds to
reduce sulfate (Voordouw, 1995). They have been reported to be
strongly adapted to environmental stresses, such as heavy metal
contamination (Quillet et al., 2012). It has been reported that
Desulfovibrio species dominated the microbial communities of
highly corrosive biofilms of an offshore oil production facility
(Vigneron et al., 2016). Thermodesulforhabdus were closely
related to Thermodesulforhabdus norvegicus which was isolated
from hot water of North Sea oilfield (Beeder et al., 1995). We
also identified sequences related to Desulfotomaculum, which
can grow under a range of sulfate concentrations, use diverse
organic substrates and participate in syntrophic metabolism
with methanogens (Imachi et al., 2006; Aüllo et al., 2013).
And members of Desulfotomaculum are known for their
sporulation capability, which is considered to be one of the
microbial strategies used to resist unfavorable temperatures or
nutrient deprivation conditions (Aüllo et al., 2013). In addition,
some representatives of SRM within Deltaproteobacteria
were also observed, which were assigned to Desulfobotulus,
Desulfatitalea, Desulfocella, Desulfobulbus, Desulfovibrio,
Desulfofustis, Desulfomicrobium, Desulfonauticus, Desulfarculus,
and Desulfoglaeba. Moreover, Thermodesulfobacterium
(Thermodesulfobacteria) and Thermodesulfovibrio (Nitrospira)
were also detected with relatively low abundances.

Strategies for Mitigation of Petroleum
Reservoirs Souring and Pipeline
Corrosion
Since the role of microorganisms in MIC was acknowledged,
different methods have been applied in the oil and gas industries
to control or prevent microbial reservoir souring. So far, control
measures against souring in the oil industry include removing
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sulfate from the injection water or inhibition or killing of SRM
by continuous amendment of injection water with biocides,
and chemical inhibitors including nitrite and nitrate (Rabus
et al., 2015). Due to the high investment and operational
cost, sulfate removal from the injection water is not feasible
(Liebensteiner et al., 2014). Biocides are commonly used to
control SRM in the oil industry, but application of biocides
is usually limited to above-ground infrastructures to control
microbial souring and corrosion, and the use of biocides is
generally a concern with the increased resistance to biocides for
long-term applications (Xue and Voordouw, 2015). Amendment
of injection water with nitrate is the most widely accepted
strategy to control microbial reservoir souring due to the
effective and the advantages over biocides (Voordouw, 2011).
Nitrate injection is effective in controlling souring by (1) the
competitive suppression of SRM by stimulate the growth of
heterotrophic nitrate-reducing bacteria (HNRB) which are able
to outcompete SRM for the same electron donors, such as
organic acids; (2) the removal of generated sulfide by sulfide-
oxidizing nitrate-reducing bacteria (SONRB); (3) inhibition
of the dissimilatory sulfite reductase (dsr) by nitrite (the
metabolic intermediate of nitrate reduction) (Liebensteiner et al.,
2014). In spite of success with nitrate to control or prevent
souring, problems exist for ineffectiveness in low-temperature oil
reservoirs as a result of emergence of microbial zone (Callbeck
et al., 2011). Recently, perchlorate and monofluorophosphate
have been demonstrated as effective inhibitors of SRM (Carlson
et al., 2015a,b). Perchlorate is effective in laboratory tests and also
inhibits the sulfate reduction by Archaeoglobus (Engelbrektson
et al., 2014). As oil reservoir properties have a dominant effect
in determining the results of souring control measures, a better
understanding on the microbial community composition and
eco-physiology are important for the development of a specific
mitigation strategy.

Dual Role of Sulfur-Oxidizer in Corrosion
Except for SRM, SOM were also detected in these oil wells
by 16S rDNA and rRNA tag sequencing. The SOM could
catalyze the inorganic compound sulfide to sulfate. Roseovarius
and Sulfurimonas were the dominant SOM in the samples
of this study, with the abundance ranged from 1.8 to 17.7%
in the cDNA-based bacterial libraries. The abundance of
Sulfurimonas in the active bacterial community reached as high
as 72% in oil well 2-71. In addition, sulfur-oxidizing species
of the Paracoccus, Rhodovulum, Sulfuritalea, Dechloromonas,
Arcobacter, and Rhizobium genera were also detected with low
abundances (Supplementary Table S5). Previous studies have
pointed out that some SOM like Sulfurospirillum spp. could
control SRM and their activity was the primary force to control
in nitrate injection systems (Hubert and Voordouw, 2007).
SONRB may compete with SRM for electron donors and reduce
the concentration of sulfide by oxidizing the dissolved sulfide.
However, recent study showed that members of Sulfuricurvum
and Sulfurovum of SOM play a potential role in MIC in

pipelines subjected to injection of bisulfate (An et al., 2016).
Furthermore, it has been reported that the presence of SONRB
can promote the formation of greigite, a product of corrosion,
and the Sulfurospirillum and Arcobacter which have the metabolic
capacity of sulfide oxidation with nitrate were enriched by the
nitrate-amendment rig (connected to a water injection pipeline)
suffering from serious corrosion compared with non-amendment
control (Drønen et al., 2014). Sulfuric acid may also induce more
serious corrosion and play a certain role in MIC. The SOM
community should not be ignored in petroleum reservoirs (Tian
et al., 2017).

CONCLUSION

The combined approach of 16S rDNA and 16S rRNA
high-throughput sequencing and aprA and dsrA clone
libraries provided evidence that a diverse microorganisms
inhabited in the corrosive and high temperature petroleum
reservoir. Desulfotignum and Roseovarius, Archaeoglobus
and Methanolobus dominated the bacterial and archaeal
communities, respectively. The metabolically active
microorganisms differed from the genomic community,
representing a subset of the taxa presented in the genomic
community. Most detected SRM were affiliated to Archaeoglobus,
Desulfotignum, Desulfovibrio and Thermodesulforhabdus, they
were closely related to pH of the production water and sulfate
concentration. The most abundant sequence which belonged
to SRM was identified as the genus Archaeoglobus, indicating
that archaea Archaeoglobus might play a major role in reservoir
souring and pipeline corrosion in high temperature oil reservoirs.
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