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Abstract: Amyotropic lateral sclerosis (ALS) is a lethally progressive and irreversible neurodegenerative
disease marked by apparent death of motor neurons present in the spinal cord, brain stem and motor
cortex. While more and more gene mutants being established for genetic ALS, the vast majority suffer
from sporadic ALS (>90%). It has been challenging, thus, to model sporadic ALS which is one reason
why the underlying pathophysiology remains elusive and has stalled the development of therapeutic
strategies of this progressive motor neuron disease. To further unravel these pathological signaling
pathways, human induced pluripotent stem cell (hiPSCs)-derived motor neurons (MNs) from FUS-
and SOD1 ALS patients and healthy controls were systematically compared to independent published
datasets. Here through this study we created a gene profile of ALS by analyzing the DEGs, the Kyoto
encyclopedia of Genes and Genomes (KEGG) pathways, the interactome and the transcription factor
profiles (TF) that would identify altered molecular/functional signatures and their interactions at both
transcriptional (mRNAs) and translational levels (hub proteins and TFs). Our findings suggest that
FUS and SOD1 may develop from dysregulation in several unique pathways and herpes simplex
virus (HSV) infection was among the topmost predominant cellular pathways connected to FUS and
not to SOD1. In contrast, SOD1 is mainly characterized by alterations in the metabolic pathways and
alterations in the neuroactive-ligand–receptor interactions. This suggests that different genetic ALS
forms are singular diseases rather than part of a common spectrum. This is important for patient
stratification clearly pointing towards the need for individualized medicine approaches in ALS.

Keywords: amyotrophic lateral sclerosis (ALS); human induced pluripotent stem cells (iPSC);
motorneurons (MN); differentially expressed genes (DEGs); Kyoto encyclopedia of Genes and
Genomes (KEGG)

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a lethally progressive and irreversible neurodegenerative
disease characterized by selective loss of motor neurons in the motor cortex, brain stem and spinal
cord. Patients usually progress to muscular paralysis leading to death within 2–5 years after the
onset of clinical manifestation [1–3]. About 5–10% of ALS cases are familial (fALS), whereas the
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remaining 90–95% of cases are classified as sporadic (sALS) [4–6]. Several studies in ALS patients and
model systems have identified numerous genes in ALS pathogenesis, among which four major genes,
chromosome 9 open reading frame 72 (C9ORF72), superoxide dismutase 1 (SOD1), TAR DNA-binding
protein 43 (TARDBP) and mutations in fused in sarcoma protein (FUS), are largely responsible for
genetic forms of ALS [7,8]. These causal genes affect diverse processes, including RNA metabolism,
protein misfolding, mitochondrial dysfunction, cytoskeletal abnormalities, impaired axonal transport,
inflammation and apoptosis [9–13]. SOD1 mutations appear to account for approximately 20% of
fALS cases and 1–4% of sALS cases [14–16]. FUS, encoding a DNA/RNA binding protein, plays a
multifunctional role in RNA metabolism (transcriptional regulation, splicing, mRNA transport) and
DNA repair [17–19]. Mutations in FUS appear to account collectively for about 5% of fALS cases
and up to 1% of sALS cases [20–22]. Most of these mutations are localized at the C-terminal region.
Despite extensive research, the underlying pathogenesis and mechanisms by which these mutations
cause motor neuron degeneration and death are still unclear. Hence, till date, there is no cure for ALS,
and therefore understanding the molecular signatures of neurodegeneration in ALS can lead to the
identification of potential biomarkers that might improve early diagnosis and aid in the identification
of therapeutic targets.

As the study of sALS and fALS has led to great advances in development of novel therapies,
the identification of significantly dysregulated genes and the mechanistic pathways involved in these
mechanisms is of the utmost importance. Very few studies, however, have employed interactome-based
approaches to identify shared and unique functional interactions among the gene products that
could help with distinguishing molecular subtypes in ALS. Furthermore, even fewer reports exist
comparing datasets from totally independent labs and different differentiation protocols for motor
neuron differentiation to validate such results. To extend our understanding of finding different
molecular mechanisms and pathways related to FUS and SOD1 mutation in ALS disease, we have
performed a comprehensive gene expression profiling study using microarray hybridization of the
iPSC-derived MN models from control individuals and compared with those from FUS-ALS and
SOD1-ALS patients. In addition, we further analyzed previously published independent datasets
containing the genome-wide RNA profiling of iPSC-derived MN samples from patients with FUS
and SOD1 mutations and controls. This microarray dataset (GSE10638) [23] retrieved from Gene
Expression Omnibus (GEO) [24] was screened to identify differentially expressed genes (DEGs) between
ALS and control samples before and after drug treatment in order to find potential genes in ALS
pathogenesis. Finally, we did a systematic comparison of our results with the ones independently
obtained previously. We created a gene profile of ALS by analyzing the DEGs, the Kyoto encyclopedia
of Genes and Genomes (KEGG) pathways, the interactome and the transcription factor profiles (TF) to
would identify altered molecular/functional signatures and their interactions at both transcriptional
(mRNAs) and translational levels (hub proteins and TFs); that profile withstood validation across the
different datasets (including different differentiation protocols etc.). By doing so we provide condensed
pathophysiological pathways of SOD1 and FUS-ALS to better understand the biological mechanisms
underlying motor neuron disease.

2. Results

2.1. Analysis of Individual Datasets

We analyzed our gene expression datasets of iPSC-derived MNs at DIV 14 of terminal differentiation
(=total DIV 30, Figure S1) since major structural degeneration appeared from DIV 16 of motor neuron
differentiation (=total DIV 32) onwards [25], and compared them to the NCBI GEO GSE106382 [23]
(FUS- and SOD1-ALS and controls) dataset contained data from ALS patients versus healthy controls
(DIV35, also prior neurodegeneration became obvious). From GSE106382 dataset, eight independent
samples that met our selective criteria were identified containing gene expression profiling data
from FUS-ALS iPSC-derived MN (GSM2836938 and GSM2836939), SOD1-ALS iPSC-derived MN
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(GSM2836942 and GSM2836943) and healthy donor iPSC-derived MN (GSM2836934, GSM2836935,
GSM2836936 and GSM2836937; see methods). Descriptions of the datasets analyzed in this study are
presented in Table 1. The overall workflow is presented in Figure 1A.

Table 1. Gene expression datasets selected in this study.

Dataset Phenotype Type Brain Region Platform Reference

GSE106382 SOD1-ALS
(versus Control) MN HG-U133_Plus_2 [23]

GSM2836942 SOD1-ALS-patient 1
(H46R-1SOD1-4) MN Affymetrix GeneChip Human

HG_U133 Plus 2.0 [23]

GSM2836943 SOD1-ALS-patient 2
(H46R-2SOD1-4) MN Affymetrix GeneChip Human

HG_U133 Plus 2.0 [23]

GSM2836934 Control MN Affymetrix GeneChip Human
HG_U133 Plus 2.0 [23]

GSM2836935 Control MN Affymetrix GeneChip Human
HG_U133 Plus 2.0 [23]

GSM2836936 Control MN Affymetrix GeneChip Human
HG_U133 Plus 2.0 [23]

GSM2836937 Control MN Affymetrix GeneChip Human
HG_U133 Plus 2.0 [23]

GSM2836938 FUS-ALS-patient 1
(H517D-FALS2e3)) MN Affymetrix GeneChip Human

HG_U133 Plus 2.0 [23]

GSM2836939 FUS-ALS-patient 1
(H517D-FALS2e23) MN Affymetrix GeneChip Human

HG_U133 Plus 2.0 [23]

In this study;
GSE158264

FUS-, SOD1-ALS
(versus Control) Spinal MN HuGene-2_0-st

In this study;
GSE158264

FUS-ALS-patient 1
(R521L-clone 1) Spinal MN Affymetrix GeneChip

Human Gene 2.0 ST Array

In this study;
GSE158264

FUS-ALS-patient 1
(R521L-clone 2) Spinal MN Affymetrix GeneChip

Human Gene 2.0 ST Array

In this study;
GSE158264

FUS-ALS-patient 2
(R521C-clone 1) Spinal MN Affymetrix GeneChip

Human Gene 2.0 ST Array

In this study;
GSE158264

FUS-ALS-patient 2
(R521C-clone 2) Spinal MN Affymetrix GeneChip

Human Gene 2.0 ST Array

In this study;
GSE158264

SOD1-ALS-patient 1
(D90A-clone 1) Spinal MN Affymetrix GeneChip

Human Gene 2.0 ST Array

In this study;
GSE158264

SOD1-ALS-patient 1
(D90A-clone 2) Spinal MN Affymetrix GeneChip

Human Gene 2.0 ST Array

In this study;
GSE158264

SOD1-ALS-patient 2
(R115G-clone 1) Spinal MN Affymetrix GeneChip

Human Gene 2.0 ST Array

In this study;
GSE158264

Control 1
(proband 1-clone 1) Spinal MN Affymetrix GeneChip

Human Gene 2.0 ST Array

In this study;
GSE158264

Control 2
(proband 2-clone 1) Spinal MN Affymetrix GeneChip

Human Gene 2.0 ST Array

In this study;
GSE158264

Control 3
(proband 3-clone 1) Spinal Mn Affymetrix GeneChip

Human Gene 2.0 ST Array

In this study;
GSE158264

Control 4
(proband 2-clone 2) Spinal MN Affymetrix GeneChip

Human Gene 2.0 ST Array

2.2. Identification of DEGs between FUS- and SOD1-ALS iPSC MNs in Both Datasets

To identify the unique mRNA signatures in ALS patients, genome-wide profiling was conducted
using iPSC-derived FUS and SOD1 motor neurons from ALS patients and healthy controls. Venn analysis



Int. J. Mol. Sci. 2020, 21, 6938 4 of 26

of FUS and SOD1 DEGs across all the datasets (present study vs. Fujimori et al., 2018 [23] (GSE106382))
was performed and we revealed no common genes in both diseases (Figure 1B).

Figure 1. Overall comparison showed no common genes when comparing all datasets. (A) Workflow
of the study. (B) Venn diagram representing all possible combinations of differentially expressed genes
(DEGs) across FUS- and SOD1-ALS datasets (present study (GSE158264) and GSE106382). Of note,
no common “ALS” DEGs were identified when comparing all datasets.

Therefore, we performed independent and combined dataset analysis regarding FUS and SOD1
subjects within the two datasets. In the present study, Venn diagram analysis [26] was performed to
determine the shared and unique genes between the FUS and SOD1. A total of 108 and 94 significant
DEGs (p-value < 0.05 and fold change (FC) difference cutoff ≥ 1.5), in FUS and SOD1 compared with
controls, were identified. Analysis of DEGs identified four common genes, including G protein-coupled
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receptor 50 (GPR50), synaptosome associated protein 23 (SNAP23), NAD(P)H quinone dehydrogenase
1 (NQO1) and nuclear RNA (LOC105376944), shared between the two subtypes (Figure 2A). A full list
of DEGs is provided in Table S1.

Figure 2. Comparative pathway analysis between the two datasets. (A) Venn diagrams showing the
number of significantly dysregulated genes in each disease (FUS- and SOD1-ALS) and the observed
overlap across comparisons. (B) KEGG pathways that are significantly enriched in DEGs specific for
each FUS-ALS (upper part) and SOD1-ALS (lower part) disease. (C) The significant KEGG pathways
(upper part) and Gene Ontology (GO) analysis of biological processes (lower part) enriched by the DEGs
shared between FUS-ALS and SOD1-ALS (present study vs. GSE106382) respectively. X-axis represents
the statistical significance of the enrichment (-log10(p-value)). Color coding represents disease subtypes.
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Similarly, the gene expression of GSE106382 datasets obtained from GEO database detected a
total of 884 DEGs in FUS and 1680 DEGs in SOD1 samples (p-value < 0.05, FC ≥ 1.5) of ALS patients
compared to controls, of which 327 overlapping DEGs were identified for both datasets, which were
involved in the biological process related to ALS (Figure 2A).

Furthermore, a Venn diagram analysis was also performed to identify the shared DEGs between
FUS- and SOD1-ALS datasets (present study vs. GSE106382). Analysis returned 16 and 16 DEGs that
were shared between FUS and SOD1 types, respectively (Figure 2A), thereby providing important
information regarding a possible molecular footprint of ALS.

2.3. Gene Ontology (GO) and KEGG Pathway Enrichment Analysis of DEGs

To gain further insights into the biological significance of identified DEGs and to better
understand the pathogenic aspects of FUS and SOD1-mediated ALS forms, we performed a GO
and pathway enrichment analysis of target genes by querying EnrichR database [27]. In the present
study, the significant GO terms for the DEGs in FUS were enriched in biological processes (BP),
molecular function (MFs) and cellular component (CCs). GO enrichment of DEGs indicated the
involvement of genes related to neuron differentiation, neuron/brain development and ion binding
activity (Figure S2A,B left; Table S2). Similarly, GO analysis of DEGs in the GSE106383 dataset showed
that they were mostly related to axonogenesis, synapse assembly, neuron development and receptor
signaling protein serine/threonine kinase activity (Figure S2B right). Analysis and comparisons of the
enriched GO terms of the SOD1-ALS in both datasets (present study and GSE106383) revealed that
a significant number of genes were mainly involved in regulation of membrane potential, synaptic
transmission, metabolic processes, regulation of transport and cellular adhesion biological processes.
On the basis of molecular function, the most important DEGs in SOD1 prominently included focal
adhesion, neurotransmission receptor activity, tyrosine phosphatase activity, voltage gated channel/ion
channel activity and calcium mediated signaling functions (Figure S2B lower part). The complete list
of all GO terms is in Table S2.

For the analysis of significantly dysregulated pathways (up- and down-regulated) and biological
signatures associated with the DEGs in FUS and SOD1, we performed pathway analysis using the
bioinformatics tool EnrichR. In our study, KEGG pathway analysis revealed significant pathways
associated (p < 0.05) with herpes simplex virus infection (HSV), axon guidance and ABC transporters
and circadian entrainment as the major altered pathways in FUS-ALS (Figure 2B). In particular,
HSV infection was the most significantly enriched pathway in FUS-ALS patients associated with
zinc-finger proteins as the major key involved genes. Notably, the majority of the enriched pathways
in ALS patients have already been associated with ALS pathogenesis, such as immune/inflammatory
response, T cell activation, viral infection and apoptosis [28–33]. The top significant pathways are
given in Figure 2B and the full list of all KEGG pathways is given in Table S3. Similarly, pathway
enrichment analysis of FUS-ALS DEGs (GSE106383) identified a circadian entrainment, neuroactive
ligand–receptor interaction and HSV infection as the top three major deregulated pathways (Figure 2B,
Table S3), thereby significantly overlapping with our datasets.

The pathway analysis of SOD1-ALS DEGs (in the present study) indicated the involvement of genes
related to long term depression, synapse-related neuronal functions and metabolic-related processes
(Figure 2B, Table S3). Similarly, for SOD1-ALS DEGs (GSE106382), major altered pathways included
the morphine addiction pathway, synapse related functions, metabolic processes and epidermal
growth factor receptor (EGFR/ErbB) signaling pathway (Figure 2B, Table S3), suggesting the impacts of
metabolic requirements and neuronal mechanisms in this disease.

Comparisons of FUS- and SOD1-ALS DEGs (versus healthy controls) in our datasets identified
only few common signaling pathways associated with ubiquinone/quinone biosynthesis and SNARE
interactions in vesicular transport, whereas the common DEGs (GSE106382) were found to be
significantly enriched in amino acid metabolism, p53 signaling pathway and NF-kappa B signaling
pathways, indicating that common mechanisms may be involved between these diseases (Figure S2C).
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In addition, comparison analysis between the respective FUS-ALS and SOD1-ALS DEGs across
different datasets (present study vs. GSE106382) was also performed because we wanted to focus
on common regulatory mechanisms and/or molecular footprints at the pathway level and to better
understand the link and the differences encompassed in the development of the two manifestations
of these diseases. Interestingly, KEGG pathway analysis of the common DEGs in FUS-ALS revealed
significant pathways enriched in HSV infection, metabolism and adherens junction, and most strikingly,
“herpes simplex infection” was highlighted as the topmost highly enriched pathway in the network,
supporting a potential functional link between HSV infection and FUS-ALS pathogenesis (Figure 2C
left). Most importantly, the pathway was predominantly enriched in “zinc-finger proteins” (ZNFs),
which mediate direct interactions with DNA, RNA, PAR (poly-ADP-ribose) and other proteins given
its crucial role of mediating a wide range of molecular functions. In past years, ZNFs have been
implicated to have an important role in the pathogenesis of several neurodegenerative diseases such as
spinal muscular atrophy (SMA), Alzheimer’s and Parkinson’s disease [34,35]. In contrast, the gene
expression pattern differed in SOD1-ALS, where most DEGs were associated with the thyroid cancer,
glycosphingolipid/proteoglycan biosynthesis, long term depression and carbon metabolism pathways,
suggesting the impact of neurometabolic defects on SOD1-ALS pathology (Figure 2C right).

2.4. DEGs-Transcription Factor Interaction Analysis

To identify key regulators responsible for the observed patterns in FUS and SOD1 gene expression
profiling studies, a transcription factor (TF)-target gene interaction analysis was performed using
NetworkAnalyst tool [36]. We focused to infer the most important TFs associated with the complete
set of DEGs for each disease subtype. The interaction network was constructed using the ENCODE,
JASPER and ChEA databases [37–39] showing the regulatory relationships involved at transcriptional
level (Figure S3A,B). Shared TFs were illustrated by Venn analysis. In the FUS analysis (present
study), we did not identify shared TFs between three databases; however, 29 TFs were identified
shared between JASPER and ChEA databases, whereas 13 TFs were identified in the SOD1 by all
the databases and FUS shared 11 TFs (SREBF1, CREB1, GATA2, YY1, JUN, CEBPB, STAT1, GATA3,
PPARG, RELA and ELK1) with SOD1 in the analysis (Figure S3A,B). Similarly, in the FUS analysis
(GSE106382), 30 shared TFs were detected between all the databases, whereas 244 TFs were identified
in SOD1 (GSE106382) shared by all the databases and FUS shared 26 TFs with SOD (Figure S3C,D).
We next identified 19 shared TFs among the FUS datasets (present study vs. GSE106382), whereas
SOD1 datasets (present study vs. GSE106382) shared 13 TFs which may play roles in the regulation of
DEGs (Figure 3A). The analysis of TFs-target gene interaction network based on shared DEGs identified
by FUS- (Figure 3B) and SOD1-ALS (Figure 3C) (present study, GSE106382) is given in Figures 3B and
3C. The complete list of all TFs was given in Table S4.

2.5. Protein–Protein Interactome (PPI) Analysis

To get further insights in differentially affected signaling pathways, we went on to perform
protein–protein interactome analysis (PPI) in STRING database [40] to identify unique hub proteins
encoded by the DEGs between FUS and SOD1 and their functional interaction/modules with other
associated pathways that may serve important roles in ALS pathology.
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Figure 3. Transcription factor–DEG regulatory interaction network analysis. (A) Venn diagrams depicting the TFs specific or common among FUS-ALS and SOD1-ALS
datasets. (B) Construction of DEG–TF interaction networks based on DEGs identified shared by FUS-ALS datasets (present study vs. GSE106382). (C) Construction of
DEG–TF interaction networks based on SOD1-ALS datasets (present study vs. GSE106382) and the minimum connected network was analyzed further. The DEG–TF
interaction networks were analyzed in NetworkAnalyst tool [36] (i.e., degree of connectivity and betweenness centrality) and statistical significance score p < 0.05 was
used for the construction of networks.
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FUS-ALS DEGs (108, in the present study) were annotated, matched with the database and
used to construct the interactome network. Furthermore, an expanded PPI network/interactome was
generated by integrating top 200 known or predicted binding partners to form a tightly connected
interactome with 279 nodes representing the proteins and 2517 edges representing the interaction
between these proteins (PPI enrichment p-value = < 1.0 × 10−16) (Figure S4A). Cluster (MCL clustering)
and topological analysis (degree connectivity and betweenness centrality) clearly revealed that the
interactome contained major clusters having maximum interactions with hub nodes/genes, such
as MET, PRKG1, SNAP23, BMP7, NR4A2 and RNASEL. Among these, receptor tyrosine kinase
(MET; betweenness centrality = 5899.333; degree = 47) and synaptosome associated protein 23
(SNAP23; betweenness centrality = 2725.333; degree = 24) were highlighted as the topmost highly
connected nodes/hub genes among the up- and down-regulated DEGs, respectively. Functional
enrichment analysis of DEGs identified in the FUS datasets indicated that genes in these modules
were significantly enriched in several pathways, which were related to ErbB signaling (EGFR family
of tyrosine kinases), axon guidance/SNARE interactions, TGF-β signaling pathway, cell adhesion
and mitogen-activated protein kinase (MAPK) pathways, indicating that these proteins may serve
important roles in maintaining the whole interactome.

While the analysis of FUS-ALS DEGs identified in the GSE106382 dataset retrieved many significant
clusters in the interactome (PPI enrichment p-value ≤ 1.0 × 10−16, 969 nodes, 6171 edges) with the
original seed of 884 annotated DEGs, ribosomal protein L31 (RPL31) was the most highly ranked hub
gene revealing the major interconnected cluster among the dysregulated genes (Figure S4B). The top hub
genes with the highest degrees were RPL31, (betweenness centrality = 123,172.3.5; degree = 101) and
ribosomal protein S4 Y-Linked 1(RPS4Y1; betweenness centrality = 70,343.02; degree = 82) followed by
phospholipase C beta 1 (PLCB1; betweenness centrality = 177,523.9; degree = 82), RAN binding protein
(RANBP2; betweenness centrality = 173,030.1; degree = 62), proteasome 26S subunit, non-ATPase 10
(PSMD10; betweenness centrality = 133,550.6; degree = 61), receptor tyrosine kinase (MET; betweenness
centrality = 82,690.16; degree = 47) and mitogen-activated protein kinase 9 (MAPK9; betweenness
centrality = 76,445.33; degree = 42). In addition, functional enrichment analysis indicated that these
clusters were associated with the ribosome and viral mRNA translation, RNA transport/spliceosome,
circadian entrainment, MAPK signaling, Epstein-Barr virus infection and proteasome pathways in
FUS-ALS pathogenesis.

The same interactome analysis was performed for the SOD1 datasets (present study and
GSE106382). In the present study, the unique interactome (94 annotated genes, 272 nodes, 3877 edges,
PPI enrichment p-value = < 1.0 × 10−16) of dysregulated genes were significantly enriched in cell
cycle, proteasome, SNARE interactions (soluble N-ethylmaleimide-sensitive factor attachment protein
receptors), cell adhesion, PI3K-AKT/MAPK, stress response, ER-Golgi network and mitochondrial
mitophagy, consistent with a role for SOD1 in ALS pathogenesis (Figure S4C). The top hub
genes highlighting above functional pathways based on degree centrality measure were cyclin
A1 (CCNA1; betweenness centrality = 7872; degree = 42), tyrosine-protein kinase receptor ret (RET;
betweenness centrality = 10,828.5; degree = 38), proteasome 26S subunit, non-ATPase 3 (PSMD5;
betweenness centrality = 5558; degree = 29), synaptosome associated protein 23 (SNAP23; betweenness
centrality = 4623; degree = 24) and heat shock protein family A (HSP70) member 2 (HSPA2; betweenness
centrality = 10,199; degree = 20). Similarly, in the GSE106382 dataset, a total of 1680 annotated genes
formed a highly interconnected network (without adding known/predicted interactors) with 1536 nodes
connected to 9285 edges. The most highly ranked hub genes among the DEGs were mitogen-activated
protein kinase 14 (MAPK14; betweenness centrality = 9693.273; degree = 21), E1A binding protein
P300 (EP300; betweenness centrality = 5882.462; degree = 20), SMAD family member 3 (SMAD3;
betweenness centrality = 10,455.82; degree = 17), epidermal growth receptor factor (EGFR; betweenness
centrality = 2990.658; degree = 15) and protein kinase cAMP-activated catalytic subunit alpha (PRKACA;
betweenness centrality = 3633.342; degree = 15) (Figure S4D). Pathway enrichment analysis showed
that dysregulated gene clusters were mainly enriched in functional terms related to focal adhesion,
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MAPK/PI3-AKT, mTOR, Wnt signaling, ER-Golgi transport, cell cycle, ribosome, energy production,
amino acid and lipid metabolism and ROS-mediated stress response pathways, suggesting they
should work collectively to perform different biological functions. The complete results of all PPI
network analyses and the list of binding partners are provided in Table S5. In both SOD1 dataset
analyses, the most enriched protein–protein interaction network identified among the mutual DEGs was
associated with metabolic pathways, suggesting a potential preference for metabolism in SOD1-ALS.

Next, we asked ourselves whether the common DEGs across FUS and SOD1-ALS datasets (present
study and GSE106382) connect within a protein–protein interaction network to identify common
pathways for genetic ALS pathophysiology. The PPI (four annotated genes in the present study;
203 nodes and 2445 edges) represented in the common network for FUS- and SOD1-ALS identified
only one hub gene SNAP23 (betweenness centrality = 276; degree = 24) having a significant number of
interacting partners associated with the SNARE interactions in vesicular transport, providing evidence
for a conserved functional role of FUS and SOD1 in the vesicle:organelle-mediated membrane trafficking
processes during the development of the nervous system (Figure 4A). Taken together, our interactome
profiling of FUS- and SOD1-ALS confirmed a small degree of overlap of the respective transcriptional
profiles, which is consistent with the diverging functional phenotypes during disease progression.
Similarly, in the GSE106382 (FUS and SOD1) dataset, interactome-driven cluster analysis (327 genes
annotated, 485 nodes and 5897 edges) showed no significant interactions based on network topology
scores, while there were few nodes with good numbers of interacting partners (Figure 4B). From these
DEGs, ribosomal protein L31 (RPL31; betweenness centrality = 72,337.63; degree = 101), arginine
and serine rich coiled-coil 1(RSRC1; betweenness centrality = 14,403.61; degree = 79), RAN binding
protein 2 (RANBP2; betweenness centrality = 79,003.01; degree = 61), receptor tyrosine kinases (MET;
betweenness centrality = 55,859.55; degree = 47, RET; betweenness centrality = 54,128.26; degree = 38),
cytochrome C, somatic (CYCS; betweenness centrality = 32,772.78; degree = 27) and DExD/H-box
helicase 58 (DDX58; betweenness centrality = 20,557.75; degree = 19) were among the pathways with
the maximum interactions and were associated with RNA polymerase-based transcription, DNA/RNA
metabolism, metabolic pathways, Kaposi’s sarcoma-associated herpesvirus infection and cell adhesion
respectively. Of note, SNARE interaction is shared by both datasets (compare Figure 4A,B).

Finally, we hypothesized that common DEGs across different FUS and SOD1-ALS datasets
connect within a protein–protein interaction network to identify common pathways valid across totally
independent datasets, thereby increasing the likelihood that they play a central role in the respective
ALS pathophysiology. Network analysis of 16 common DEGs across the different FUS datasets (present
study vs. GSE106382) identified no significant interactions in the network itself; however, an expanded
interactome was generated by adding a total of 200 known or predicted interactors into the network
(PPI enrichment p-value = <1.0 × 10−16). A total of 215 nodes (genes/proteins) formed a tightly
connected network with 2088 edges (Figure 4C), indicating some connectivity enrichment might be
expected with maximum interactions. In the study, receptor tyrosine kinase (MET), MAPK family
signaling cascades (MAPK1/MAPK3), phosphatidylinositol 3-kinase (PIK3CA) and tripartite motif
containing 28 (TRIM28) were represented as the most highly ranked hub genes/central nodes showing
maximum numbers of interactions with their binding partners and the functional annotations of
the genes/proteins associated with the interactome (Figure 4C). Our results indicated significant
enrichment in DNA-binding transcription factor activity (RNA polymerase II-specific), cell adhesion
molecules, SUMOylation, regulation of transcription (DNA-templated), NF-kappa B signaling and
mitochondrial biogenesis pathways. On the other hand, interactome analysis of common 16 DEGs
in SOD1-ALS (present study vs. GSE106382) identified a tyrosine-protein kinase receptor ret (RET;
betweenness centrality = 894; degree = 38) network enriched in pathways associated with ErbB signaling,
neurotrophin and focal adhesion (Figure 4D). RET has been highlighted as the hub gene (213 nodes,
2296 edges, p < 1.0 × 10−16) based on maximum connectivity with the neighboring proteins/genes.
Receptor tyrosine kinases such as EGFR/ErbB and RET are involved in numerous neuronal functions
and altered pathways associated with the development of neurodegenerative diseases [41–47].
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Figure 4. Protein–protein interaction network analysis revealed novel pathways in different genetic ALS forms. (A) Protein–protein interaction network of the common
DEGs shared by FUS- and SOD1-ALS datasets in the present study. (B) Protein–protein interaction network of the common DEGs shared by FUS- and SOD1-ALS
in the GSE106382 dataset. (C) Protein–protein interaction network of the common DEGs shared by different FUS-ALS datasets (present study vs. GSE106382).
(D) Protein–protein interaction network of the common DEGs shared by different SOD1-ALS datasets (present study vs. GSE106382). The nodes indicate the
DEGs and the edges indicate the interaction between two proteins. The STRING database [40] was used to establish functional associations among the known and
predicted proteins using annotated DEGs as queries for FUS- and SOD1-ALS interaction network, with a highest confidence score of >0.9 (STRING scores > 0.900)
and a maximum number of interactions of to top 200 (direct and indirect). The interacting proteins have been clustered (MCL clustering, inflation = 1.5) based
on their functions and associations to select the most significant functional clusters or sub-networks. To identify the highly interacting hub genes, we visualized
the protein–protein interaction network using NetworkAnalyst tool [36] and analyzed the topological parameters of these nodes (node degree ≥ 15). Clusters of
functionally related nodes were manually circled and labelled. Disconnected nodes were omitted. The significant hub genes according to degree and betweenness
centrality, with the maximum number of connections in the common DEGs network, are highlighted in brackets. The networks having the p-values < 0.05 are shown
in the network.
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3. Discussion

The pathophysiology of sporadic and genetic ALS still remains far from being understood.
In this context, baring a few microarray studies, not many studies have employed interactome- and
pathway-based approaches discriminating the various genetic forms of ALS including FUS and SOD1.
Hence, the main aim of this study was to identify dysregulated transcripts and to explore the potential
similarities among two common genetic ALS forms (FUS and SOD1). In this study, we first compared
all the DEGs together among FUS- and SOD1-ALS datasets (present study vs. GSE106382) and our
analysis showed that gene expression profiles of subjects with FUS and SOD1 (present study) did
not overlap with those affected by FUS and SOD1 (GEO dataset) (Figure 1B); however, significant
overlaps of DEGs were identified when systematically comparing them with their respective or mutual
counterparts, suggesting that similar functional and/or molecular changes occur in these disease
subtypes. Therefore, we focused to identify DEGs specific or shared in these independent datasets.

We have identified a total of 108 and 94 significant DEGs (p < 0.05) between the four FUS
and three SOD1 patients vs. four healthy controls using iPSC-derived MNs. A total of only four
common DEGs were identified between the FUS and SOD1 samples, and may therefore prove to be
critical for neurodegeneration in both diseases and heterogeneity among fALS cases. Furthermore,
a comprehensive and systematic screening of FUS and SOD1 transcriptomes utilizing the publicly
available microarray data GSE106382 [23], to further analyze the common molecular determinants from
2 FUS-ALS iPSC lines, two SOD1-ALS lines and four healthy controls identified a total of 884 DEGs in
FUS samples compared with control samples, and a total of 1680 DEGs in SOD1 samples vs. healthy
individuals, including 327 common DEGs shared between FUS and SOD1. The large differences of the
amount of DEGs between the two studies most likely comes from the fact that the GSE106382 dataset
mainly contains only samples either from one patient (two clones from the same FUS-ALS patients) or
most likely the same family (two lines with the same SOD1 mutation, (no further details available)).
In contrast, we used independent samples from different families carrying different well known disease
causing mutations with technical replicates in most of the iPSC lines, including a second clone (to
account for clone to clone differences).

A comparison of our results with the data obtained from GSE106382 analysis followed by
analysis of two different microarray gene expression datasets across different phenotypes, yielded
a common signature of a total of 16 DEGs across the FUS and SOD1 datasets (present study vs.
GSE106382). Put together, the findings mainly highlighted three important results: (i) The existence
of heterogeneity across different datasets, which might arise from many reasons, such as the use of
different differentiation protocols, different gene arrays, different reprogramming strategies, genetic
backgrounds, etc. (ii) Using interaction pathway analysis of first view non-overlapping datasets clearly
revealed common pathway involvements. By doing so, our strategy clearly showed that genetic ALS
forms do differ more than they resemble each other, suggesting it is not a common disease. Finally,
however, comparing datasets within one genetic ALS form revealed central pathways within the
respective pathophysiology.

Interestingly, the zinc-finger proteins known to have DNA-binding transcription factor activity
were found to lead the functional data sets in FUS-ALS. On the contrary, DEGs involved in SOD1-ALS
datasets were distributed in cell cycle, metabolism dysfunction, proteolysis, response to stress/stimuli
and impaired axonal transport and apoptosis. The in depth analysis of DEGs via GO enrichment
analysis and pathway analysis unfolded the presence of unique DEGs across two FUS-ALS gene
expression datasets, involved in neuronal developmental and differentiation. In addition, many other
intracellular processes also seemed to be involved (Figure 2).

Strikingly, the pathway analysis of DEGs in FUS-ALS unfolded significant pathways associated
with HSV infection, synaptic vesicle cycle, cell–cell adhesion, MAPK, and PI3-AKT signaling with
the HSV infection identified amongst not only the most highly ranked pathways for FUS-ALS but
also being clearly upregulated. Of note, a recent report showed that in vitro viral infections can
exacerbate FUS-ALS phenotypes in iPSC-derived spinal neurons [48]. More notably, transgenic mice
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expressing human endogenous retrovirus developed a deterioration and death of MNs similar to the
ALS phenotype [49–51]. Studies have reported increased levels of HHV-6 and 8 in ALS patients [52–54],
demonstrating a potential link between HSV infection and ALS. Interestingly, FUS negatively regulates
Kaposi’s sarcoma-associated herpes virus gene expression, revealing that FUS is a viral restriction
factor [55]. Furthermore, there is more and more evidence that human endogenous retroviruses (HERVs)
play a significant role in ALS [50]. HERV-K was recently shown to be activated in a subpopulation of
patients with sporadic amyotrophic lateral sclerosis (ALS) and the expression of HERV-K or its env
protein in human neurons caused retraction and beading of neurites. Excitingly, expression of HERV-K
is regulated by TAR (trans-activation responsive) DNA binding protein 43, the main aggregating
protein in sporadic ALS, which binds to the long terminal repeat region of the virus [50,56,57].
Thus, viral infections might represent environmental risk factors of and possible contributors to ALS
pathogenesis. Interestingly, another overlaying pathway of both FUS-ALS datasets was circadian
entrainment (Figure 2) which very much fits a recent report showing that FUS is a regulator of
circadian gene expression with remarkable effects if ALS-causing mutations are analyzed [58]. Of note,
stress granules—in whose biogenesis FUS is critically involved—seem to be under circadian control by
oscillating EIF2α [59].

The zinc finger proteins (ZNFs) with the C2H2-type motif predominantly regulating transcriptional
programs in neuronal development have now emerged as signatories worthy of investigations in their
roles in neurodegeneration. For instance, zinc finger protein Zfp106 interacts with multiple RNA
binding proteins, including ALS associated proteins FUS and TDP43 [60]. It appears plausible that such
an interaction might be impaired by FUS mutations, which could add to the phenotype of defective
DNA damage repair reported previously. [19,25,61]. The interplay of the pathogenic signature proteins
associated with FUS-ALS and the binding interactome therein still remains far from being lucidly
explained in the context of FUS-ALS.

Towards demystifying this puzzle, we made an attempt through our interactome analysis for
ALS-associated protein FUS using STRING database [40], engaging a PPI network employing 108
and 884 DEGs from each individual FUS-ALS dataset. In PPI network (present study), top hub
genes such as MET, SNAP23, PRKG1 and BMP7 were identified, showing the highest degree in all
significant clusters (Figure S4). MET was at the core of the PPI network and exhibited the highest
degree of connectivity, suggesting a role of MET as a potential molecular signature for FUS-ALS. MET,
a transmembrane receptor kinase-mediated PI3-AKT and MAPK signaling pathway mitigating the
regulation of neuronal development, differentiation, motility, migration of neuronal precursors and
survival also linked to ALS pathophysiology [62–66] with the definitive status of MET as a potential
marker of FUS-ALS needing to be corroborated with validation studies. Many of the players of innate
immunity presumably essential in the pathogenesis of MN injury in ALS, such as MYD88 and RNASEL,
have been also revealed too. Collectively, all the hub genes may possess critical roles in FUS-ALS, and
thus can be exploited as potential signatures or markers for ALS.

Interestingly, interactome analysis based on 884 total DEGs from the GSE106382dataset exposed
numerous functional clusters enriched in pathways associated with ribosome, virus transcription/

immune system activation, circadian entrainment, the proteasome, the cell cycle, mitochondrial
oxidative phosphorylation (OXPHOS) and MAPK and PI3-AKT signaling. In cluster analysis, genes such
as RPL31, RPS4Y1, PSMD10, MAPK9, CDC7, MET, RANBP2, JAK2, GNAS, PLCB1 and VAMP8 were
unveiled as hub genes with the highest node degree in significant clusters, the topmost clusters
being ribosome (RPSL31, RPL35A), immune system (JAK2) and MAPK/PI3-AKT (MAPK9) signaling
incidentally all associated with FUS-ALS. Interestingly, the ribosome was at the core of the interactome
network and exhibited the highest degree of connectivity through interacting with ribosomal RNAs.
Moreover, a previous study proposed an essential link between RNA stability and neurodegeneration
in ALS by illustrating corresponding reductions in mitochondrial components and a compensatory
increase in ribosome synthesis using iPSC-derived MNs, showcasing metabolic reliance of the active
motor neurons on protein translation and mitochondrial function [67]. Owing to the observed
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dysregulation of DEGs, including zinc finger proteins and RNA/ribosome binding proteins known
to associate the viral interaction with host and the MAPK cascade, speculatively HSV infection
involvement might have a quick fire role in activating MAPK-associated signaling pathways and
TFs like ZNFs, thereby triggering inflammatory dependent manifestations seen during the FUS–ALS
disease course.

Contrary to FUS-ALS, totals of 94 and 1680 DEGs corresponding to each dataset in SOD1-ALS
(present study and GSE106382) with respect to the controls were identified using bioinformatics analysis.
Functional enrichment analysis unraveled the involvement of DEGs of SOD1 MNs with neurological
system development and neuropeptide/neurotransmitter activity, suggesting their participation in
regulation of genes in the nervous system (Figure S2). Furthermore, PPI network analysis of DEGs in
SOD1-ALS revealed an interactome with significant functional clusters centered on genes were enriched
in tyrosine protein kinase family of proteins, vesicular transport, cell adhesion and MAPK/PI3K-AKT
signaling pathways, all of which form the basis for neuronal death or repair (Figure S4). Notably,
cell adhesion molecules have been proven to be critical for synaptic/neuronal plasticity and axon-bundle
formation [68–70]. Thus, our analysis brings forward the emergence of hub genes as potential markers
in SOD1-ALS along with providing functional linkages between a wide variety of cellular processes
and nervous system development, suggesting that SOD1 mutations impair axonal defects through the
MAPK kinase family [71].

The extended analysis of the current study also reflected the sharing of the four DEGs between
FUS- and SOD1-ALS, with the leading gene in the PPI analysis being a SNARE protein regulating
vesicle trafficking and membrane fusion dynamics, SNAP23. Surprisingly, divergently to our results,
the transcriptional profiles from GSE106383 dataset identified 327 DEGs shared between FUS and
SOD1-ALS involved with neurodegeneration. Functional analysis of these DEGs demonstrated a
series of enriched functional terms associated with transmembrane receptor protein kinase activity,
serine/threonine phosphatase activity, ion transport, bone mineralization, cell matrix interaction and
nervous system development possibly afflicting neurodegeneration in both diseases. The sharing of
important gene clusters between FUS and SOD1-ALS was also vigilant in the PPI network, with the
hub genes showing the greatest commonality, justifying shared functions associated with the ribosome,
RNA polymerase, circadian entrainment, Kaposi’s sarcoma-associated herpesvirus infection, the cell
cycle, mitochondrial metabolic functions, p53 signaling and MAPK signaling pathways, reinforcing
their demonstrated functions in ALS. Indeed, aberrant expression and activation of the p38 MAPK
pathway in MNs is thought to be important for ALS progression [64,65,71]. RNA polymerase was
at the core of the interactome network showing the maximum connectivity with other RNA binding
proteins, suggesting these proteins may be involved in transcription and RNA processing and linked
to ALS, including FUS and SOD1 [6]. In line with our findings, interactome analysis of GSE106383
dataset revealed that the ribosome and mitochondrial factors were highly enriched among destabilized
transcripts in both FUS- and SOD1-ALS iPSCs, indicating a conserved gene expression pattern of RNA
destabilization between different ALS types, and their connections dysregulated protein synthesis
and/or ribosomal biogenesis pathways.

Comparison of FUS- and SOD1-ALS datasets (present study vs. GSE106383) revealed 16 DEGs
common to the datasets of FUS- and SOD1-ALS getting significantly visibly associated with biological
processes and molecular functions, viz., cell–cell signaling, receptor protein tyrosine/kinase activity,
synaptic transmission, cell–cell adhesion and ion binding. Remarkable pathways, including HSV
infection and cell adhesion pathways, were shared between FUS-ALS datasets (present study vs.
GSE106383) and unambiguously, HSV infection. The pathways were enriched for the FUS-ALS datasets
and were consistent with those reported in previous studies in transgenic mice and human samples
related to neuroinflammation/immune response in ALS pathogenesis [72].

Thus, to sum up, anomalies in protein synthesis machinery and linked ribosomal pathways that
signify FUS-ALS pathologies, can in the due course of time, affect RNA processing events in virus–host
interactions, eventually causing death of MNs. PPI analysis identified hub genes with highest
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degrees TRIM28, MET, JAK2, UBC, MAPK1/MAPK3, PLK3CG, GSK3B, PLCG1, ZAP70 and NCOA2
shared between two FUS-ALS datasets, suggesting a critical role of these genes/proteins as potential
transcriptomic regulators for FUS-ALS (Figure 4C) that may regulate many cellular activities, including
cellular differentiation, proliferation, apoptosis, inflammation and innate immunity. Fascinatingly,
the multidomain protein encoded by TRIM28 mediates transcriptional silencing together with the
large family of Kruppel-associated box repression domain-containing zinc finger transcriptional
regulators (KRAB-ZNF) and has been well documented in a wide range of vital functions, including
gene expression, epigenetic mechanisms and DNA repair, which are relevant to different aspects of
neurodegeneration [35,60,73–76]. Recent studies indicated that TRIM28-based repression occurs in
the mammalian brain and regulates the steady state levels and toxicity of α-synuclein and tau via
SUMOylation and provides beneficial effects through the transcriptional regulatory networks [73,77].
In addition, the transcription factor was shown to regulate RNA polymerase II promoter (Pol II) through
proximal pausing and pause release at a large number of mammalian genes [78,79]. Furthermore,
a critical role of TRIM28 in lytic gene expression during the early primary infection of herpes virus 8
has been identified [80]. Similarly, KRAB-zinc finger protein ZNF568) has also been implicated in the
transcriptional repression activity, partially through the recruitment of the corepressor TRIM28 and
may enhance proliferation or maintenance of neural stem cells [81]. Among its related pathways were
gene expression and HSV-1 infection. Nevertheless, given the involvement of TRIM28 and ZNF568 in
transcriptional regulation, apoptosis and DNA repair, follow up mechanistic studies investigating their
functional roles will be valuable to understand the implications in FUS-ALS. In contrast to FUS-ALS,
analysis of SOD1 DEGs identified a minimal overlap of 16 genes shared across SOD1-ALS datasets
(present study vs. GSE106383). In particular, pathway and interactome analysis preceded by GO
enrichment analysis revealed a network enriched in pathways associated with synaptic/neuronal
functions and metabolism, indicating metabolic dysregulation considered to be a common hallmark
of SOD1-ALS. Collectively, commonalities have been exposed between the transcriptional changes
seen between FUS- and SOD1-ALS MNs, with disparities observed too in FUS-ALS MNs displaying
greater level of changes in genes enriched in MAPK signaling pathway part of signaling signatures in
ALS. Dysregulation of protein kinases in MAPK signaling pathway has been shown to contribute to
the pathogenesis of several neurological diseases, including ALS [63]. Transcriptomic profiles build
up due to enrichment of disease specific alteration of transcription factors representing significant
targets in neurogenesis and degeneration have far reaching consequences on disease pathogenesis and
progression [82–84]. Hence, we studied TF-gene interactions followed by a comprehensive analysis
in the pathogenesis of ALS with the sets of DEGs (in the current study and GSE106382) involved
for each FUS- and SOD1-ALS using NetworkAnalyst tool [36]. Analysis of TFs identified the most
significant central hubs consisting of JUN, STAT3, YY1, PPARG, EGR1, CREB1, GATA3, SREBF2 and
ELK1 as common regulators, which were mainly enriched in the viral infection, including PPAR,
AMPK and JAK-STAT signaling pathways (Figure 3). Amongst the substantial TFs associated with
the DEGs were early growth response 1 (EGR1), signal transducer and activator of transcription
3 (STAT3) and peroxisome proliferator activated receptor gamma (PPARG), which are involved in
different neurological diseases [41,46,85–87]. The gene encoding target of EGR1 (TOE1, nuclear) protein
identified in FUS and TDP-43 adult mouse brain-knock out involved in splicing events came up in our
analysis too, linking FUS to RNA splicing events [88,89], but precise mechanistic details in FUS-ALS
context are still lacking. Even though PPARG and its roles in mitochondrial biogenesis and cell survival
in neurons through PPARG coactivator 1α (PGC-1α), are well documented with the neuroprotective
effects of PPARG agonists well worked out in ALS [85,90,91], its role in lipid metabolism and this
aspect in FUS-ALS needs attention.

Adding on to the aforementioned results, we identified 19 shared TFs (JUN, STAT3, GATA3,
GATA2, CEBPB, SREBF2, STAT1, YY1, HNF4A, RELA, E2F4, CREB1, MEF2A, TFAP2A, ESR1, PPARG,
RUNX1 and ELK1) with high degrees between two FUS-ALS datasets (present study vsGSE106382) that
are linked to prion diseases, transcriptional regulation, viral infection and PPAR signaling pathways.
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This finding supports the prion-like domain of FUS driving cytoplasmic protein aggregations in ALS [18,
92]. These enriched TFs displayed maximum interactions with their target genes (GPR50, ABCC9,
ZNF667 and CALB1) and could prove relevant to several neurodegenerative diseases. In contrast,
analysis of TFs in SOD1-ALS datasets (present study vs. GSE106382) identified many significant
TFs and their related target genes (RET, SORL1, ATP2B2 and CDH12) (Figure 3). From these TFs,
CREB1 as a common regulator among SOD1-ALS datasets, indicating CREB1 signaling cascade may
be involved in neuronal/synaptic related functions. Interestingly, dysregulated CREB1 pathways have
been consistently implicated in Alzheimer’s and ALS [93–95]. On the other hand, we identified 11 and
26 common transcriptional regulators between FUS- and SOD1-ALS in our datasets and GSE106382
dataset, suggesting their involvement in many neurological diseases including ALS (Figure 3). Overall,
our findings from the TFs analysis are in favor of their specific character in fALS and support PPARG,
EGR1 and CFEB1 as important transcriptional regulators in FUS and SOD1-ALS disease processes.
Further, in-depth functional studies are needed to confirm these results and to better understand the
mechanisms of MN-associated TF-target gene regulation in the pathogenesis of ALS.

Thus, our comprehensive analysis pinpoints that there are very promising associations with a
neurotropic virus enrichment pathway like HSV infection, which is unique to the FUS–ALS, whereas
the SOD-ALS is inclined towards the metabolic regulation highlighting differential gene regulations
governing genetic predispositions with segregated consequences on biological processes they impact
in relation to. Thus, our results open up novel datasets and unexplained transcriptomic targets
impacting biological pathways in an idiosyncratic manner, thereby affecting pathogenesis of ALS in
corresponding ways.

While the present study contributes important insights into the shared genes, pathways and TFs
for FUS and SOD1 at the functional level, it would be sensible to highlight the strengths and limitations
of the current study. First, our sample was relatively small, purely in silico based and was not integrated
map of multiple omic data sets to further analyze complex neurological diseases such as ALS. Although
we performed individual normalization for two different datasets independently, the heterogeneity
of technical variations in individual studies cannot be removed completely. Further, our analysis on
iPSC-derived MN system adapted to artificial cell culture conditions, media, atmospheric oxygen
pressure and other possible confounding factors including different microarray platforms, sample
preparation/RNA isolation methods, and different clinical strategies based on population studies may
bias the results. Therefore, our results should be replicated in other independent and larger cohort of
ALS patients-derived MNs but also post mortem tissue analysis, including sporadic forms. Overall,
taking the advantage of iPSC model system and by integrating the recent published data (such as the
one presented here), our study provides a unique set of data comparing the transcriptomic alterations
and/or events found in MNs from FUS and SOD1-ALS patients and controls, revealing conserved
signatures/risk factors in viral infection, ribosome/protein translation and cell adhesion processes.
From this view, we showed that both genetic and transcriptomic data are useful to guide further
investigations to address the impact of virus infection-induced stress granule dynamics in the context
of ALS pathology. The conglomeration of microarray technology with simultaneous bioinformatic
analysis of the transcriptomic profiles surfaced from RNA data of iPSC-derived MNs from ALS patients
has put forth newer molecular signatures and targets to be explored for getting newer insights into
ALS pathogenesis and disease progression in parallel.

4. Materials and Methods

4.1. Patient Characteristics

We included cell lines carrying mutations in FUS (R521C and R521L, two clones from each patient)
and in SOD1 (D90A (two clones), R115G (one clone)), which were identified by Sanger sequencing.
Three different cell lines from healthy volunteers (Table 2) were used as the controls. All experiments
were in accordance with the Helsinki convention and approved by the Ethical Committee of the
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Technische Universität Dresden (EK45022009, EK393122012) and patients and healthy volunteers gave
their written consent prior to skin biopsy. In this study we analyzed 1 independent microarray from
ALS patients.

Table 2. Patient/proband characteristics.

Genotype Cell Culture
Model Sex

Age at
Biopsy
(Years)

Mutation Family
History

Age of
Disease
Onset

Clinical
Phenotype

Disease
Duration
(Months)

Controls hiPSC

female 48 - - - - -

male 60 - - - - -

female 45 - - - - -

female 50 - - - - -

FUS-ALS hiPSC

female 58 p.R521C * Pos. for
ALS 57 spinal 7

female 65 p.R521L * Pos. for
ALS 61 spinal 60

SOD1-ALS hiPSC

Male 59 p.R115G Pos. for
ALS n.a spinal n.a

female 46 p.D90A * Pos. for
ALS n.a Spinal n.a

n.a: not available; * two clones were used in the current study.

4.2. Generation and Expansion of Cell Lines

Fibroblast cell lines were established from skin biopsies obtained from familial ALS patients and
healthy controls. In case of the control lines, genetic testing was performed on them and they were
only included if this was negative for mutations in the four main ALS genes C9ORF72, SOD1, FUS and
TDP43. The reprogramming procedure to obtain iPSC from fibroblasts and characterization of control
iPSC lines was described previously [25].

The generation of human neural progenitor cells (NPC) and motor neurons (MN) was performed
as previously reported [25] based on the original by Reinhardt et al. [96,97]. Importantly, the NPC
derivation took about 14–21 days (DIV) which were then used as a resource for final MN differentiation,
which was initiated by treatment with 1 µM pumorphamine (PMA) in N2B27 and supplemented
with 1 µM retinoic acid (RA) on day three in vitro (DIV). To increase the purity of MN enriched cell
culture another split was performed on DIV 9. In parallel, the medium constitution was changed:
Instead of PMA and RA, 10 ng/µL BDNF, 500 µM dbcAMP and 10 ng/µL GDNF were added to N2B27
ensure neuronal maturation. On DIV 14 we performed immunocytochemistry (see Figure S1) and
RNA isolation. Detailed functional and static characterization of the applied cell culture model was
previously reported by us [25,98,99]. Thus, analyses were performed at DIV 30–45.

4.3. RNA Isolation and Microarray Hybridization

Total RNA was extracted using the RNeasy Kit (QIAGEN, Hilden, Germany) according to the
manufacturer’s protocol. The precipitated RNA was dissolved in RNase-free water and RNA quality
was checked with the Agilent Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Total RNA
(100 ng) was reverse transcribed, in vitro transcribed and reverse transcribed in a second cycle such
that the resulting sscDNA could be fragmented and terminally labeled with Biotin using the Ambicon
WT Expression Kit (AM4411973) (Ambion, Life Technologies Corporation, Grand Island, NY, USA)
and the GeneChip Whole Transcript (WT) Terminal Labeling Kit (900671) (Affymetrix, Santa Clara,
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CA, USA). Hybridization, staining and scanning of the Affymetrix Human Gene 2.0 ST microarrays
(HuGene-2_0-st-v1) were performed according to the Affymetrix GeneChip WT terminal Labeling and
Hybridization User Manual (P/N 702808 Rev. 4) (Affymetrix, Santa Clara, CA, USA). and the data
saved in CEL files.

4.4. Gene-Expression Validation Data Set

In this study we analyzed 1 independent microarray dataset from ALS patients. Processed
gene expression data were utilized with accession number GSE106382 [23] (Affymetrix Human
Genome U133A Plus 2.0 Array) from NCBI’s Gene Expression Omnibus (GEO) database [24],
which studied the molecular mechanisms of the fALS/sALS, and/or drug-treated ALS models based
on their expression profiles. The GSE106382 dataset containing 24 samples from fALS patients with
FUS, SOD1 or TDP43 mutations, and sALS versus healthy controls, was obtained from iPSC-derived
MNs. From this large dataset, we analyzed a subset comprising 4 datasets each for FUS- and
SOD1-ALS subtype (GSM2836938, GSM2836939, GSM2836942 and GSM2836943) compared to 4
healthy controls (GSM2836934, GSM2836935, GSM2836936, GSM2836937) that met the inclusion
requirements respectively. For gene expression profiling assays, motor neuron populations in neuronal
cell culture at approximately 40 days in vitro (DIV) were analyzed in both datasets. We processed and
analyzed all the datasets and identified DEGs with p-values < 0.05 and log2 absolute values for fold
control FC ≥ 1.5 (see below method).

4.5. Data Analysis and Identification of DEGs

Data analysis was performed on Affymetrix CEL files using Partek Genomics Suite 7.0 software
(Partek Inc., Saint Louis, MO, USA) under the “Gene Expression” workflow menu according to
the standard pipeline method. Data were normalized and summarized with the robust multi-array
average (RMA) method [100], which included RMA background correction, quantile normalization,
log2 base transformation and median polish probe set summarization. The configuration consisted
of a pre-background adjustment for GC content. Library files were those specified by Affymetrix.
Differential expression was determined by one-way ANOVA to obtain statistically significant genes.
After running ANOVA, genes of interest (DEGs) were then rank ordered in terms of their p-values
according to the Benjamini–Hochberg step-up multiple test correction method (i.e., p-value < 0.05
for significance). This general approach to the microarray analysis of Affymetrix expression data is
outlined in Partek technical literature. Afterwards, the expression ratios were calculated for each gene
and a 1.5 fold change was used as the criterion for significance (FDR < 0.05 and fold change ± 1.5) and
exported into an Excel file for further analysis. Similarly, we identified DEGs from the GSE106382
dataset according to the standard procedure like above and analyzed them independently. The flow
chart for data analysis is given in Figure 1. Next, the results for DEGs obtained in this study
were compared to corresponding samples from the GSE106382 dataset. Venn diagrams depicting
intersections of DEGs analysis were made to categorize the data into two groups of different expression
patterns using web based tools [26,101]. The data discussed in this publication have been deposited in
NCBI’s GEO database under accession number GSE158264.

4.6. GO and Pathway Enrichment Analysis of DEGs

We performed gene set enrichment analysis via EnrichR (https//amp.pham.mssm.edu/Enrich/) [27]
to identify gene ontology (GO) and pathways of the DEGs. A list of all 1.5-fold differentially expressed
mRNAs obtained from PGS analysis was uploaded into EnrichR for analysis. This analysis was
performed to provide more information about the biological functions and pathways significantly
enriched in genes (up- and down-regulated) by focusing on three organizing principles of GO terms
(BP: biological process, MF: molecular function, CC: cellular component) and Kyoto Encyclopedia of
Genes and Genomes (KEGG; http://www.genome.jp/kegg) pathways [102]. An adjusted p-value < 0.05
was considered as the cut-off criterion for all enrichment analysis.

https//amp.pham.mssm.edu/Enrich/
http://www.genome.jp/kegg
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4.7. Protein–Protein Interaction Network and Hub Gene Analysis

To better understand the functional interactions of the DEGs and identify the best candidate genes
in ALS disease subtypes, a comprehensive protein–protein interaction (PPI) network of their encoding
products was constructed by using the Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING, Version 11.0, https://string-db.org/) [40] and analyzed through the NetworkAnalyst tool [36].
The STRING database collects and integrates all of functional associations between the genes/proteins
by consolidating known and predicted interaction data derived from sources including database,
experimental, co-expression, text mining, co-occurrence, neighborhood and gene fusion with the highest
confidence score. The statistical enrichment analysis in STRING indicated that the PPI interactomes
were significantly enriched (p-value < 0.05) and it has been well documented that clustering algorithms
were useful for grouping proteins into functional clusters or modules. Therefore, functional clusters
were identified using the Markov clustering algorithm (MCL) [103] provided by STRING database.
The “inflation” parameter which defines the precision of the clustering between regions of strong
and weak interactions was set to 1.5 (the higher the inflation, the more clusters you obtain with
weak interactions). Briefly, the complete list of DEGs (both up- and down-regulated) was imported
into STRING V.11.0, and the PPI network was constructed independently for each dataset with the
highest level of confidence between interactions (highest score of >0.9) and a maximum number of
interactions to 200 (100 interactors for each direct and indirect functional interaction). The resulting
interactome network was further divided into subnetworks of proteins, each of which represented
potential functional clusters or functional modules (using MCL clustering). To identify the “Hub”
proteins, network visualization and topological analysis were performed through NetworkAnalyst
tool. It is based on two widely used topological parameters, betweenness centrality and node degree.
In the network, gene represents node (protein/gene) and edges represent interaction between nodes.
The “degree” of a node indicates number of connections it has to other nodes; the highest the degree of
nodes (hub proteins/genes) represents an important biological function. Betweenness centrality defines
how close a node is to all other nodes in the network. In this study, the PPI network was analyzed
based on these parameters (node degree ≥15 was selected for threshold) to identify highly interacting
hub proteins of their functional and biological relevance. For a large number of seed proteins the
“zero order network” construction was selected to contain only the original seed proteins that directly
interact with each other, preventing the “hairball effect” and allowing for better visualization and
interpretation of interaction network.

4.8. Gene-Transcription Factor Interaction Analysis

To gain further insights into the transcription factors (TF) of DEGs, we uploaded the complete list
of DEGs into NetworkAnalyst for network analysis. The TF binding site data were predicted by three
established TF target prediction databases [37–39]. In the Encyclopedia of DNA elements (ENCODE)
database, the TFs were identified by BETA Minus Algorithm. Only peak intensity signal <500 and
the predicted regulatory potential score <1 were used. The ChIP Enrichment Analysis (ChEA) TF
targets database inferred from published ChIP-X data. Finally, JASPER database provided curated and
non-redundant TF-binding profiles. The TF-gene interaction network was analyzed based on node
degree and edge betweenness topological parameters. Venn diagrams [101] depicting common TFs
identified with each database were also made.

4.9. Statistical Analysis

Raw microarray data were statistically analyzed using PGS software (Partek Inc, St. Louis, MO,
USA). All of the gene expression samples presented in this study were designed for 3 biological replicates
(mean ± SD, n ≥ 3). DEGs with an FDR, using the Benjamini–Hochberg, below 5%, were considered
statistically significant (P-value < 0.05), and a strict criterion of log2FC ≥ 1.5 or log2FC ≤ −1.5 was
used for selection of genes. For the functional enrichment and PPI network analysis, significantly
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enriched GO terms, pathways and interactomes were identified using a p-value < 0.05 as the cut off

value for statistical significance.

5. Conclusions

In conclusion, the present study provided a comprehensive bioinformatics analysis as a promising
approach for the identification of candidate DEGs characterizing different fALS subtypes, thereby
revealing key factors and pathway mechanisms common to both diseases and differences that are
exclusively highlighted in one of the two entities. We have analyzed transcriptomic changes that
occurred in fALS with FUS and SOD1 mutations using iPSC-derived MNs from the present study
and GSE106382 gene expression profiling datasets. We integrated the common DEGs into various
bioinformatics tools to find the enriched GO terms, KEGG pathways, hub genes and TFs. Our findings
presented in this study suggest that FUS and SOD1 may develop from dysregulation in several unique
pathways and HSV infection was among the topmost predominant cellular pathways connected to FUS
and not to SOD1. In contrast, SOD1 is mainly characterized by alterations in the metabolic pathways
and alterations in the neuroactive-ligand–receptor interactions. GO terms related to adhesion and
signaling were the main functions enriched by the shared DEGs. Furthermore, this study emphasizes
the potential of interactome analysis as a dynamic framework to provide new insights into the
most significant hub genes underlying the shared pathological signatures between the two diseases.
Given the involvement of TFs in viral infection, neuroinflammation and apoptosis, follow up functional
studies will be necessary to verify our findings and explore the mechanistic impacts of these candidate
TF-genes’ regulation on the outcome of the FUS- and SOD1-ALS disease and might provide potential
clues for the development of new therapeutic strategies.
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fALS Familial ALS
sALS Sporadic ALS
MN Motor neuron
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C9ORF72 Chromosome 9 open reading frame 72
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MPC Motor neuron precursor cell
DEG Differentially expressed genes
GEO Gene expression omnibus
DSBR Double stranded break repair
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HSV Herpes simplex virus
KEGG Kyto encyclopedia of genes and genomes
STRING The search tool for the retrieval of interacting genes/proteins
PGS Partek genomic suite (Partek Inc)
GO Gene ontology
ENCODE Encyclopedia of DNA elements
ChEA ChIP-X database
MAPK Mitogen activated protein kinase
PPI Protein-protein interactome analysis
PPARG Peroxisome proliferator activated receptor gamma
PAR poly-ADP-ribose
SNAP23 Synaptosome associated protein 23
SNARE Soluble N-ethylmaleimide-sensitive factor attachment protein receptors
SMN Survival motor neuron protein
SMA Spinal muscular atrophy
CAM Cell adhesion molecules
TOE1 Target of EGR1
EGFR Early growth response protein
ZNF Zinc finger proteins
KRAB Kruppel-associated box
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WT Whole transcript
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