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Abstract
Complex diseases are generally caused by intricate interactions of multiple genes and
environmental factors. Most available linkage and association methods are developed to identify
individual susceptibility genes assuming a simple disease model blind to any possible gene - gene and
gene - environmental interactions. We used a set association method that uses single-nucleotide
polymorphism markers to locate genetic variation responsible for complex diseases in which
multiple genes are involved. Here we extended the set association method from bi-allelic to
multiallelic markers. In addition, we studied the type I error rates and power for both approaches
using simulations based on the coalescent process. Both bi-allelic set association (BSA) and
multiallelic set association (MSA) tests have the correct type I error rates. In addition, BSA and
MSA can have more power than individual marker analysis when multiple genes are involved in a
complex disease. We applied the MSA approach to the simulated data sets from Genetic Analysis
Workshop 13. High cholesterol level was used as the definitive phenotype for a disease. MSA failed
to detect markers with significant linkage disequilibrium with genes responsible for cholesterol
level. This is due to the wide spacing between the markers and the lack of association between the
marker loci and the simulated phenotype.

Background
Current beliefs hold that complex diseases are generally
caused by multiple genetic variation. However, most
available linkage and association methods are based on
the assumption that a single genetic variation is primarily
responsible for the disease under study. Only a few
approaches considered interactions of multiple genes and
environmental factors in identifying susceptibility loci for
complex diseases [1-3].

Hoh et al. [1] developed a set association approach to
identify genetic variation responsible for complex diseases
when multiple genes are involved. They applied bi-allelic

set association (BSA) to a real data set and were able to
identify several single-nucleotide polymorphisms (SNPs)
of interest that were in linkage disequilibrium (LD) with
susceptibility locus for restenosis, the re-blockage of the
coronary artery after treatment. However, they did not
study the type I error rate and power of their approach.
Another issue is that the set association method of Hoh et
al. [1] can only be applied to bi-allelic markers.

The organization of the paper is as follows. We first briefly
describe BSA and provide an intuitive framework for the
extension from BSA to multiallelic set association (MSA)
as well as a description of the various simulated data sets.
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Next, we study the type I error and power of the BSA and
MSA using simulated data sets based on coalescence with
an underlying disease model. Finally, we present the
results from applying MSA to Genetic Analysis Workshop
13 simulated data sets without knowledge of the answers
to the longitudinal data generated by Daw et al. [4].

Methods
BSA
For completeness, we briefly describe the BSA method of
Hoh et al. [1] for use in genome-wide association studies
based on bi-allelic markers, such as SNPs. The proposed
statistic is based on allelic association (AA) and Hardy-
Weinberg Disequilibrium (HWD). Consider a case-con-
trol study design with n cases and n controls genotyped at
a marker locus with k alleles. A 2 × k contingency table is
constructed and a statistic of AA is then computed as
follows:

where ps and qs are the frequency of the allele s for the cases
and controls, respectively. The above statistic has an
approximate χ2 distribution with k-1 degrees of freedom.

HWD [5], which also has an approximate χ2 distribution
with k(k - 1)/2 degrees of freedom, is then calculated
among the cases according to the following statistic:

where qs and qt are the frequencies of alleles s and t, respec-
tively, while pss and pst are the frequencies of genotypes ss
and st, respectively. For BSA, k = 2.

Hoh et al. [1] suggested that extremely high HWD values
at a locus might indicate genotyping errors at the locus.
Hence, they suggested trimming the d largest case-based
HWD values to 0, thereby removing these problematic
loci. d is empirically determined from the number of loci

whose control-based HWD statistic is greater than , the
β quantile of the standard χ2 distribution with one degree
of freedom. However it should also be noted that both AA
and HWD values are high if the locus is in strong LD with
one of the disease variants.

Now suppose that there are m bi-allelic marker loci. Hoh
et al. [1] . defined a new statistic si = AAi * HWDi, where
AAi and HWDi are the AA and HWD statistic for marker
locus i, 1 ≤ i ≤ m. The values s1, s2,...,sm are then ordered

from the largest to the smallest with s(1) ≥ s(2) ≥ ... ≥ s(m).
Then they defined

Next, Monte Carlo permutations were used to find the p-
value of BSA. The collection of cases and controls are per-
muted 1000 times and for each permutation, j, an analo-

gous sum statistic  is calculated. Let pi be the fraction of

times that  is smaller than Si. The minimum of pi,

is treated as the final statistic.

To evaluate the overall significance, the above process is
repeated such that for the jth permuted case-control data
set,

is obtained. The overall significance level, Poverall, can be
approximated by the fraction of times that Pj is smaller
than P. The null hypothesis of no association of the region
with the disease is rejected if Poverall is less than a pre-spec-
ified type I error, for example, 0.05.

MSA
BSA cannot be directly applied to multiallelic markers
because the χ2 statistics might have varying degrees of free-
dom for markers with different number of alleles. There-
fore, BSA is extended to consider multiallelic markers. For
each marker locus, i, calculate the χ2 statistics, AAi, based
on the allele frequencies in the cases and the controls, and
HWDi from cases. The corresponding p-values are then
obtained for AA, pAA(i), and HWD, pHWD(i), on the basis
of χ2 approximation, respectively.

Trimming was conducted similar to the method of Hoh et
al. [1]. However, the d smallest HWD p-values were
removed from MSA analysis along with the corresponding
pAA. The remaining p-values for AA and HWD were then
multiplied and the products were used as a score denoted
as si, that is,

si = pAA (i) * pHWD (i).

The scores for all the markers are sorted from the smallest
to the largest such that s(1) ≤ s(2) ≤ ... ≤ s(m). We define a sum
statistic similar to BSA as
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Finally, the p-value was again determined by Monte Carlo
permutations.

Bi-allelic coalescent simulations
The coalescent theory, first introduced by Kingman [6],
allowed the inference of genealogies from the observed
genotypic data. The process was to take extant k individu-
als and trace backward in time to a common ancestor [6].
Unlike Kingman, who considered no crossover events,
Hudson [7] and Kaplan and Hudson [8] provided the
framework to consider the coalescence with a constant
population recombination rate θ. Once the genealogy is
determined, SNPs are added using an infinite-many-sites
model with population mutation rate µ. This model
assumes that mutation rates occur uniformly along the
region of interest and that each mutation generates a
novel SNP that does not already exist in the population.

We simulated 2000 haplotypes consisting of a large
number of consecutive SNPs across a genomic region
using the above coalescent process with recombination. θ
and µ were both set to 200, which correspond to a 200-kb
genomic region of human DNA on the basis of a large sur-
vey of the human genome. This strategy has been used by
Nordborg and Tavaré [9].

One hundred cases and 100 controls with genotypes for
approximately 130 adjacent polymorphic sites were sam-
pled from this simulated population of haplotypes
according to the following disease model. A disorder with
two disease genes was considered. We assumed that the
first disease gene to be located between the 35th and the
45th marker loci and the second disease gene to be located
between the 75th and the 85th marker loci. The frequency
of the high-risk allele of the first disease gene and the sec-
ond disease gene is denoted as ε and φ, respectively. ε and
φ were set to be either 0.1 ± 0.05 or 0.2 ± 0.05 throughout
the simulation. The first condition constrains the location
of the disease locus to be isolated to two specified regions
while the second condition constrains the disease allele
frequency. If no such marker loci exist, the sample set is
discarded [10].

Consider the phenotypic aspect of the disease model with
Di, i = 1, 2 as the high-risk allele and di, i = 1, 2 as the low
risk allele, respectively. The haplotype risks for d1d2,D1d2,
D2d1, and D1D2 were assumed to be δ, δλ, δλ, and δλ2,
respectively, where δ is the phenocopy rate and λ is the
genotype relative risk. Furthermore, a haplotype multipli-
cative disease model was assumed, i.e., the penetrance of
an individual equals the product of the two correspond-

ing haplotype risks. As an example, if the two haplotypes
of an individual are D1D2/D1d2, the penetrance for the
individual is δλ2 * δλ = δ2λ3 [10].

We drew 100 times from the simulated population of
haplotypes with replacement to generate a sample set,
each containing 100 cases and 100 controls. The entire
process of generating a population of haplotypes and
sample sets was repeated 10 additional times giving a total
of 1000 simulated data sets. By modifying the above
parameters, the data sets created under various conditions
allowed the exploration of type I error and power for indi-
vidual marker analysis, BSA, and MSA.

Multiallelic simulations
To conduct the multiallelic simulations, we utilized the
haplotypes generated in the previous section. Here, we
considered overlapping two-locus haplotypes as alleles
for a single marker locus. Thus, we have a set of multial-
lelic marker loci with at most four alleles at each marker
locus. Finally, 100 cases and 100 controls were also gener-
ated according to the same procedure and disease model
as previously described.

GAW 13 data set
Based on the Framingham Heart Study, the simulated
data sets attempted to model the observed longitudinal
family data with 399 genome-wide microsatellite markers
and 50 trait genes. In addition to genetic effects, environ-
mental covariates (smoking and alcohol consumption),
along with hypertension diagnosis and treatment were
used to simulate the observed phenotypes. The pedigree
structure was generated to be nearly identical to the Fram-
ingham Heart Study with varying degrees of heritability of
eight longitudinal quantitative traits [4].

The first measured cholesterol level was chosen as the
phenotype of interest. The empirical distribution of cho-
lesterol level in a replicate set was approximated from the
cholesterol levels of all the individuals. Next, the upper
15% and lower 15% quantiles were then estimated from
this observed distribution. We considered an extreme
sampling design in which an individual was considered
affected if the first measured cholesterol level exceeded the
upper limit and unaffected if it was below the lower limit.
Cases and controls were randomly selected based on these
measured cholesterol levels with no two members from
the same family. We required that there were no missing
genotypes for the selected individuals.

Results
Type I error rates and power of BSA
Table 1 illustrates the results of the test with individual
marker analysis versus BSA for different values of ε, φ, δ,
and λ based on 1000 replicate sets. We first studied the

S S i mi j
j

i
= =( )

=
∑

1

1 2, ,..., .
Page 3 of 5
(page number not for citation purposes)



BMC Genetics 2003, 4 http://www.biomedcentral.com/1471-2156/4/s1/S9
type I error rates with λ = 1. When λ = 1 (the third and
fourth columns), all the haplotypes were assumed to have
the same penetrance, creating a population where any
detectable association indicates a false positive result.

The values of type I error rates for individual marker
method based on AA were calculated by the number of
replicates containing at least one locus with a significant
result divided by the total number of replicate sets. Bon-
ferroni correction was used to adjust for multiple compar-

isons. Type I error rates for BSA with trimming at 

was also determined by the number of replicates with sig-
nificant results divided by total number of replicate sets.
The statistical significance level α was set to 0.05. As
shown, the estimated type I error rates were close to the
true pre-specified type I error of 5%.

For the power study of BSA, the parameters δ and λ were
set to create two complex disease scenarios. The power of
the tests should increase as the penetrance λ increases. The
power of both individual marker analysis and BSA
increases. When comparing the sixth column with the
fifth column (also the eighth column with the seventh
column) in Table 1, BSA is much more powerful than
individual marker analysis when multiple genes are
involved in a disease.

Type I error rates and power of MSA
As shown in Table 2, individual marker analysis using AA
versus MSA based on 1,000 multiallelic replicate sets had
the same conclusions compared with the results using
BSA for bi-allelic replicate sets (Table 1). Evaluation of
type I error rates with λ = 1 (third and fourth column)
were close to the pre-specified type I error of 5%. MSA out-
performed AA for both test cases when λ = 2 and λ = 4.

Applications to the simulated data of GAW 13
All of the 11 different replicates of the simulated data
from GAW13 used for MSA resulted in the failure to reject
the null hypothesis of no association as shown in Table 3.
Replicate 26 is presented as a typical outcome from the
application of MSA.

The upper 15% quantile was calculated at 210 mg/dl and
the lower 15% quantile was estimated to be 155 mg/dl.
For replicate 26, we obtained 125 cases and 105 controls.
Based on individual marker analysis using AA, 14 out of
the 399 genome-wide markers had a p-value less than
0.05. However, it should be noted that even if no markers
were associated with cholesterol level, an average of 20
markers should show significant results using type I error
of 0.05. The 14 markers most likely represented false pos-
itive errors and a Bonferroni correction would correct this
inflation. The MSA was applied to the data using AA ×

HWD with trimming threshold set at . An overall

Table 1: The approximate type I error rates and power of individual marker analysis using AA versus BSA based on 1000 simulated data 
sets for different values of ε, φ, δ, and λ

δ = 1, λ = 1 δ = 0.20, λ = 2 δ = 0.05, λ = 4

ε φ Individual 
Marker

BSA Individual 
Marker

BSA Individual 
Marker

BSA

0.1 0.1 0.06 0.03 0.083 0.326 0.557 0.860
0.1 0.2 0.06 0.04 0.230 0.610 0.686 0.956

Table 2: The approximate type I error rates and power of individual marker analysis using AA versus MSA based on 1000 simulated 
data sets for different values of ε, φ, δ, and λ

δ = 1, λ = 1 δ = 0.20, λ = 2 δ = 0.05, λ = 4

ε φ Individual 
Marker

MSA Individual 
Marker

MSA Individual 
Marker

MSA

0.1 0.1 0.04 0.055 0.138 0.333 0.863 0.936
0.1 0.2 0.04 0.055 0.411 0.622 0.973 0.991

χ0 99
2
.

χ0 99
2
.
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non-significant p-value Poverall = 0.5417 was obtained. For
the other 10 replicates, MSA showed no significant associ-
ation with Poverall ranging from 0.08 to 0.94.

Discussion
In this paper, we developed a new approach for genome-
wide association studies with multi-allelic markers based
on BSA. There are several advantages for MSA over any
individual marker analysis. First, it is more powerful than
individual marker analysis, which is consistent with con-
clusions of BSA in Hoh et al. [1]. Second, the approach
can theoretically be applied with any reasonable score
function at each locus, which can allow us to combine dif-
ferent kinds of data, such as SNPs joined with microsatel-
lite markers, to gain higher power in analysis. With the
accumulation of data, genome-wide association studies
can benefit from this method.

MSA was applied to 11 simulated GAW13 data sets and no
significant associations were found. The result is expected
given that the average marker spacing is approximately 8.5
cM and that there were no associations (between the
quantitative trait and marker loci) modeled into the sim-
ulation. Following typical disease mapping techniques,
once a linkage study is conducted to locate potential sus-
ceptibility sites, MSA could then be used to detect associ-
ations after more markers are genotyped.
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