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Abstract

Since the first report of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, over 100 million
people have been infected by COVID-19, millions of whom have died. In the latest year, a large number of omics data have
sprung up and helped researchers broadly study the sequence, chemical structure and function of SARS-CoV-2, as well as
molecular abnormal mechanisms of COVID-19 patients. Though some successes have been achieved in these areas, it is
necessary to analyze and mine omics data for comprehensively understanding SARS-CoV-2 and COVID-19. Hence, we
reviewed the current advantages and limitations of the integration of omics data herein. Firstly, we sorted out the sequence
resources and database resources of SARS-CoV-2, including protein chemical structure, potential drug information and
research literature resources. Next, we collected omics data of the COVID-19 hosts, including genomics, transcriptomics,
microbiology and potential drug information data. And subsequently, based on the integration of omics data, we
summarized the existing data analysis methods and the related research results of COVID-19 multi-omics data in recent
years. Finally, we put forward SARS-CoV-2 (COVID-19) multi-omics data integration research direction and gave a case study
to mine deeper for the disease mechanisms of COVID-19.
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Figure 1. Graphical abstract.

Introduction
Coronaviruses (CoVs) are a highly diverse family of enveloped
positive-sense single-stranded RNA viruses [1]. Severe acute res-
piratory syndrome coronavirus (SARS-CoV) and Middle East res-
piratory syndrome coronavirus (MERS-CoV) are two highly trans-
missible and pathogenic viruses that emerged in humans at
the beginning of the 21st century [2], which can cause serious
respiratory diseases and pose severe threats to human health.
In December 2019, a case of a novel coronavirus, designated as
SARS-CoV-2, was publicly reported for the first time in Wuhan,
China [3]. Subsequently, it was reported worldwide and became
a global pandemic disease named COVID-19, causing immeasur-
able harm to the world economy, human health and social order.
As the third zoonotic human coronavirus of the 21st century
[4–8], SARS-CoV-2 has significantly exceeded the previous two
CoVs in terms of contagiousness and propagation range.

Currently, with the improvement of sequencing capability
and the in-depth research on SARS-CoV-2, the omics data
(genomics, transcriptomics, microbiology and potential drug
information), website resources and database resources of the
SARS-CoV-2 (COVID-19) have become more abundant. Due to
the fast-paced nature of the pandemic and the generation
of large amounts of omics data, a major challenge is not
being able to integrate large amounts of data efficiently and
quickly. Meanwhile, there is also still room for expansion in the
research scope of omics data. The method of multi-omics data
integration has the potential to gain a deeper understanding
of the mechanism of COVID-19 and will be the mainstream
direction of future research for SARS-CoV-2 [9].

This review briefly integrated and analyzed the existing rel-
evant resources. Meanwhile, we conducted a more in-depth
exploration of the current omics data (Figure 1). We focused on
integrating multiple types of omics data as applied to research
on COVID-19 and speculating about an idea for deep mining of
existing multi-omics data. The purpose of this review is to make

SARS-CoV-2- and COVID-19-related resources more accessible
for researchers and to utilize existing resources much better.

Results
The SARS-CoV-2 virus resources

As a novel beta coronavirus, SARS-CoV-2 shares 79% genome
sequence identity with SARS-CoV and 50% with MERS-CoV
[10]. They all belong to the beta coronavirus genus, group 2.
Since clinical cases began to appear, several teams attempted
to determine the genome sequence of the causative pathogen
[11]. Lu et al. have described the genomic structure of a seventh
human coronavirus (SARS-CoV-2) and have shed light on its
origin and receptor-binding properties [10]. Zhu et al. reported
the isolation of the virus and the initial description of its
specific cytopathic effects and morphology. Meanwhile, they
described clinical features of pneumonia in two of these
patients [12]. Wu et al. deposited the SARS-CoV-2 virus reference
sequence in January 2020 (https://www.ncbi.nlm.nih.gov/nu
ccore/NC_045512) [13], which is a reference for the follow-up
sequence study of SARS-CoV-2.

Functional analysis of SARS-CoV-2 sequence

The SARS-CoV-2 sequences allow us to trace the source, early
spread and determine the intermediate host. Zhou et al. showed
that 2019-nCoV was 96% identical to a bat coronavirus RaTG13
at the whole-genome level and confirmed that 2019-nCoV used
the same cell entry receptor—angiotensin converting enzyme II
(ACE2)—as SARS-CoV [14]. Zhang et al. suggested that pangolins
were natural reservoirs of SARS-CoV-2-like CoVs [15]. It is essen-
tial to consider the factors driving their selection and define
important mutations to understand SARS-CoV-2 variants and
their risks [16]. Herein, the study of SARS-CoV-2 mutation trends
in different countries and regions has become a hot research

https://www.ncbi.nlm.nih.gov/nuccore/NC_045512
https://www.ncbi.nlm.nih.gov/nuccore/NC_045512
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Table 1. Prediction results of Spike protein stability of I-Mutant 3.0

Position Reference sequence Mutation sequence ��G Stability prediction

439 N K −0.42 Neutral stability
614 D G −0.93 Large decrease of stability
501 N Y 0.15 Neutral stability
484 E K\ Q −0.78\-0.62 Large decrease of stability
417 K N −0.42 Neutral stability
452 L R −1.85 Large decrease of stability

topic. Forster et al. found three central variants distinguished by
amino acid changes: A, B and C, and discovered the geographical
distribution of the three subtypes [17]. In addition, the replica-
tion kinetics and transmission of SARS-CoV-2 may depend on
the binding affinity of spike protein to ACE2. Thomson et al.
demonstrated that N439K spike protein had enhanced binding
affinity to the human ACE2 receptor, and N439K viruses were
similar in vitro replication fitness, causing infections with sim-
ilar clinical outcomes compared to wild type [18]. Benton et al.
observed that open conformation of the G614 spike might be
responsible for the current virus’ reported increased infectivity
and its current predominance [19]. Hou et al. conducted an in-
depth study on the pathogenesis and transmission ability of
the D614G virus variant, finding that the D614G substitution
enhanced infectivity, competitive fitness and transmission of
SARS-CoV-2 in primary human cells and animal models [20]
and became the dominant form circulating globally. Subsequent
studies on the effects of mutations on protein functions and vac-
cines found that the virus variants had improved transmission
capacity rather than pathogenicity [21]. Clinical data suggested
that D614G alteration had no significant link with disease sever-
ity [22] and would not alter the efficacy of vaccine candidates
under development currently [23, 24]. We have reached similar
conclusions in previous studies [25]. In addition, N501Y con-
tributed to increased transmission, with estimates ranging from
40 to 70% for increased transmission [26], and E484K, as well as
K417N, conferred a potential immune escape to antibodies [27],
which have been identified as important changes that evolved
in multiple mutation lineages. Recently, a coronavirus with both
E484Q and L452R mutations was discovered in India. This virus
may increase infectivity and may be one of the reasons for the
surge of cases in India in mid-April.

Meanwhile, three SARS-CoV-2 lineages have emerged in
the UK, South Africa and Brazil. They are B.1.1.7 (501Y.V1),
B.1.351 (501Y.V2) and B.1.1.28.1 (P.1), respectively. On 31 May
2021, the World Health Organization (WHO) announced that the
Greek alphabet would be used to name the SARS-CoV-2 virus
variant, such as the B.1.1.7 strain first discovered in the UK
named ‘Alpha’. In addition, the SARS-CoV-2 B.1.617 lineage was
identified in October 2020 in India, which has spread to many
other countries [28]. The lineage includes three main subtypes
(B1.617.1, B.1.617.2 and B.1.617.3). Current research suggested
that B.1.617.2, also termed the as Delta variant spread faster than
other variants [29]. All these recent emergences of SARS-CoV-2
variants are causing concerns and call for several necessary
protective measures [30]. Otherwise, there would be a new
outbreak. The Delta variant, for example, is currently rampant
worldwide, posing a huge challenge to vaccine protection and
medical assistance.

Mutations in these spikes were evaluated using bioinfor-
matics tools to analyze trends in functional changes caused
by these mutations. The potential impact of these mutations

on protein stability was predicted using online tools I-Mutant
3.0 [31] with support vector machines as the core algorithm.
The low value of ��G (<<−0.5) suggested that these mutations
significantly decreased the stability of the spike protein. By com-
parison, the ��G values of N439K, N501Y and K417N are close
to zero, showing a neutral effect on protein stability (Table 1).
Since the binding of ACE2 and virus spike protein affects the
infectivity [32], we used PPA-Pred to evaluate the changes in
the interaction caused by Spike-ACE2 binding affinity due to
these mutations [33] (Table 2). The tool can analyze the change of
binding affinity in dissociation free energy (�G) and dissociation
constant (Kd), inverse ratios to protein–protein interactions and
binding affinity. Except for N439K and N501Y, all the other muta-
tions increased the binding ability and interaction of viral Spike
protein to ACE2, leading to the enhancement of SARS-CoV-2
infectivity.

Integration of SARS-CoV-2 related database resources

Over time, more and more viral sequences have been produced.
Therefore, we summarized the viral sequence resources
(Table 3). Firstly, the GISAID is used to collect SARS-CoV-2 strains
from different patients around the world. On 10 January 2020, the
first virus genome and associated data were publicly shared via
GISAID. As of 1 June 2021, more than 1.8 million virus strains
have been deposited, submitted by laboratories across the
country, including virus name, collection time, submission time,
sequence length, species information, location information and
laboratory information. There are multiple studies on sequence
analysis supported by GISAID. In addition, several investigations
assisting with these efforts are offered here, including but
not limited to sequence alignments, diagnostic primers, probe
coordinates, 3D protein models, drug targets and phylogenetic
trees [34]. In brief, the GISAID database can provide us with
a large number of high-quality data resources for sequence
mutation, regional analysis and temporality analysis of virus
mutation. In addition, the Nextstrain lists publicly available
SARS-CoV-2 analyses that used Nextstrain from groups all over
the world. The database provides the Nextclade tool to compare
sequences to the SARS-CoV-2 reference sequence, assign them
to clades and see where they fall on the SARS-CoV-2 tree [35].
We can see the latest global SARS-CoV-2 analysis and the
geographically specific evolutionary trees of the virus. Finally,
the GESS is a resource providing comprehensive analysis results
based on tens of thousands of high-coverages and high-quality
SARS-CoV-2 complete genomes. It allows users to browse, search
and download SNVs at any single or multiple SARS-CoV-2
genomic positions, within a chosen genomic region or protein, or
in a particular country/area of interest [36]. These viral sequence
resources can provide us with a wealth of sequences to study.

Apart from that, we also summarized other SARS-CoV-2-
related databases (Table 3). Comprehensive databases such as
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Table 2. Prediction results of mutations binding affinity of PPA-Pred

Mutations �G (kcal/mol) Kd (M) Binding affinity prediction

Reference sequence (NC_045512) –14.36 2.96E−11 /
N439K −14.31 3.22E−11 Decreased
D614G −14.37 2.90E−11 Increased
N501Y −14.26 3.48E−11 Decreased
E484K −14.37 2.90E−11 Increased
E484Q −14.36 2.92E−11 Increased
K417N −14.41 2.72E−11 Increased
L452R −14.37 2.89E−11 Increased

Table 3. Integration of resources related to SARS-CoV-2

Resources URL Data type

GISAID https://www.gisaid.org/ SARS-CoV-2 Strains
Nextstrain https://nextstrain.org/sars-cov-2/ SARS-CoV-2 Strains
GESS https://wan-bioinfo.shinyapps.io/GESS/ SARS-CoV-2 Strains
NCBI SARS-CoV-2 Resources https://www.ncbi.nlm.nih.gov/sars-cov-2/ SARS-CoV-2 Genome Sequencing Data
National Genomics Data Center https://bigd.big.ac.cn/ SARS-CoV-2 Genome Sequencing Data
European Nucleotide Archive https://www.ebi.ac.uk/ena/browser/home SARS-CoV-2 Genome Sequencing Data
Covid-19 data portal https://www.covid19dataportal.org/ SARS-CoV-2 Genome Sequencing Data
The UCSC SARS-CoV-2 Genome Browser https://genome.ucsc.edu/covid19.html SARS-CoV-2 Genome Resources
The CORD-19 corpus https://www.semanticscholar.org/cord19 Literature about SARS-CoV-2
LitCovid https://www.ncbi.nlm.nih.gov/research/coronavi

rus/
Literature about SARS-CoV-2

BioRxiv & MedRxiv https://connect.biorxiv.org/relate/content/181 COVID-19 SARS-CoV-2 Preprints from
MedRxiv and BioRxiv

Drug bank https://go.drugbank.com/covid-19 Drug Information
DockCoV2 https://covirus.cc/drugs/ Drug Information
COVID19 Drug Repository http://covid19.md.biu.ac.il/ Drug Information
Coronavirus3D https://coronavirus3d.org/ chemical structure data
CoV3D https://cov3d.ibbr.umd.edu/ chemical structure data
RCSB PDB https://www.rcsb.org/ chemical structure data
UniProt https://www.uniprot.org/ chemical structure data

NCBI SARS-CoV-2 resources, National Genomics Data Center,
European Nucleotide Archive and COVID-19 Data Portal provide
us with resources including literature, sequence and clinical
resources. Literature resources, such as CORD-19 Corpus [37],
LitCovid [38] and BioRxiv & MedRxiv, can provide academic
articles or pre-printed journals about SARS-CoV-2 to find the
latest progress in COVID-19 research. Among them, the Lit-
Covid database puts the daily updates of COVID-19-related lit-
erature at the top for easy access by researchers. The BioRxiv
& MedRxiv database is able to provide us with literature that is
still under review, which can often give us important insights.
Drug resources for SARS-CoV-2 such as Drug Bank [39], COVID19
Drug Repository [40] and DockCoV2 [41] provide experimental,
unapproved treatments for COVID-19, potential drug targets,
summary of clinical trials classified by drug, etc. The UCSC
SARS-CoV-2 genome browser provides fast-tracking visualiza-
tion of genome sequences and analyses apart from incorpo-
rating relevant biomedical datasets. All of these databases can
give tremendous assistance for the research of SARS-CoV-2 [42].
Besides, understanding the protein chemical structure of SARS-
CoV-2 is necessary for the development of structure-based thera-
peutics, including antibodies, antiviral compounds and vaccines.
Therefore, Prates et al. summarized the SARS-CoV-2 proteome
(reference genome NC_045512.2) and discussed the structural
proteomics of SARS-CoV and SARS-CoV-2 to identify potential
pathogenicity determinants [43]. Meanwhile, the Coronavirus3D

[44], CoV3D [45] and RCSB PDB [46] provide researchers with
COVID-19-related PDB structures, 3D visualization and analysis
of SARS-CoV-2 protein structures concerning the CoV-2 muta-
tional patterns. The UniProt provides the latest available pre-
release UniProtKB data for the SARS-CoV-2 coronavirus and
other viral and human entries related to the COVID-19 outbreak
[47]. According to the statistics, the 2021 Nucleic Acids Research
Database Issue contains 189 papers, including 7 new databases
focused on COVID-19 and SARS-CoV-2 and many others offering
resources for the virus studying [48]. We believe that all of
the above databases provide researchers with abundant data
resources, helping a lot in the fight against COVID-19.

The COVID-19 host omics data

We manually searched electronic databases, including PubMed,
National Library of Medicine of the National Institutes of Health,
GEO database, BioRxiv and MedRxiv preprint services operated
by Cold Spring Harbor Laboratory, based on the keywords COVID-
19, SARS-CoV-2, genome, GWAS, transcriptome, single-cell, RNA-seq,
microbiome and drug for English-language titles and abstracts
published from 1 January 2021 to 1 June 2021.

Integration of genomic data for COVID-19 patients

Studies of viral and host genetics are critical for under-
standing the pathophysiology of SARS-CoV-2, elucidating why

NC_045512
https://www.gisaid.org/
https://nextstrain.org/sars-cov-2/
https://wan-bioinfo.shinyapps.io/GESS/
https://www.ncbi.nlm.nih.gov/sars-cov-2/
https://bigd.big.ac.cn/
https://www.ebi.ac.uk/ena/browser/home
https://www.covid19dataportal.org/
https://genome.ucsc.edu/covid19.html
https://www.semanticscholar.org/cord19
https://www.ncbi.nlm.nih.gov/research/coronavirus/
https://www.ncbi.nlm.nih.gov/research/coronavirus/
https://connect.biorxiv.org/relate/content/181
https://go.drugbank.com/covid-19
https://covirus.cc/drugs/
http://covid19.md.biu.ac.il/
https://coronavirus3d.org/
https://cov3d.ibbr.umd.edu/
https://www.rcsb.org/
https://www.uniprot.org/
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Table 4. Integration of data related to the COVID-19 host

Resources URL Data type

The COVID-19 Host Genetics Initiative https://www.covid19hg.org/ Host GWAS Data
‘Genomewide Association Study of Severe
Covid-19 with Respiratory Failure’

www.c19-genetics.eu Host GWAS Data

Genetic mechanisms of critical illness in
COVID-19

https://genomicc.org/data Host GWAS Data

Magellan: COVID-19 Omics Explorer https://digital.bihealth.org/ Host Single-cell Sequencing Data
COVID-19 Cell Atlas https://www.covid19cellatlas.org/ Host Single-cell Sequencing Data
Single cell portal https://singlecell.broadinstitute.org/single_ce

ll/covid19
Host Single-cell Sequencing Data

‘Large-scale single-cell analysis reveals critical
immune characteristics of COVID-19 patients’

http://covid19.cancer-pku.cn Host Single-cell Sequencing Data

COVID-19 manifests differently among individuals and inform-
ing the design of new vaccines and antiviral therapeutics
[49]. Therefore, we first paid attention to the genomic data
of COVID-19 patients, especially the genome-wide association
study (GWAS) data (Table 4), for GWAS has identified hundreds
of genetic variants associated with complex human diseases
and traits, providing valuable insights into their genetic
architecture [50]. On 17 June 2020, an article titled ‘Genomewide
Association Study of Severe COVID-19 with Respiratory Failure’
was published. In this work, the authors identified a gene cluster
on chromosome 3 as a genetic susceptibility locus in patients
with COVID-19 accompanied by respiratory failure. They also
confirmed the potential involvement of the ABO blood group
system [51]. Subsequent studies have shown that the risk
was conferred by a genomic segment of about 50 kilobases
in size, inherited from Neanderthals [52]. An article titled
‘Genetic mechanisms of critical illness in COVID-19’ identified
and replicated new genome-wide significant associations.
The authors also discovered robust genetic signals related to
fundamental host antiviral defense mechanisms and mediators
of inflammatory organ damage in COVID-19 [53]. Meanwhile,
the COVID-19 Host Genetics Initiative was initiated to study the
relationship between host genome and SARS-CoV-2 infection,
aiming to explore the role of the host genome in conjunction
with COVID-19 clinical and genomic variability [54]. A total of
five rounds of COVID19-hg GWAS meta-analyses were registered
in the web browser, including phenotype, population, total
cases, total controls and data versions. This web browser will
be constantly updated. The above resources allow researchers
to extract the list of SNPs that may potentially modulate SARS-
CoV-2 and identify genes and genetic variants (mainly SNPs)
that contribute to COVID-19. Subsequently, further functional
characterization and mechanism elucidation of risk SNPs and
the action of the genes could be carried out. These related cohort
studies provide valuable insights into probable host genetic
factors influencing SARS-CoV-2 susceptibility, ACE2 expression
level, pathogenicity, pathogenesis and clinical outcome.

Integration of transcriptomics data from COVID-19
patients

In addition, we also paid attention to the transcriptomics data
of COVID-19 patients, consisting of single-cell RNA sequencing
data and bulk RNA-sequencing data. The RNA-sequencing data
has great promise and potential to enable a complete genetic
map of the viruses, bacteria, host responses and even human
leukocyte antigen subtypes from the sample data sources

[55]. Zou et al. firstly made an effort in COVID-19 single-cell
RNA-sequencing data mining [56]. The Magellan is a web
application for displaying and analyzing next-generation
sequencing data focusing on COVID-19, especially single-cell
sequencing data including airway epithelium–immune cell,
HBEC and lung cells. This web also supports the selection
of subpopulation of cells to analyze cell types and sample
distribution. The COVID-19 Cell Atlas divides the single-
cell RNA sequencing data into disease donors and healthy
donors for storage. Among healthy donors, the datasets are
classified according to tissues/organs. The datasets from disease
donors include PBMC, immunodeficiency nasal swabs, nasal
epithelia, etc. [57]. The Single Cell Portal includes 48 single-
cell studies relevant to COVID-19, providing us with cell
numbers, literature abstracts and download links. Recently,
an article titled ‘Large-scale single-cell analysis reveals critical
immune characteristics of COVID-19 patients’ applied single-
cell RNA sequencing to 284 samples from 205 COVID-19
patients to generate a large dataset including ∼1.5 million
single cells and controls. It created a comprehensive immune
landscape, providing abundant resources for understanding
the pathogenesis and designing effective therapeutic strategies
for COVID-19 patients [58]. We also manually collated the
single-cell RNA-sequencing datasets (Supplementary Table 1
available online at http://bib.oxfordjournals.org/) and bulk RNA-
sequencing datasets (Supplementary Table 2 available online at
http://bib.oxfordjournals.org/) containing the raw data from the
GEO database, including lung, kidney, brain, intestine and other
tissues/organs. The content of the table includes title, tissue,
series accession, SRA number, platform and the size of samples.
In conclusion, these data provide critical resources and essential
insights in studying the mechanism of host factors.

Integration of microbiome data from COVID-19 patients

As the virus continues to be a global pandemic, accumulat-
ing evidence indicates that it can interact with the microor-
ganisms already inhabited in the host when the virus enters
the body. The interactions of the host with the microbiota are
complex, numerous and bidirectional [59]. Therefore, the virus–
host–microbiome interactions can yield further insights into
the perturbed biological processes and their connections with
disease risk factors [60]. Shen et al. analyzed changes in the com-
position of the lung microbiota in SARS-CoV-2-infected patients
and found that the microbial composition of the patients and
the control group were different [61]. Similarly, Fan et al. inves-
tigated the microbiota characteristics of the lung tissues from

https://www.covid19hg.org/
http://www.c19-genetics.eu
https://genomicc.org/data
https://digital.bihealth.org/
https://www.covid19cellatlas.org/
https://singlecell.broadinstitute.org/single_cell/covid19
https://singlecell.broadinstitute.org/single_cell/covid19
http://covid19.cancer-pku.cn
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab446#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab446#supplementary-data
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deceased COVID-19 patients and found that fatal COVID-19 was
associated with bacterial and fungal infections [62]. Villapol
et al. discussed how immunomodulation could stimulate the
local nasal immune response and empower the nasal microbiota
to prevent SARS-CoV-2 penetration and virulence [63]. Besides,
our previous work on intestinal dysbiosis of the gut micro-
biota in disorders and intervention certainly gave some hints
about the link between SARS-CoV-2 and microorganisms [64].
We manually managed a database named gutMDdisorder, which
aimed to provide a comprehensive resource for disorders and
interventions in the gut microbiota. This work offers ground-
breaking enlightenment for the connection between COVID-19
and microorganisms. Meanwhile, it also provides a choice about
predicting roles of molecules to explore new functions of the
microbiota. With development, quite a few studies have found
that the gut microbiota is linked to disease severity in patients
with COVID-19 [65, 66]. Zuo et al. and Tao et al. found that patients
with COVID-19 had significant alterations in fecal microbiomes
compared with controls, characterized by enrichment of oppor-
tunistic pathogens and depletion of beneficial commensals [67,
68]. Subsequently, Tang et al. demonstrated the potential cor-
relation between intestinal bacterial populations and hemato-
logical parameters in COVID-19 patients. They also discussed
the clinical significance of the correlation between changes in
the significant intestinal bacteria species and COVID-19 sever-
ity [69]. Here, we summarized the data on the microorganism
of SARS-CoV-2, including the gut, oral, lung and nasopharyn-
geal microbiome (Supplementary Table 3 available online at
http://bib.oxfordjournals.org/). As in the context of COVID-19,
differences in the microbiome are a neglected part of the dis-
ease. These data and the related work may help to uncover the
composition of the microbiota and its metabolic products, which
could determine novel microbial markers [63] for diagnosis or
prognosis [70, 71] as well as patient prognosis predicting and
microbiota-based therapy developing [72].

Integration of drug information from COVID-19 patients

Current research suggested that there were a large of potential
approaches to pharmacologically fight with COVID-19, such as
small-molecule drugs, vaccines, interferon therapies, oligonu-
cleotides, peptides and monoclonal antibodies [73]. Considering
the severity of the current epidemic, researchers are seeking
to repurpose drugs that have been already approved for other
diseases [74]. Remdesivir, for example, was one of the early
drugs granted emergency use authorization by the US Food and
Drug Administration. It shuts down viral replication by inhibiting
a key viral enzyme. Several studies have demonstrated that
earlier treatment with remdesivir leads to improved survival,
decreased lung injury and decreased levels of viral RNA [75].
Recently, some publications have reported the potential benefit
of chloroquine, a widely used antimalarial and autoimmune
disease drug, in the treatment of patients infected by SARS-CoV-
2 [76, 77]. Hydroxychloroquine has a similar antiviral effect to
chloroquine, and researchers have tested hydroxychloroquine
as a potential anti-COVID-19 drug. The experiment showed that
hydroxychloroquine had antagonistic effect on SARS-COV-2 [77,
78]. Besides, favipiravir, as a purine nucleic acid analogue, has
shown a better therapeutic response to COVID-19 in terms of
disease progression and virus clearance [79]. And umifenovir,
as an indole-based antiviral agent, has shown activity against
other types of RNA and DNA viruses [80]. They are all promising
antiviral drugs for reuse.

In addition, viral protein-specific monoclonal antibodies
are an alternative treatment option for viral diseases. CR3022
is not only a neutralizing monoclonal antibody to SARS-CoV
but also can bind to SARS-CoV-2 receptor-binding domain
[81]. Recent research has found an antibody that can fight
a wide range of SARS-CoV-2 variants S2H97; this could be a
possible treatment option for the treatment of COVID-19 [82].
The reuse of these drugs plays a key role in the fight against the
epidemic, but the adverse drug reactions may hinder the success
of treatment of COVID-19 patients, which also deserves the
attention of researchers. In conclusion, the integration of drug
information has important implications for the fight against
COVID-19. We should confirm the effectiveness of the proposed
treatment in prospective trials and guide future clinical
practice.

Method analysis and mining of current omics data

Given the continuous emergence of SARS-CoV-2 omics data, the
previous data analysis methods can give us some inspiration,
including genomics, transcriptomics and microbiomics.

Current integration of various omics data methods

Genomics is one of the most mature omics areas, focusing on
identifying genetic variants associated with disease, response to
treatment or future patient prognosis [83]. Phylogenetic analysis
of SARS-CoV-2 strains revealed the epidemiology and multiple
lineages of each country/area, such as Boston [84], northern Ger-
many [85] and the UK [86]. Wei et al. and Schneider et al. identified
host genes essential for SARS-CoV-2 infection to understand the
pathogenesis and reveal novel therapeutic targets of COVID-19
by genome-wide CRISPR screens [87, 88]. Genome-scale CRISPR–
Cas screens have been used to identify host factors required for
virus replication, a powerful tool for probing virus–host inter-
actions and identifying new antiviral targets [89]. Mendelian
randomization (MR) is also a strategy widely applied, which
utilizes genetic variants as the bridge to randomization to search
for the pleiotropic/potentially causal effect of an exposure on
the outcome [90, 91]. GWAS data have been used to explore
the association between COVID-19 and cardiometabolic traits
[92], sepsis [93], diabetes-related traits [94], etc. Meanwhile, the
summary data-based MR method is used to search for genes
with causal associations with certain diseases (e.g. COVID-19) by
using expression quantitative trait loci (eQTL) and GWAS data
[95, 96].

Transcriptomics examines RNA expression levels genome-
wide both qualitatively and quantitatively [83] to study patterns
of gene expression. Blanco-Melo et al. analyzed the transcrip-
tional response to SARS-CoV-2 compared with other respiratory
viruses by RNA-sequencing data. They proposed that reduced
innate antiviral defenses coupled with exuberant inflammatory
cytokine production were the defining and driving features of
COVID-19 [97]. Meanwhile, some studies have also identified
the immune characteristics of the respiratory tract [98], lung
[99], blood [100, 101] and bronchoalveolar lavage fluid [102],
highlighting the association between the pathogenesis of
COVID-19 and excessive cytokine release. With single-cell
RNA-sequencing data, the potential mechanisms underlying
the pathogenesis of COVID-19 in tissues/organs, such as the
kidney [103], bronchoalveolar [104] and blood [105], have been
explored. The single-cell landscape of immunological responses
in patients with COVID-19 is also a hot topic of research.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab446#supplementary-data
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Huang et al. investigated the dynamic changes of blood immune
response in patients with COVID-19 at different stages to reveal
a dynamic landscape of human blood immune responses to
SARS-CoV-2 infection [106]. Zhu et al. showed distinct immune
response landscapes and immune response pathways of COVID-
19 and influenza patients by single-cell sequencing of peripheral
mononuclear cells [107]. In addition, influencing factors such as
sex differences in immune responses [108], cigarette smoke and
COVID-19 severity [109], the landscape in aging and COVID-19
[110], were studied in-depth by using single-cell sequencing
data.

There is a growing consensus that SARS-CoV-2-induced
immune abnormalities may cause infections by microorganisms
[66, 111, 112], leading to several microbiome studies in COVID-19
patients. The mutual and dual interactions between microbiota
and SARS-CoV-2 infections were also increasingly recognized
[113]. The analysis of changes in the microbiota in COVID-
19 patients may help to predict diagnosis, treatment and
prognosis of COVID-19 [72, 114]. Meanwhile, the use of probiotics
as adjunctive therapy in the prophylaxis and alleviation of
COVID-19 symptoms is also a research direction [70, 115, 116].

Application of meta-analysis to COVID-19 omics data

Meta-analysis is a standard method for studying omics data of
COVID-19, which is the quantitative and scientific synthesis of
research results [117]. In recent years, meta-analysis of clini-
cal characteristics of patients with COVID-19 was well docu-
mented [118] to identify risk factors for COVID-19 progression
such as smoking [119], diabetes mellitus [120], cardiovascular
metabolic diseases [121] and hypertension [122]. Multiple stud-
ies performed meta-analysis of fecal RNA from patients with
COVID-19 to evaluate the prevalence of fecal SARS-CoV-2 RNA in
populations of clinical characteristics, including gastrointestinal
manifestations and disease severity [123, 124]. For COVID-19
genomics data, the meta-analysis of GWASs has also become a
popular method for discovering genetic risk variants [125]. For
example, Patrick et al. suggested an association between inflam-
matory skin conditions and higher risk of COVID-19, in which the
Severe COVID-19 GWAS Group was excluded [126]. For COVID-
19 transcriptomics data, for instance, Muus et al. assessed the
cell type-specific expression of SARS-CoV-2 entry genes across
107 single-cell RNA-sequencing studies from different tissues,
providing the required power to uncover age, sex and smoking
associations at a single-cell resolution [127]. For microbiology
data, Lansbury et al. found that patients in the ICU had a higher
rate of bacterial co-infections than patients in mixed ward/ICU
settings, and the commonest bacteria were Mycoplasma pneu-
monia, Pseudomonas aeruginosa and Haemophilus influenzae [128].
However, the proportion of bacterial co-infection was very low
in mild COVID-19 patients [129, 130]. In conclusion, the meta-
analysis provides researchers with a better understanding of the
COVID-19 using current data.

Prospects of multi-omics data integration methods

The omics-based data can provide novel insights into COVID-19,
a pandemic that has brought multi-omics studies’ utility [131].
The multi-omics data integration approaches will help the fight
against the epidemic and promote a better understanding of
its mechanisms. Here, we reviewed some omics data methods
from the existing literature and looked forward to the prospect
of multi-omics data.

A summary of the application prospect of multi-omics
data

The biomarkers of COVID-19 patients provide valuable resources
for understanding the molecular mechanisms of host response
and clinical guidance [132]. Bernardes et al. determined that the
increase of proliferating, metabolically hyperactive plasmablasts
is a feature of severe COVID-19 by longitudinal multi-omics
data [133]. Chen et al. combined transcriptomics, proteomics
and metabolomics to identify molecular markers to identify
essential genes, proteins and exRNAs as potential biomarkers
[134]. In addition, multiple studies have reported biomarkers that
are highly associated with disease severity and progression of
COVID-19, providing potential therapeutic targets and strategies
[135–137].

It has been previously reported that a variety of bacteria exist
in tumors [138–140]. Recently, Poore et al. proposed a new class
of microbial-based diagnostics based on blood and tissue RNA
sequencing data [141]. Next, Chen et al. presented a computa-
tional toolset and related resources that can quickly identify
viruses and microorganisms from sequencing data [142]. Mean-
while, the gut microbiome has been determined to have mul-
tiple effects on biology, including the transformation process,
progression and response therapies [143]. SARS-CoV-2 can cause
gastrointestinal symptoms in the early stages of the disease [63],
and bacterial and fungal infections are common complications
of viral pneumonia [144]. Some studies have also revealed that
lung microbiota is altered and correlated in critically ill patients
[145, 146]. Therefore, we hypothesized that the microbiome in
the tissues of COVID-19 patients may also change. This view
requires multi-omics analyses of tissue and blood sample data
from COVID-19 patients. The above content is a further expan-
sion of the existing data (Figure 2A).

The studies of eQTL can explain the regulatory mechanisms
and illuminate the genetics of gene expression [147]. Several
studies have developed various methods and pipelines to
identify eQTL landscapes using RNA-sequencing data or
single-cell RNA-sequencing data. For example, Gillies et al.
described the eQTL landscape in these functionally distinct
kidney structures by individuals with nephrotic syndrome [148].
Zhernakova et al. systematically identified context-dependent
eQTL using a hypothesis-free strategy in whole blood [149].
Recently, Deelen et al. constructed an approach to identify
genetic variants that affect gene-expression levels by invoking
genotypes from public RNA sequencing data [150]. Meanwhile,
Van der Wijst et al. identified cell type-specific cis-eQTLs and
co-expression QTLs to identify genetic variants that could
affect regulatory networks using single-cell RNA-sequencing
data [151]. Compared with RNA-seq data, single-cell sequencing
data can be more precise by observing specific cells’ regulatory
relationships [152]. We speculated that in the context of COVID-
19, the eQTL landscapes generated from bulk RNA-sequencing
data or single-cell RNA-sequencing data have great potential
to provide insights into disease mechanisms. Apart from that,
we can also build a database such as GTEx [153] and study the
genetic mechanisms of tissues in disease states (Figure 2B).

In addition, we have noticed that multi-omics data studies
for COVID-19 have emerged over the past years. Therefore, we
systematically integrated these articles from COVID-19 multi-
omics studies in this section. For example, Su et al. conducted a
comprehensive analysis of the clinical measurements, immune
cells and plasma multi-omics data from COVID-19 patients
representing all levels of disease severity [154]. They identified a
major shift between mild and moderate disease. Meanwhile,
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Figure 2. Microbial reannotation and identification eQTL workflow.

they also demonstrated that moderate disease may provide
the most effective environment for therapeutic intervention.
This work could be valuable in terms of interventions for
COVID-19. Besides, using interactome, proteome, transcriptome
and bibliome data, Barh et al. presented the biological events
associated with SARS-CoV-2 infection and identified several
candidate drugs against COVID-19 [155]. On the other hand,
Singh et al. argued that the multi-omics approaches offered
various tools and strategies for identifying potential therapeutic
biomolecules for COVID-19, and they explored the available
multi-omics approaches [156]. In addition, Stephenson et al. also
used a multi-omics data approach of single-cell transcriptome,
surface proteome, and T and B lymphocyte antigen receptor
analysis, highlighting the coordinated immune response that
contributes to the pathogenesis of COVID-19 and revealing
discrete cellular components that can be targeted for treatment
[157].

In general, the methods of multi-omics data analysis are crit-
ical for researchers to better understand the underlying patho-
genesis of COVID-19 and potential therapeutic strategies. Mean-
while, we can also observe that multi-omics data analysis will
contribute to the fight against COVID-19.

Practical application of multi-omics data: a case study

Recently, Kang et al. determined an effective method of the
fatal inflammatory response [Cytokine release syndrome (CRS)]
that has been overactivated in patients with severe COVID-
19 [158]. They investigated 91 CRS patients with sepsis, acute
respiratory distress syndrome (ARDS) or burns. They found that
the expression of IL-6, IL-8, IL-10 and MCP-1 increased and are
positively correlated with the expression of plasminogen acti-
vator inhibitor-1 (PAI-1, also known as SERPINE1, related to the
more severe pneumonia, which is a common cause of death in

COVID-19 patients [159, 160]). Finally, they found tocilizumab, a
human monoclonal antibody, can block IL-6 signal transduction
to reduce the expression of SERPINE1, which was helpful in
the treatment of severe respiratory complications in CRS and
COVID-19. However, they did not explore other important
cytokines and serpin family genes.

For the study of Kang et al., multi-omics analysis can get more
comprehensive results. Therefore, we investigated the expres-
sion of other vital cytokines and serpin family genes using
single-cell RNA-sequencing data (Supplementary Table 1 avail-
able online at http://bib.oxfordjournals.org/) as a case study
[161]. These data profiled 44 721 peripheral blood mononuclear
cells from seven COVID-19 patients (2 Asian, 1 Black, 2 Hispan-
ic/Latino, 2 White, aged from 20 to 80, and 4 of 7 had ARDS)
and six healthy controls (5 White, 1 Asian, aged from 36 to 49).
We found significantly different expressions of other important
cytokines (IL32, IL7R, IL2RB, IL6ST, IL17RA, IL4R, IL-8, IL6R, ILF3,
IL13RA1, IL10RA) and serpin family genes (SERPINA1, SERPINB1,
SERPINF1, SERPINB10, SERPING1) in multiple immune cell types
(Table 5), which were defined by know cell type-specific gene
markers [161]. Among these inflammatory cytokines, the signif-
icant increase of IL-8 in plasma samples of COVID-19 patients
has been reported several times. In contrast, Kang et al. found
an increasing trend but fail to reach statistical significance [3,
162]. Serum IL-17RA was also increased significantly in COVID-
19 patients with low severity [163]. In addition, IL-6R has been
deemed as a critical target for treating COVID-19 patients [164].
Among these serpin family genes, serum levels of SERPINA1 and
SERPING1 [165] significantly increase in COVID-19 patients [165,
166]. The SERPINB1 plays an essential role in regulating innate
immune response [167], inflammation and cellular homeostasis,
which is highly consistent with Kang et al.’s conclusion.

In addition, Kang et al. did not investigate the associations
between COVID-19 and these cytokines, which prompted us to

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab446#supplementary-data
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Table 5. Differentially expressed cytokines and serpin family genes in immune cell types

Gene P_value avg_logFC Cell type

IL32 0 0.39116507 CD8m T
IL7R 2.076E−168 0.58233013 CD8m T
IL2RB 2.1665E−94 0.27327977 CD8m T
IL32 7.5077E−66 0.27681885 CD8m T
IL7R 0 1.24712557 CD4m T
IL32 0 0.36835828 CD4m T
IL6ST 2.784E−199 0.25042649 CD4m T
IL17RA 0 0.47849297 CD14 monocyte
IL7R 0 0.69516049 CD4n T
IL6ST 0 0.45541719 CD4n T
IL4R 4.318E−206 0.39605514 B cell
IL17RA 2.273E−297 0.3208715 CD14 monocyte
IL-8 3.603E−241 0.26306012 CD14 monocyte
IL-8 0 0.56951826 CD14 monocyte
IL17RA 2.929E−287 0.33161521 CD14 monocyte
IL17RA 0 0.59001037 CD14 monocyte
IL-8 0 0.41184786 CD14 monocyte
IL6R 2.874E−167 0.28400176 CD14 monocyte
IL2RB 1.578E−130 0.34297959 Natural killer cell
IL32 2.9642E−77 0.26221845 Natural killer cell
IL2RB 0 0.81123381 Natural killer cell
IL32 3.8326E−98 0.38554833 Proliferative lymphocytes
ILF3 4.8531E−46 0.25042985 Proliferative lymphocytes
IL6ST 4.5439E−49 0.41042519 Platelet
IL6ST 1.5327E−69 0.41731725 IFN-stim CD4 T
IL13RA1 1.342E−278 0.47076776 Dendritic cell
IL6R 3.4988E−98 0.38272268 Dendritic cell
IL7R 0 1.52928531 gd T cell
IL32 3.3531E−78 0.37223253 gd T cell
IL10RA 7.4066E−13 0.3224205 CD16 monocyte
SERPINA1 0 0.89156779 CD14 monocyte
SERPINB1 0 0.68221653 CD14 monocyte
SERPINB1 3.8282E−39 0.5163943 SC & eosinophil
SERPINA1 1.0565E−51 0.42889468 Neutrophil
SERPINB1 1.2303E−31 0.40771692 Neutrophil
SERPINF1 0 1.10146911 pDC
SERPINB10 0 0.36560529 Developing neutrophil
SERPINB1 4.8577E−71 0.74696649 Developing neutrophil
SERPING1 2.137E−109 0.44113965 CD16 monocyte
SERPINA1 0 0.83001985 CD16 monocyte

investigate their observations further [168]. Therefore, we used
two sets of GWAS data (summarized data of severe COVID-
19 accessed from a GWAS of 1610 severe patients and 2205
controls in Italian and Spanish (Table 4) [51]. Summarized data
of circulating cytokines were obtained from a GWAS on 8293
Finnish individuals [169]) for multi-omics data analysis. We used
genetic instrumental variables to explore the risk of COVID-19 on
the cytokines level by two-sample MR analysis [170], which has
been applied for identifying the risk factors of COVID-19 [93].

This case study found several differentially expressed
cytokines and serpin family genes between COVID-19 patients
and healthy controls in multiple immune cell types. Among
these genes, serum levels of IL-8, IL-17RA, SERPINA1 and
SERPING1 have been reported to be related to the CRS and
COVID-19. Meanwhile, we determined that COVID-19 can reduce
the levels of IL-8, IL-10 and MCP-1. In general, we used multi-
omics data to further explore the relevant mechanisms of
CRS in patients with severe COVID-19 and provide a more
comprehensive supplement to the work of Kang et al.

Discussion
Since the COVID-19 pandemic outbroke in December 2019, more
than 180 million people worldwide have been infected. It spread
across all continents (https://covid19.who.int/) and has emerged
as a public health threat. Thus, COVID-19 was declared a pan-
demic by the WHO in March 2020 [171]. COVID-19 has significant
impacts on the global economic infrastructures, social gover-
nance and cultural development. However, there are several
vaccines and effective COVID-19-specific pharmaceutical inter-
ventions in clinical use. Over time, the omics data resources of
SARS-CoV-2 will undoubtedly increase substantially. How to use
existing resources to further deepen the expansion of current
data is a question worthy of discussion.

In addition, the challenge of how to fully exploit COVID-
19-related omics data and bring all of these findings and
approaches together to make clinical transformation lies ahead
[172]. Therefore, this review collated various network resources,
host genomics data, transcriptomics data, microbiome data
and drug information. We hope that the integration of these

https://covid19.who.int/


10 Zhu et al.

resources will facilitate researchers in data extraction and SARS-
CoV-2 (COVID-19) analysis. Meanwhile, we reviewed the current
approach to the study of omics data in the hope of providing
new insights into the extension of existing research. Finally,
we focused on the integration of multi-omics data for COVID-
19 hosts and presented an analysis case. Currently, there are
various tools and methods publicly available for the integration
of multi-omics datasets of SARS-CoV-2 (COVID-19) to derive
meaningful insights. The multi-omics methods are used to
resolve urgent questions such as immune suppression in the
early stage of COVID-19 disease [173], inter-patient and intra-
patient heterogeneity of pulmonary virus infection [174], virus–
host interactions [175] and host response [176]. These problems
are indicators for severity diagnosis and therapeutic target [177].
Meanwhile, there is also a challenge of integrating current and
future SARS-CoV-2 related data more efficiently and standardly,
which would greatly facilitate the struggle against this new
pathogen [178].

With the rapid evolution and transmission of SARS-CoV-
2, the COVID-19 epidemic has become a clinical threat facing
ordinary people and medical staff worldwide. To be sure, COVID-
19 will not be eradicated in a short period and may become a
long-term epidemic that co-exists with humans [179, 180]. The
omics data research of SARS-CoV-2 (COVID-19) still has a long
way to go before an effective antiviral therapy can be developed
and vaccinations can be administered universally. There is no
doubt that the integration of multi-omics data has unparalleled
advantages in the fight against COVID-19 [181].
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