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Quantifying the stabilizing effects of protein–ligand
interactions in the gas phase
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The effects of protein–ligand interactions on protein stability are typically monitored by a

number of established solution-phase assays. Few translate readily to membrane proteins.

We have developed an ion-mobility mass spectrometry approach, which discerns ligand

binding to both soluble and membrane proteins directly via both changes in mass and ion

mobility, and assesses the effects of these interactions on protein stability through measuring

resistance to unfolding. Protein unfolding is induced through collisional activation, which

causes changes in protein structure and consequently gas-phase mobility. This enables

detailed characterization of the ligand-binding effects on the protein with unprecedented

sensitivity. Here we describe the method and software required to extract from ion mobility

data the parameters that enable a quantitative analysis of individual binding events.

This methodology holds great promise for investigating biologically significant interactions

between membrane proteins and both drugs and lipids that are recalcitrant to

characterization by other means.
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T
o understand the function of biomolecules, it is crucial to
be able to both identify their binding partners and
characterize the strength of the interactions. This has led

to the employment of a very diverse range of biophysical
techniques to study ligand binding, which are generally based on
spectroscopic properties of the molecules in question or the heat
change associated with the binding process. These measurements
are typically ensemble measurements where the observable
contains contributions from both the free and bound states.

Mass spectrometry (MS) has proven to be a useful approach for
the assessment of protein oligomeric state, binding stoichiometry
and the structure and stability of intact protein–ligand
complexes1. The coupling of ion mobility (IM) is further
enhancing the capabilities of MS by providing novel insight
into protein structure and dynamics, and for drug discovery and
development2,3. Here we describe a method involving the
characterization of the gas-phase stability of proteins using
IM-MS. The method quantifies the resistance of proteins to
unfolding in the gas phase, which can be significantly modulated
by ligand binding. By measuring the change in this stability,
specific ligand interactions can be identified even in systems as
complex as membrane proteins solubilized in various detergent
and lipid assemblies. Individual binding states can be uniquely
identified and the effects of ligand binding measured with
unprecedented sensitivity. We show that in the case of membrane
proteins, specific lipid binding can be readily distinguished from
the background signal of detergents that otherwise complicate
analysis, demonstrating the significant potential of this method.

In our approach, weakly bound molecules such as detergent or
other solubilizing molecules are first removed from the protein in
the gas phase, before the stability analysis. Binding of a ligand is
evidenced by a change in the mass of the protein complex, which
is readily determined under non-denaturing MS conditions. The
effects on the protein stability due to ligand binding are then

investigated using collision-induced unfolding inside the mass
spectrometer. In this process, protein ions are accelerated through
a collision cell in the presence of a neutral gas and undergo
collisional activation4. The activation causes the protein to change
conformation, typically by partial unfolding, yet nevertheless can
be sufficiently gentle to retain quaternary structure4,5. The extent
of activation can be directly influenced by changing the voltage
used to accelerate the ions into the collision cell. Importantly, by
having the collisional activation occur before entry into the
mobility cell of the mass spectrometer, the averaged gas-phase
collision cross-section (CCS) values (effectively the size) of both
folded and unfolded ions can be obtained at a single m/z value,
enabling conformational changes to be detected and quantified.
By following the unfolding as a function of the accelerating
voltage, the gas-phase stability of the complex can be determined,
in a manner that is analogous to how protein stability is inferred
from its behaviour in denaturant assays. Ligand binding manifests
itself as a change in protein–ligand stability relative to the
ligand-free form, a property exploited in our method.

Previous studies have observed the stabilizing effects of ligand
binding in the gas phase by collision-induced unfolding3,6,7, with
a variety of approximate methods employed to assess differences
in stability. These include an approximation of the midpoint
between the smallest- and largest-sized species observed, or
noting qualitatively different patterns in the unfolding trajectory.
These analyses have provided the inspiration for the method
implemented in the software presented here, which is based on
the work of Hyung et al.7, where the stability of folded native-like
ions, in different bound states, were tracked as a function of
collisional activation. However, exploiting the rich information in
collision-induced unfolding measurements has been hampered by
the challenges associated with dealing with the high volume of
experimental data and the lack of suitable quantitative means to
extract robust and reliable binding parameters. To address these
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Figure 1 | Schematic of the gas-phase protein unfolding experiment and modelling process. Data shown are for human transthyretin with up to

two molecules of L-thyroxine bound, with the unfolding plot generated and modelled for the unbound 15þ ion.
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concerns, here we present experimental methodology coupled
with novel software for processing and rigorously analysing high
volumes of IM-MS data. This software fits the collision-induced
unfolding data to an unfolding model that provides an accurate
description of the effects of ligand binding on gas-phase protein
stability and is proving uniquely adept at analysing challenging
protein complexes such as those encountered in biological
membranes8.

Results
Optimization of MS ligand-binding conditions. An overview of
our method is presented in Fig. 1. The first step is an empirical
optimization of the non-denaturing MS conditions for each
protein to be studied (Fig. 1, step 1)9. It is crucial to balance the
removal of complicating nonspecific adducts and maintaining a
folded conformation. In the case of membrane proteins, this
normally involves screening different solubilizing detergents10 to
establish optimal resolution between the unbound and ligand-
bound forms in the mass spectrum. In addition, for membrane
proteins it is necessary, in general, to operate at higher
accelerating voltages to first remove the detergent micelle11.
Fortuitously, the protein is effectively protected from premature
unfolding by the presence of the protective coating afforded by
the micelle12. The folded state of the protein in the gas phase is
assessed by comparison with the theoretical CCS, calculated, for
example, from the atomic coordinates of an X-ray crystallography
or other model13–15. It is important that the measured CCS is
consistent with the theoretical CCS, as otherwise the protein may
already be either unfolded or collapsed and hence unsuitable for
study. We note that different membrane proteins require different
solubilizing detergents to satisfy this requirement10,11. When
optimized conditions are established, ligands are introduced and
the protein–ligand concentration ratio adjusted to preserve mass
spectral quality at the low activation energies that preserve the
folded conformation. Data can then be acquired and analysed as
described below.

Recording and visualization of IM mass spectra. Collision-
induced unfolding experimental data consist of a set of two-
dimensional IM mass spectra recorded for a range of increasing
accelerating voltages (Fig. 1, step 2). Each set of accelerating
voltage measurements are carried out on the same solution using
a minimum number of nanoflow needles to reduce variability
in electrospray conditions. The process should be repeated a
minimum of three times, to average out random variability from
the electrospray process, so that robust parameters can be
extracted. The arrival time distribution for ions of a particular
m/z value at a range of accelerating voltages are extracted (Fig. 1,
step 3) and then stacked to produce a gas-phase unfolding plot
(Fig. 1, step 4). The plots show how collisional activation,
controlled by the application of accelerating voltage, changes the
size of an ion. These data are then quantitatively analysed by our
software.

IM data analysis to quantify gas-phase stability. Our method
analyses the change in size of an ion as a function of accelerating
voltage according to a model of equilibrium unfolding, a method
analogous to that used to analyse protein stability in denaturant
assays in solution. Any changes in the observed stability in the
presence of ligand can be directly attributed to the binding of the
ligand. We accomplish this in a semi-automatic manner using
our software package PULSAR (Protein Unfolding for Ligand
Stability and Ranking) (Supplementary Movie 1). This software
can directly import data generated from both travelling-wave and
drift-tube IM cell instruments without format conversion, create

and apply CCS calibrations, construct gas-phase unfolding
plots and apply an equilibrium unfolding model to quantify
ligand-induced protein stabilization.

To assemble an unfolding plot, the m/z value for each ion of
interest needs to be determined so that the corresponding
window of the arrival-time distribution can be extracted (Fig. 1,
step 3). To do this, the software performs m/z peak fitting, where
a set of Gaussian functions is used to model the mass spectra.
Briefly, the overall charge-state distribution of a species is
represented by one Gaussian function and each peak within this
envelope is modelled by another Gaussian function16. This fit
provides the centroid values for every m/z peak in the mass
spectra, which allows the arrival-time distribution for individual
ions to be extracted at each measured accelerating voltage, and
then assembled into an unfolding plot (Fig. 1, step 4).

During a collision-induced unfolding experiment, as the
accelerating voltage is increased, ions may transition through a
series of intermediates in which the size of the ion (measured as
the arrival time) can decrease and/or increase, relative to that of
the initial folded state, due to and/or unfolding of the protein.
Depending on the system under study as well, the number of
species that can be resolved depends on the IM resolution. At
particular accelerating voltages, a species, be it folded or an
intermediate, will begin to disappear simultaneous with another
species appearing, such that at any given accelerating voltage, the
fraction of the protein in each state is measured. By fitting these
data to an unfolding model, the stability of each state can be
determined. Our experience indicates that stabilizing ligands
increase the accelerating voltages at which transitions in an
unfolding plot take place and thus increase the resistance of
proteins to unfolding.

Description and application of unfolding model. To quantify
gas-phase stability we use an equilibrium unfolding model,
similar to those used for solution studies17,18. In the simplest case
of a two-state system, this model assumes equilibrium between
two species, F (folded) and U (most-unfolded form), described by
the equilibrium constant Keq:

F !
Keq

U

where the stability of a species is given by the equation:

DG ¼ �RT ln Keq

From our measurements of the relative intensities of each species,
we can calculate the fraction of each species present at each
accelerating voltage. Analogously to denaturant studies in
solution, we assume that the accelerating voltage (V) is related
linearly to destabilization such that the free energy can be
expressed as:

DG ¼ DG0�m Vð Þ
From this model, we obtain the effective stability of each species
at zero accelerating voltage (DG0) and the proportionality
coefficient, m. The accelerating voltage at the midpoint of the
unfolding transition of a species will then be at DG0/m. As we
observe a number of species, we model the unfolding as a linear
pathway by invoking successively large numbers of intermediate
unfolded forms.

Our justification of the equilibrium unfolding model is twofold.
By holding the ions in the mobility cell for different lengths of
time, we can assess whether or not the species move further down
their unfolding pathway as a function of time. If the unfolding
process were irreversible in a manner that depends purely on the
time spent at a given activation level, then the ion would progress
steadily and irreversibly to the unfolded state the longer it is held
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in the mobility cell. By contrast, we observe that the distribution
of unfolded states does not depend appreciably on time8,
demonstrating that this type of irreversible unfolding is not
occurring in the instrument. Second, the data we obtain for
unfolding are sigmoidal in character, which is the expected form
for equilibrium-type models, and are not expected for models
describing irreversible unfolding. Taken together, the unfolding
process with collisional activation appears to behave in a manner
that appears to be reversible to some extent. Ultimately, the
method relies on observing changes in the unfolding plots and so
our conclusions do not rely on the underlying mechanism of
unfolding being reversible.

Applying this model to the unfolding data is a three-stage
process: (1) assigning the initial positions of each species in the
unfolding plot, (2) generating initial model parameters, to be used
for (3) fitting of the model to the experimental data. First, species
(the folded state, an intermediate and/or the most unfolded form)
are assigned in the unfolding plot: each species is given an initial
position and width (Fig. 1, step 5). Second, to generate initial
DG0- and m-values, the intensity of each species within these
boundaries is summed at each accelerating voltage to give an
estimate of the fractional amount of each species, to which the
model is initially fitted (Fig. 1, step 6). Finally, we construct a
theoretical unfolding plot using the unfolding model, seeded with
the DG0- and m-values from the simpler fit (Fig. 1, step 7), which
is fitted to the experimental data (Fig. 1, step 8). The software lets
the user assign the initial position and widths of the species, and
then automatically extracts and fits the data for the rest of the
process. The data should be simulated with increasing numbers of
intermediates. The addition of an extra intermediate increases the
number of parameters in the model. An F-test should then
be performed after each addition, to determine whether the
inclusion of each additional intermediate is statistically justified.
This results in the equilibrium unfolding model accurately
reproducing the experimental unfolding plot, from which
gas-phase ligand-induced protein stabilization can be calculated.

Calculation of gas-phase stability metric. Having used the
equilibrium unfolding model to generate a theoretical unfolding
plot, which is fitted to the experimental data, it remains to use
this model to describe ligand-induced protein stabilization.
In applications of equilibrium unfolding models it is more
conventional to use the free energy of unfolding and the pro-
portionality constant (m), to describe the conformational stability
of different species. Here we find that the accelerating voltage
corresponding to the midpoint value of a species, calculated as
DG0/m, is a better metric when measured over multiple repeated
runs. Random processes in the electrospray process appear to
have a disproportionate effect on DG0 and m, but largely cancel
out when the quantity DG0/m is interrogated.

To calculate the ligand-induced protein stabilization, we
consider all transitions of a ligand-bound protein between folded
and unfolded species, and compare the midpoint of each of these
species with the equivalent midpoint of the ligand-free form.

We then sum these differences to generate the stabilization.
Although it does not affect the comparison of different ligands,
we normalize the stabilization value by the number of transitions.
That is, ligand-induced protein stabilization is calculated as the
average change in accelerating voltage per transition. In addition,
this value can also be converted into a ‘laboratory energy’ by
multiplying it by the charge state of the ion to account for the
charge-dependent experience of an ion to the accelerating
voltage19. Although the stabilization in these units provides a
relative sense of stabilization, it may be possible to gain further
insight into the physical processes associated with unfolding by
conversion to centre-of-mass collision energies. For the purposes
of assessing stability, we prefer to avoid the assumptions inherent
in this conversion. Notably, errors in the stabilization values
calculated by bootstrapping analysis closely match those from
replica measurements (Table 1), indicating the absence of
systematic errors and the reproducibility of the measurements.
We recommend that the bootstrapping analysis (provided with
the software) is performed routinely in addition to replica
measurements, to give confidence to the interpretation of results.
The resulting values of the stabilization metric can then be
compared for different ligands, or different numbers of the same
bound ligand, to rank their protein-stabilizing effects.

The electrospray process generates ions of the same mass but
with different charge states, of varying intensity, which gives rise
to charge state distributions in the mass spectrum. This means
there is a choice of charge state to use for the analysis of gas-phase
stability. The charge state chosen should be that with the highest
intensity in the IM mass spectra that, at the lowest accelerating
voltages used, remains in a folded conformation. Using low-
intensity data results in models with poorer fits and subsequently
larger errors in the calculated protein stabilization metrics.

Effects of ligand binding on soluble protein stability. To
explore the utility of our approach we first analysed the protein-
stabilizing effects of ligand binding to well-characterized soluble
protein–ligand systems. The first of these was streptavidin and
biotin-4-fluorescein (B4F)20. The mass spectrum of streptavidin
with B4F clearly shows unbound protein and the binding of up to
four B4F molecules, consistent with the number of biotin-binding
sites on the protein (Fig. 2a). Having resolved these ligand-bound
states, we established through comparison of the experimentally
determined CCS values with that calculated from the crystal
structure that streptavidin is folded at the lowest accelerating
voltages. We then collected IM mass spectra over a range of
accelerating voltages and followed the remaining steps (three to
eight) of the protocol using our software. We observe that the
binding of B4F to streptavidin increases its gas-phase stability.
This is entirely consistent with previous studies, which have
observed increased tetramer stability on biotin binding21.
Interestingly, the change in stability of the different ligand-
bound forms varies nonlinearly, suggesting we can resolve
subtleties in the multi-ligand binding that are otherwise
exceedingly challenging to infer22.

Table 1 | Bootstrapping analysis of transthyretin-thyroxine stabilization.

Repeat 1�T4 1�T4 bootstrap 2�T4 2�T4 bootstrap

1 48.8 54.9±11.8 64.2 63.5±11.5
2 60.5 48.4±6.1 76.2 79.1±8.2
3 59.7 56.5±6.5 75.1 77.5±9.8
Average 56.3±5.3 53.3 71.8±5.4 73.4

Bootstrapping was performed using sampling with replacement (n¼ 100) of collision-voltage slices of unfolding plots. The model parameters for each sample were initiated to those calculated for the
original data. Errors shown are s.d.
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To further validate the methodology, we took a second soluble
protein, transthyretin, which is known to bind two molecules of
L-thyroxine. We observed precisely this in the mass spectrum
(Fig. 2b). As before, we established that the CCS values at low
accelerating voltages match that calculated for the crystal
structure. Comparison of the unfolding trajectories and computa-
tion of the average ligand-induced protein stabilization shows
that binding of one and two thyroxine molecules stabilizes
transthyretin. Binding of the second thyroxine molecule elicits a
smaller increase in stability than binding of the first, which is
entirely consistent with the established negative cooperativity of
binding, determined using equilibrium dialysis and fluorescence
quenching23–25.

The extent (and resolution) of stabilization in the gas phase is
protein dependent, however, predominantly due to differences in
ion size, charge and energy, ligand type and number, and
structural features of the protein that resist unfolding, making it
difficult to predict a priori. Similarly, predicting stabilities and
dissociation constants of protein–ligand complexes in solution
remains a challenging prospect. The strength of this method is
that for an individual protein, the relative extents of ligand-
induced stabilization in the gas phase can be used to compare
different ligands or different ligand-bound states present in
solution.

Stability of membrane proteins is influenced by bound lipid.
Having established that the approach reports on ligand-induced
changes in protein stability for soluble proteins, we sought to test
the method in the more formidable case of membrane proteins.
Although many methods exist for measuring the effect of ligand
binding on the stability of soluble proteins, application of these
to membrane proteins is challenging. Our method, however,
is able to robustly characterize the effect of ligand binding on
the stability of membrane proteins. Extending our previous
preliminary work8, we selected three further membrane proteins

for study: two a-helical proteins, the mechanosensitive channel of
large conductance from Staphylococcus aureus (SaMscL) and the
multi-antimicrobial extrusion protein from Pyrococcus furiosus
(PfMATE), and the b-barrel outer-membrane protein OmpF
from Escherichia coli (EcOmpF).

We previously identified that the mechanosensitive channel of
large conductance from Mycobacterium tuberculosis (MtMscL) is
stabilized by different types of lipids to a similar extent, but also
that phosphatidylinositol, which is crucial for mechanosensitivity
of the channel26, avidly bound to the protein under the
experimental conditions used8. The S. aureus membrane is
primarily composed of cardiolipin (CDL), phosphatidylglycerol
(PG) and the cationic phospholipid lysyl-PG27; thus, we were
interested to assess whether and to what extent SaMscL is
stabilized by these lipids. Following the protocol defined earlier,
conditions were optimized for MS and the CCS values of the
protein at low accelerating voltages were found to be similar to
that of the crystal structure of the homologous MtMscL. The
binding of up to two molecules of PG was clearly discerned and
the increase in protein stabilization with lipid binding was found
to be nonlinear and potentially cooperative (Fig. 2c). Only one
bound molecule of lysyl-PG was observed, with an average
stabilizing effect similar to that of one PG molecule. Up to two
CDL molecules were observed to bind to the SaMscL, with an
additive effect on protein stability, implying the binding events
are independent and not cooperative. Although the binding of a
single lipid to SaMscL has an approximately equal stabilizing
effect independent of the type of lipid, the discrimination of
bound states reveals differences in the cooperativity of lipid-
induced protein stabilization. This is in contrast to MtMscL, for
which the binding of multiple lipids showed no cooperative
protein stabilization effects8, indicating that MscL proteins from
different species may respond to lipid binding in different ways.

The second membrane protein we investigated was the
PfMATE. P. furiosus is an archaea, the native membrane lipids
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Figure 2 | Gas-phase stabilization of soluble and membrane proteins by ligand molecules. For each system, a typical mass spectrum is shown, with the

derived stabilization of the protein by the ligand(s) and a representative crystal structure of the protein. (a) Streptavidin with B4F (stabilization for 16þ
charge state, PDB entry 1STP with bound biotin shown as spheres); (b) transthyretin with L-thyroxine (T4) (stabilization for 15þ charge state, PDB entry

2ROX with bound T4 shown as spheres); (c) S. aureus MscL with the lipids L-a-PG, CDL and lysyl-PG (stabilization for 12þ charge state) (structure shown

of M. tuberculosis MscL, PDB entry 2OAR). (d) The multidrug and toxic compound extrusion protein from P. furiosus with CDL and PG (stabilization for 11þ
charge state, PDB entry 3VVN). Reported are average and s.e.m. from repeated measurements (n¼ 3).
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of which differ to those in the expression host that we used,
E. coli, in three principle ways: archaeal lipids have phytanyl
tails and ether linkages between the head group and the tail,
whereas bacterial lipids have fatty acid tails and ester linkages,
and in addition the stereochemistry of the head groups are
also different28. Nevertheless, under non-optimized purification

conditions, PfMATE will co-purify bound to CDL from the
E. coli membrane. Using lipid-free purified PfMATE, similar to
the experiments performed for SaMscL above, when E. coli CDL
is added to the protein solution, we observe binding of two
CDL molecules under optimized MS conditions. The binding of
CDL to PfMATE has an additive effect on stability (Fig. 2d).
Interestingly, performing the same experiment with PG, although
we observe binding to PfMATE, there is a slight destabilization
for one lipid bound and net no change for two lipids bound
(Fig. 2d). This indicates specific lipids have different stabilizing
effects on this protein.

The third membrane protein studied was EcOmpF, which is a
trimeric b-barrel protein. This protein was purified bound to
rough lipopolysaccharide, a constituent of the outer membrane of
the E. coli in which this protein was expressed29. We observe
stabilization of the protein complex by rough lipopolysaccharide
(Fig. 3), implying that this outer-membrane lipid is bound in vivo.
The results with these three membrane proteins demonstrate the
power of the method to discern the stabilizing effects of binding
different types of lipids.

Comparison of gas-phase with solution-based assays. To assess
the validity of our method for assessing the effect of ligand

LPS
0

50

100

150

%

0

100

6,000 7,000 8,000 9,000 10,000
m/z

1×

15+

S
ta

bi
liz

at
io

n 
(e

V
)

Figure 3 | Mass spectrum of the outer membrane protein OmpF from

E. coli and gas-phase stabilization by rough lipopolysaccharide (LPS;

for 16þ charge state). The protein structure is of E. coli OmpF (PDB entry

2ZFG). Reported are average and s.e.m. from repeated measurements

(n¼ 3).

None PG PE None CDL PE
55

57

59

T
em

pe
ra

tu
re

 (
°C

)

1×PS1–4×PG 1–2×PE

0

20

60

100

 S
ta

bi
liz

at
io

n 
(e

V
)

50

52

54

T
em

pe
ra

tu
re

 (
°C

)

Circular dichroism Circular dichroism

Differential scanning fluorimetry

Mass spectrometry

Mass spectrometry

1×CDL 1×PE
0

20

60

100

S
ta

bi
liz

at
io

n 
(e

V
)

None 10:1 25:1 50:1 125:1

60

62

58

T
em

pe
ra

tu
re

 (
°C

)

Lipid-to-protein-complex ratio

PG

CDL

None

PS

PE
40 50 60 70 80 90

0
5,000

10,000
15,000
20,000

Temperature (°C)

F
lu

or
es

ce
nc

e
(A

U
)

Temperature (°C)

E
lli

pt
ic

ity
 (

m
de

g)

20 40 60 80
Temperature (°C)

20 40 60 80

–25

–20

–15

–10

–5

E
lli

pt
ic

ity
 (

m
de

g)

–15

–10

–5

0

a

c d e

b

Figure 4 | Comparison of solution- and gas-phase unfolding experiments with two membrane proteins, ammonia channel (AmtB) and aquaporin Z

(AqpZ), in the presence of different lipids. (a) Thermal denaturation (Tm) measurements obtained by DSF of AmtB in the presence of PG, PS and PE

at different lipid:protein ratios. Typical raw data are shown for the 10:1 lipid:protein ratio. The colour key applies to the whole figure. (b) Stabilization of

AmtB by various lipids calculated using collision-induced unfolding (CIU)8. (c) Thermal denaturation of AmtB performed by CD in the presence of PG

and PE, and (d) of AqpZ in the presence of PE and CDL. Typical raw data showing change in ellipticity at 220 nm are shown for both proteins with the

different lipids. (e) Lipid stabilization of AqpZ measured using CIU8. Reported are average and s.e.m. from repeated measurements (n¼ 3).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9551

6 NATURE COMMUNICATIONS | 6:8551 | DOI: 10.1038/ncomms9551 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


binding on membrane protein stability, it is important to
compare the results from our assays with those from solution-
based thermal denaturation experiments. Although these
solution-based experiments cannot access the specific effects of
different ligand-bound states that the MS approach can, the
ensemble averages yielded by other techniques would be expected
to agree with those from MS. We used both circular dichroism
(CD) and differential scanning fluorimetry (DSF) to measure
the effect of lipid binding on the thermal stability of the E. coli
inner membrane proteins aquaporin Z and ammonia channel.
We previously identified these proteins as having significant
sensitivity to the binding of different lipids using this MS
approach8. With CD and DSF, we did not observe the same lipid-
induced protein stabilization revealed by our MS approach
(Fig. 4). In these solution-phase techniques, the proteins are
encased in detergent micelles, the presence of which may mask
the effects of the lipids on protein stability by influencing the
unfolding of the protein and thus the sensitivity of protein
stability to bound lipid. We previously found that the most
stabilizing lipids for these two proteins were either important for
function or induced conformational changes in protein structure.
On this basis, we have confidence that our method is able to
identify lipids with important interactions. We conclude therefore
that this MS approach is more sensitive, in particular for lipid
interactions with membrane proteins, than corresponding
solution-based thermal shift assays.

Discussion
Our method provides a novel means of studying the effects of
ligand binding on proteins and it is of particular utility when the
system under study can bind multiple ligands, such as in the case
of oligomeric proteins, where the binding events are challenging
to discern using other methods. We have shown that the method
can interrogate the effects on stability from ligand binding to
soluble proteins and, of particular note, we demonstrate that our
method can be used to characterize the effects of lipid binding on
membrane proteins. To our knowledge, there are no other
experiments that can provide this information in such a direct
manner. The detail required to implement this method has been
described and software to conduct the analysis rapidly and
robustly, developed for this study, will be made widely available.
Owing to the ease with which this method can be implemented,
we anticipate that this methodology will find particular applica-
tion to evaluating the effects of lipid binding on the stability of
membrane proteins, and for drug discovery by identifying ligands
with notable stabilizing effects.

Methods
Protein preparation. Transthyretin was a gift from Mark Pepys, UCL Division of
Medicine, and streptavidin from Michael Fairhead, University of Oxford. AmtB,
AqpZ and OmpF were expressed in E. coli and extracted from membranes using
200 mM n-octyl-b-D-glucoside. AmtB and AqpZ were purified using immobilized-
metal affinity chromatography in n-dodecyl b-D-maltoside. Fusions to maltose
binding protein (MBP) (for AmtB) and green fluorescent protein (AqpZ) were
cleaved using tobacco etch virus protease and the cleaved proteins further purified
by reverse immobilized-metal affinity chromatography8. OmpF was purified in
n-octyl-b-D-glucoside by anion-exchange chromatography29. MATE was cloned
from P. furiosus genomic DNA (ATCC 43587) into a pet15-based vector, to end up
with a tobacco etch virus (TEV) protease cleavable carboxy-terminal GFP-6�His
fusion protein (equivalent to that constructed for AqpZ), expressed in C43(DE3)
cells and purified with the same protocols used for AqpZ, with the exception that
solubilization from the membranes used 1% (w/v) octyl glucose neopentyl glycol.
Likewise, the gene for S. aureus MscL was cloned into the same vector backbone and
purified as for AqpZ after membrane solubilization using 5% (w/v) C8E4 (ref. 30).

Mass spectrometry. Streptavidin and transthyretin (TTR) were buffer exchanged
into 300 mM ammonium acetate, pH 7.0, using a Micro Bio-Spin column
(Bio-Rad) at 4 �C. Transthyretin (1.7 mM) was incubated with T4 (1.8 mM) for 4 h
at room temperature, to enable equilibration of binding before MS analysis. A stock
of 2 mM T4 in dimethyl sulfoxide (DMSO) was diluted to 3.6 mM in 300 mM
ammonium acetate before protein addition at a ratio of 1:1; final DMSO present
o0.1%, as 40.1% DMSO led to reduction in average charge and could possibly
destabilize protein–protein and protein–ligand interactions. B4F was dissolved in
300 mM ammonium acetate, pH 7.0, and filtered. Streptavidin (2 mM) was incu-
bated with B4F (2.8 mM) for 16 h at room temperature before MS analysis. The
membrane proteins were prepared, after purification, for MS analysis by per-
forming size-exclusion chromatography, to exchange into C8E4 buffer, and were
subsequently exchanged into MS buffer using a centrifugal buffer exchange device8.
All membrane proteins were sprayed in 200 mM ammonium acetate (pH 7.4) with
2� critical micelle concentration (CMC) of the detergent C8E4.

IM mass spectra were recorded using a modified Synapt G1 instrument (Waters
Corp.) as previously described8. The experimental concentrations of both protein
and ligand used are recorded in Table 2. Measurements were made at accelerating
voltage steps of 1 V for the soluble proteins and 5 V for membrane proteins, to
balance experiment time and resolution.

All lipids were purchased from Avanti Lipids and were prepared as
previously described8. The lysyl-PG used was 16:0 (1,2-dipalmitoyl-sn-glycero-3-
[phospho-rac-(3-lysyl(1-glycerol))]) and was prepared in the same way.

Circular dichroism. Thermal stability was measured by CD using a JASCO J-815
spectropolarimeter with temperature control, using 1 mM quartz cuvettes, by
measuring the ellipticity at 222 nm as a function of temperature (5 �C intervals,
from 20 �C to 80 �C, ramping at 5 �C min� 1). Protein concentration was 0.76 mM
for AmtB (complex), with lipid concentrations of 33 mM PE (L-a-phosphatidy-
lethanolamine from E. coli) and 21mM PG (L-a-phosphatidylglycerol from E. coli)
in 20 mM phosphate buffer, pH 7.5, with 0.5% (w/v) C8E4. For experiments with
AqpZ, the protein concentration was 1.1 mM (complex), with lipid concentrations
of 210mM PE and 11 mM CDL (cardiolipin from E. coli).

To calculate the Tm values, the derivatives of ellipticity as a function of
temperature were calculated and fitted with a Boltzmann distribution. Repeated
measurements and error given as the s.d. of the mean.

Differential scanning fluorimetry. DSF measurements were made using an
Agilent MX3005p with an ANS filter set (excitation at 330 nm and emission at
492 nm). Thermal stability was measured using CPM dye (excitation 384 nm and
emission at 470 nm), which fluoresces on reaction with cysteine residues31.
Fluorescence was measured at 1 �C intervals, as the temperature increased from
25 �C to 95 �C.

To optimize fluorescence response, three different protein concentrations (1.25,
2.5 and 5.0 mM) were assayed, each with four different lipid:protein ratios (10:1,
25:1, 50:1 and 125:1) (NB: these ratios to mole of protein complex, not monomer),
for three different lipids (PG, phosphatidylserine (PS) and PE). The lipid:protein
ratios used in the original MS experiments were 44:1, 28:1 and 26:1 for PE, PG and
phosphatidylserine, respectively. Aside from protein and lipid, each condition
contained 0.5% (w/v) C8E4, 0.2 M NaCl and 20 mM HEPES, pH 7.5. The data
presented are for 1.5 mM AmtB; there were no perceptible differences in results at
the other two protein concentrations. The Tm values were calculated by a similar
means to that for the CD data.

Software development. The software was developed in Python 2.7, making
extensive use of the libraries scipy, numpy32 and matplotlib33. A graphical user
interface developed using wxPython34 allows interaction with the programme. The
software is a cross-platform, with the exception of data importation, which must be
performed on Windows. An additional programme written in Cþþ is used to
import the data. This uses the libraries available from Waters Corp. for accessing
the proprietary binary data format of the raw files. The software is available from
http://pulsar.chem.ox.ac.uk/.

Table 2 | Concentration of proteins and ligands used for
collision-induced unfolding experiments.

Protein [Protein] (lM) Ligand [Ligand] (lM)

EcAmtB See8

EcAqpZ See8

EcOmpF 2.9 Rough LPS NA
PfMATE 3.8 CDL 7.5

3.8 PG 14
SaMscL 7.3 PG 14

4.6 CDL 7.0
3.7 Lysyl-PG 10

Streptavidin 2.0 B4F 2.8
Transthyretin 1.7 T4 1.8

B4F, biotin-4-fluorescein; CDL, cardiolipin; EcOmpF, b-barrel outer-membrane protein OmpF
from Escherichia coli; LPS, lipopolysaccharide; PfMATE, multi-antimicrobial extrusion protein from
P. furiosus; PG, phosphatidylglycerol; NA, not applicable; SaMcsL, mechanosensitive channel of
large conductance from Staphylococcus aureus; T4, L-thyroxine.
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Data importation. The software can import data from Synapt IM-MS instruments
(Waters Corp.). Multiple data files can be imported simultaneously into the
software, and for each data file the user supplies metadata to later identify and
categorize each experiment, and for the calculation of CCS values. The mass
spectrum is a sum of the mass spectra in all IM scans and is twice smoothed using a
moving mean algorithm, and then binned, by default every 1 m/z. The IM data are
by default binned every 4 m/z, which for protein spectra is an empirically optimized
bin size that gives an excellent trade-off between calculation speed and desired
resolution.

Mass spectrum fitting. To analyse the unfolding of individual ions it is first
necessary to define the boundaries of each charge-state peak in the mass spectrum.
These boundaries can then be used to extract the arrival time information for a
particular charge state. The peaks are fitted using Gaussian functions: the overall
charge-state distribution is modelled by one Gaussian function, herein called the
envelope (equation (1)). Z is a charge state, Zavg is the average charge state in the
distribution, w is a width parameter and h a height scalar. The envelope (of a
particular distribution) defines what charge states are expected to be in the
spectrum and therefore what charge-state peaks should be fitted. The expected
charge states within the envelope are calculated by examining 5�w and selecting
peaks within the boundary with a modelled intensity 40.01. The charge-state
peaks themselves are also modelled by Gaussian functions (equation (2)). Here,
mass is the sample mass, Z is the charge state of the peak, R is a resolution
parameter and h is the height scalar from the envelope.

Ienv ¼ he�
Z�Zavgð Þ2

2w2 ð1Þ

Ipeak ¼ he
� m=z�mass

Zð Þ2

2
mass

Zð Þ
R

� �2

ð2Þ
It is not necessary for the charge-state peaks to be fully resolved in the m/z

domain to be able to achieve a useful fit to the mass spectrum; however, for analysis
of the unfolding data it is required that the arrival time distribution, corresponding
to a particular charge-state peak, contains data only for the ion of interest, that is,
overlapping species or artefacts should not be present. Although it is possible to use
more complex models to deconvolute mass spectra16,35–38, as the fitting is only
used to determine boundaries for extracting arrival time distributions, ideal fits to
the mass spectrum are not required and this simple model is entirely sufficient.

The mass spectrum fitting requires an initial guess of the mass and the charge-
state value of the highest intensity ion. Although a priori information, for the
nature of experiments performed, these values are typically already known, or
easily discerned. From the initial guess, the given mass is adjusted over a range and
the difference between the simulated and experimental spectra is calculated. The
parameters of the model (mass, average charge state, charge-state distribution
width and intensity and charge-state peak resolution) are then optimized by
minimizing the difference between the simulated and experimental spectra.
Alternatively, for each mass value trialed, all the parameters can be optimized
before choosing that which gives the best fit. Parameters describing multiple species
detected in the same mass spectrum (for example, ligand-free and ligand-bound
forms of a protein) can be fitted simultaneously using the same approach. The net
result is an individual theoretical spectrum for each species present in the
experimental spectrum.

Arrival time distribution extraction. To extract the arrival time distribution
associated with a charge-state peak, a slice is taken of the arrival time data between
two m/z values. The centre and hence position of the slice is known from the
Gaussian function fit to the charge-state peak. For more consistent analysis,
the width parameter of the modelled Gaussian function is replaced with a new
resolution value, which is the same for all ions that arrival time distributions are
extracted for, scaled by the m/z value. The width of the slice is then determined by
the modified Gaussian description of the peak and an intensity threshold. The use
of these two constants improves the consistency and reproducibility of the arrival
time distribution extracted for each ion under investigation.

The software automatically fits a Gaussian function to the highest intensity
species in each extracted arrival time distribution and multiple arrival time peaks
can also be manually fitted. The centre of a modelled peak is taken as the arrival
time value of a particular ion. These fits to the arrival time distribution are not used
for the purposes of modelling the unfolding data; the only parameters affecting this
are those used for the extraction of the arrival time distribution (vide supra).

CCS calculation. It is useful to know the CCS values for species observed in the
arrival time distribution and also to be able to generate unfolding plots in units of
CSS as a function of accelerating voltage. The software can calculate CCS values for
both travelling-wave and drift-tube IM data.

For travelling-wave IM measurements, a calibration curve is necessary to
calculate CCS values. The calibration curve is created by measuring the arrival
times of standards with known CCS values, under the same instrument conditions
used for the sample under investigation39. To facilitate calibration curve creation,
the software has a module for automated processing of calibration spectra. Using

the same approach as outlined above, the mass spectra for each calibration sample
is fitted and the arrival time distribution extracted for charge states with known
CCS values. The peaks in the arrival time distribution are automatically fitted,
yielding peak centres corresponding to the arrival times for each ion. Multiple
calibration samples, measured under common instrument conditions, are then
combined to form a calibration curve. The resulting calibration file can then be
selected and used for the computation of CCS values of the sample.

For measurements made using drift-tube instruments, CCS values are directly
calculated from arrival time measurements using the Mason–Schamp
equation39,40. This requires calculation of the drift time, which is calculated from
the arrival time by subtracting the value of T0, which is instrument, settings and ion
specific. The value of T0 must be separately measured and calculated41. The
software provides a module for calculating the value of T0. An advantage of this
approach to calculate CCS values is that the number of necessary measurements is
greatly reduced, as instead of requiring measurements at multiple drift voltages for
each accelerating voltage only one is necessary.

Quantification of collision-induced unfolding. Collision-induced unfolding
experiments are carried out by systematically increasing the accelerating voltage to
progressively unfold the protein. The unfolding plot is constructed by stacking the
intensity-normalized arrival time distributions at each accelerating voltage for a
particular charge state.

The software models the gas-phase unfolding by means of a simple protein
unfolding model (equations (3–5))17, which describes the conformational stability
of the species as a function of accelerating voltage and can be extended to any
number of species.

F !K1
I1 !

K1
I2 3 state modelð Þ ð3Þ

DGi ¼ DGi��miðVÞ ð4Þ

DGi ¼ �RT ln Ki ð5Þ
Initially, the positions and widths of each species (for example, folded,

intermediate one and intermediate two) are defined by CCS ranges. The software
provides the ability to load saved-species parameters to allow the initial definitions
to be re-used for subsequent analyses and between different experiments.

The fitting of the unfolding model to the data proceeds as thus: the measured
arrival time intensities for each species are summed and normalized at each
accelerating voltage step. Next, the unfolding model is fitted to these data using a
choice of minimization algorithm, yielding initial thermodynamic parameters.
These initial values are then used as a seed for a more complex fitting, where a
theoretical unfolding plot is back-calculated and the difference to the experimental
unfolding plot minimized.

The theoretical unfolding plot is generated by defining a Gaussian function for
each species at every accelerating voltage, where the width and origin of each
Gaussian begin as those from the definitions derived from the original species
range. From the initial unfolding model seed, the fraction (F) of each species
present at each accelerating voltage value can be calculated (equation (6–9)) and is
then used to scale the height of the Gaussian function for that species. Finally,
because the intensities in the experimental unfolding plot are normalized at each
accelerating voltage, the theoretical unfolding plot is normalized in the same way.
The difference between the resulting theoretical unfolding plot and the
experimental unfolding plot is then minimized.

FF þ FI1 þ FI2 ¼ 1 3 state modelð Þ ð6Þ

FF ¼
1

1þK1 þK1K2
3 state modelð Þ ð7Þ

FI1 ¼
K1

1þK1 þK1K2
3 state modelð Þ ð8Þ

FI2 ¼
K1K2

1þK1 þK1K2
3 state modelð Þ ð9Þ

There are three approaches available for fitting the unfolding model to the
experimental data. First, a ‘basic’ fit can be used where only the thermodynamic
parameters of the unfolding model are fitted using fixed values for the CCS position
and width for each species as provided by the user. A ‘semi’ approach fits both the
thermodynamic parameters and the position, but using the fixed width of each
species defined by the user. Finally, the ‘full’ approach fits all parameters and
typically gives the best fits to the experimental data, which we strongly recommend
for calculating ligand-induced protein stabilization.

To make the calculations more efficient, the unfolding plot data are trimmed to
within 10% of the minimum and maximum CCS values defined by the native-like
and last unfolding species, respectively. Trimming the data typically results in on
average around 900 data points.

As the fitting surface can be rugged, a sophisticated minimization procedure to
maximize the chance of finding a global minimum is required. First, the model is
minimized using the Powell’s conjugate direction method available in scipy. This
provides the boundaries for bio-inspired algorithms; all parameters are set to
boundaries of ±25% with the exception of the CCS species peak centres, which are
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set to ±5%. Models are minimized using the modified differential algorithm
(de_1220) available in PyGMO using the following parameters: population of 20,
12 evolutions, 250 generations and 8 islands. Other algorithms, such as particle
swarm and bee colony typically produce similar or lower R2-values and are
computationally more expensive.

Successful fitting of the experimental data lead to thermodynamic parameters
for each species, which enables the quantification of unfolding transitions and
ligand-induced protein stabilization. The transition midpoint is where 50% of a
specific transition state i is depleted. This metric removes correlations between DGi�
and m inherent in the fitting procedure. To average out any systematic and/or
variability in droplet formation, stabilization should be calculated as given in
equation (10), which is the sum of the differences in midpoint values between
ligand-bound and -unbound forms, which we normalize for the number of
transitions (imax), and can be converted to laboratory frame energy by multiplying
by the charge state.

stabilization ¼ z
Pimax

i Dmidpointi

imax
ð10Þ

Bootstrapping analysis. The ability to perform bootstrapping analysis accom-
panies the main software in the form of external scripts that facilitate the analysis
to be performed in clustered computing environments. The sampling is by
replacement, where accelerating voltage slices of the unfolding plots are randomly
chosen. As stabilization is calculated from the modelling of two different unfolding
plots (ligand free and ligand bound), the bootstrapping calculates a sampling
schedule that will be the same for each stabilization calculation. Model parameters
from fits to the original data are used as the initial parameters to the fitting of each
sample. Typically, the sampling is repeated 100 times, which is sufficient for the
convergence of stabilization values and model parameters.
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