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Abstract
Purpose To develop an anomaly detection system in PET/CT with the tracer 18F-fluorodeoxyglucose (FDG) that requires 
only normal PET/CT images for training and can detect abnormal FDG uptake at any location in the chest region.
Materials and methods We trained our model based on a Bayesian deep learning framework using 1878 PET/CT scans 
with no abnormal findings. Our model learns the distribution of standard uptake values in these normal training images 
and detects out-of-normal uptake regions. We evaluated this model using 34 scans showing focal abnormal FDG uptake 
in the chest region. This evaluation dataset includes 28 pulmonary and 17 extrapulmonary abnormal FDG uptake foci. We 
performed per-voxel and per-slice receiver operating characteristic (ROC) analyses and per-lesion free-response receiver 
operating characteristic analysis.
Results Our model showed an area under the ROC curve of 0.992 on discriminating abnormal voxels and 0.852 on abnor-
mal slices. Our model detected 41 of 45 (91.1%) of the abnormal FDG uptake foci with 12.8 false positives per scan (FPs/
scan), which include 26 of 28 pulmonary and 15 of 17 extrapulmonary abnormalities. The sensitivity at 3.0 FPs/scan was 
82.2% (37/45).
Conclusion Our model trained only with normal PET/CT images successfully detected both pulmonary and extrapulmonary 
abnormal FDG uptake in the chest region.

Keywords Positron emission tomography · Positron emission tomography–computed tomography · Computer-aided 
diagnosis · Deep learning · Artificial intelligence

Introduction

A combination of positron emission tomography (PET) 
using the tracer 18F-fluorodeoxyglucose (FDG) is a use-
ful imaging technique to find malignant and inflammatory 
lesions. Computer-aided diagnosis (CAD) in 18F-FDG PET 
(hereinafter, PET) and its combination with computed 

tomography (hereinafter, PET/CT) has been actively studied 
to this day [1–8]. These CAD studies can be divided into 
two groups by techniques employed: (1) supervised learn-
ing and (2) semi-supervised/unsupervised anomaly detec-
tion (hereafter, anomaly detection). In the first and main-
stream group [1–5], supervised learning is utilized, that is, 
machine learning based on a large number of images with 
annotations of the lesions of interest. However, preparing 
such annotated datasets can take a considerable amount of 
time [9, 10]. In the second group [6–8], on the other hand, 
anomaly detection is employed, that is, training only with 
normal class instances and detecting outliers different from 
the normal data [11–13]. Here, the training dataset does 
not require any abnormal images or lesion annotations and, 
therefore, far easier to prepare than annotated datasets in 
supervised CAD. Furthermore, such an anomaly detection 
CAD method has the additional advantage that it can detect 
any type of anomalous finding since it detects anything dif-
ferent from normal images. This contrasts with supervised 
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CAD, in which detectable lesions are limited to those of the 
class included in the training dataset.

Previous anomaly detection method for PET or PET/
CT images [6–8] has the limitations detecting anomalies 
only in a specific organ or region [7, 8] or requiring com-
plicated anatomical standardization [6]. In this paper, we 
propose a novel anomaly detection CAD method for PET/
CT images that can detect anomalies at any location in a 
simple way. Our method is based on Bayesian deep learning, 
an intersection between deep learning and Bayesian prob-
ability approaches, which can model the uncertainty of tasks 
as probability distributions [14, 15]. Our CAD models the 
probability distribution of standard uptake values (SUVs) in 
a normal training dataset. This allows anomaly detection by 
calculating Z scores, that is, the difference of the SUV from 
the mean in units of the standard deviation. Owing to the 
advantage that images can be processed in raw form in deep 
learning [16], our method can directly calculate Z scores at 
once for every pixel from a pair of PET and CT slices.

With the above as the background, in this study, we aim 
to develop an anomaly detection CAD system for PET/CT 
using a Bayesian deep learning framework. We demonstrate 
its feasibility by showing that it can detect both pulmonary 
and extrapulmonary lesions in the chest area.

Materials and methods

Anomaly detection

Our anomaly detection method is performed in a two-
dimensional (2D) manner: it outputs a 2D anomaly score 
map for an axial PET slice. The anomaly score map for the 
entire PET volume is obtained by simply calculating this 2D 
map for all PET slices independently. The overview of our 
anomaly detection method is shown in Fig. 1.

First, we train a deep neural network that takes an axial 
CT slice as the input and predicts the corresponding PET 
slice. This training is based on a Bayesian deep learning 
technique proposed by Kendall and Gal [14], so that this 
neural network can infer both the mean and variance of PET 
SUVs. That is, it provides the predictive uncertainty in addi-
tion to the prediction itself. We employ the U-Net architec-
ture [17], which is commonly used for making pixel-level 
predictions. Please refer to the appendix for more details on 
the training and inference. Hereafter, this neural network 
will be referred to as the Bayesian neural network (BNN).

This BNN is trained using a dataset consisting only of 
normal PET/CT images. Therefore, its outputs represent the 
statistics of the SUV in the normal PET/CT dataset. Using 
these statistics, we can detect anomalies in for a PET/CT 
slice pair. The pixel-wise Z score of the target PET slice can 

be calculated from the estimated mean and variance of the 
PET slice as follows:

where i denotes a pixel, Zi is the Z score for the i-th pixel 
of the actual PET slice, yi is the i-th pixel of the actual PET 
slice, E(yi) is the i-th pixel of the estimated PET mean, and 
Var

(
yi
)
 is the i-th pixel of the estimated PET variance. The 

Z score represents the difference of the SUV from the mean 
in units of the standard deviation, and a high value indicates 
an abnormal FDG uptake.

Dataset

This study was approved by the ethical review board 
of our institution. The subjects in this study comprised 
adults who visited our hospital for a whole-body medi-
cal screening program from January to October 2015. 

(1)Zi =
yi − E

(
yi
)

√
Var

(
yi
) ,

(a)

(b)

Fig. 1  Overview of anomaly detection. a Training. The BNN is 
trained to learn the distribution of SUVs in normal PET/CT. b 
Anomaly Detection. The BNN estimates the mean and variance of 
the SUVs from the CT slice. The Z-score map can be calculated from 
these estimated statistics and the actual SUVs in the PET slice
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All subjects provided written informed consent that their 
medical images can be used for research purposes. As part 
of the screening program, PET/CT scans were performed 
on a single scanner (Discovery ST Elite, GE Health-
care, Waukesha, WI). CT images were acquired using 
the following parameters: field of view (FOV), 500 mm; 
matrix size, 512 × 512; voxel size, 0.98 × 0.98 × 1.25 mm. 
PET images were acquired with the following parame-
ters: FOV, 700 mm; matrix size, 128 × 128; voxel size, 
5.47 × 5.47 × 3.25 mm. These CT and PET images were 
resampled to an isotropic voxel size of 3 × 3 × 3 mm when 
used in this study. In the screening program, all these PET/
CT images were interpreted in a double-reading manner: 
two radiologists interpret the same PET/CT image inde-
pendently and the final diagnosis was determined by a 
discussion between them.

Figure 2 shows a flowchart of study inclusion. Dur-
ing the period above, a total of 2415 PET/CT scans were 
acquired and 1878 of these were determined to have no 
abnormal findings. Seven duplicates of scans from the 
same subjects were excluded so that all scans were from 
unique subjects. That is, if the same subject had multiple 
PET/CT scans during the period, only the first one within 
the period was used. We used all 1878 normal scans for 
the training of our model (1374 from males and 504 from 
females; mean age, 58.1 years; age range, 40–90 years). 

We also used the scans with one or more abnormal FDG 
foci in the chest region for the evaluation of our method. 
This evaluation dataset consists of 34 scans from unique 
subjects (21 from males and 13 from females; mean age, 
64.4 years; age range, 41–89 years) and includes both 28 
pulmonary and 17 extrapulmonary abnormal FDG uptake 
foci. Further details of the lesions in this dataset are shown 
in Table 1. A board-certified radiologist (N.H., 15 years of 
experience in PET/CT interpretation) annotated the loca-
tions of all the uptake foci voxel-wise. 

Fig. 2  Flowchart of study 
inclusion

Table 1  Details of the abnormal FDG uptake foci in the evaluation 
dataset

Type Number of lesions

Pulmonary Lung Mass 9
Pneumonia 19
Total 28

Extrapulmonary Lymph Node 10 (4 hilar, 3 axillary, 2 
mediastinal, and 1 supracla-
vicular)

Mediastinal Mass 2
Breast Mass 2
Bone Fracture 3 (2 clavicles and 1 rib)
Total 17
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Performance evaluation

We evaluated the quantitative performance of our anomaly 
detection method at three levels: per voxel, per slice, and 
per lesion.

Per‑voxel evaluation

We performed a receiver operating characteristic (ROC) 
analysis to evaluate the capability of voxel-wise Z scores 
to discriminate between normal and abnormal voxels. For 
comparison, we also applied ROC analysis to raw SUVs.

Per‑slice evaluation

Similarly, the capability of our method to discriminate 
between normal and abnormal slices was evaluated by 
ROC analysis. An abnormal slice is defined as an axial 
slice with one or more abnormal voxels. Slice-level SUV 
and Z score are represented by the maximum SUV and Z 
score  (SUVmax and Z-scoremax) in the slice, respectively.

Per‑lesion evaluation

Finally, we performed a free-response receiver operating 
characteristic (FROC) analysis to evaluate the performance 
of our method in lesion localization. This FROC analysis 
was performed by extracting regions with a Z score greater 
than 3.0 as lesion candidates. Each candidate is considered 
true positive if and only if its centroid and that of a true 
lesion are within 5 mm. We also compared the perfor-
mance of our method with those of the following base-
line methods to show the effectiveness of Bayesian deep 
learning. (1) Simple thresholding: Regions with SUV of 
greater than 1.0 or 2.0 were considered abnormal. (2) Non-
Bayesian deep learning: Using the same training dataset as 
above, we trained a U-net that predicts only a PET slice, 
without predicting variance, from the corresponding CT 
image. Regions that have the SUV difference of greater 
than 0.5 or 1.0 between the predicted and the actual PET 
image were considered abnormal.

Results

Figure 3 shows examples of Z-score maps obtained by 
our anomaly detection method. The proposed method can 
detect various lesions such as a lung mass, a hilar lymph 
node, and a breast mass in the same model. Note that the 
proposed method correctly enhances only the abnormal 

uptake foci and suppresses physiologic activity in the car-
diovascular and abdominal regions.

Figure 4 shows the results of the per-voxel ROC analy-
sis. Z score shows a better AUROC (area under the ROC 
curve) than SUV in discriminating between the normal 
and abnormal voxels (Z score: 0.992 vs SUV: 0.940). As 
shown on the left side of Fig. 4, SUVs in the normal voxels 
have a relatively long-tailed distribution to the right due to 
their variation among tissues, which causes some overlap 
of SUVs between the normal and abnormal voxels. On 
the other hand, Z scores in the normal voxels are more 
concentrated around zero and have less overlap between 
the normal and abnormal voxels. Results of the per-slice 
ROC analysis shown in Fig. 5 show this superiority of Z 
score clearer. Slice-level  SUVmax shows almost the same 
distribution between the normal and abnormal slices and 
can hardly distinguish them (AUROC 0.582), whereas 
Z-scoremax shows better discriminative performance 
(AUROC 0.852).

Figure 6 shows the FROC curves of the proposed method. 
Our model detected 41 of 45 (91.1%) of the abnormal FDG 
uptake foci with 12.8 false positives per scan (FPs/scan), 
which includes 26 of 28 (92.9%) pulmonary and 15 of 17 
(88.2%) extrapulmonary abnormalities. The sensitivity at 
3.0 FPs/scan was 82.2% (37/45). The four foci that were 
not detected were as follows: one lung mass, one pneumo-
nia lesion, one clavicle fracture, and one breast mass. The 
lung mass could not be detected due to weak FDG uptake 

Fig. 3  Examples of images for our anomaly detection. The original 
images (fused PET/CT) and Z-score maps obtained by the proposed 
method are shown in the left and middle columns, respectively. The 
images in the right column show the regions with a Z-score greater 
than 3. a Lung mass. b Left hilar lymph node. c Right breast mass
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 (SUVmax of 1.3), and the remaining three had high Z scores 
but were not well separated from the backgrounds.

Figure 7 shows the performance comparison between 
the Bayesian and baseline methods. The proposed Bayes-
ian method showed higher performance than the baseline 
methods.

We have shown that our anomaly detection method suc-
cessfully detected abnormal FDG uptake foci in chest PET/
CT images. We adopted an anomaly detection approach, 

which has two major advantages over PET/CT CAD stud-
ies with supervised learning [1–5]. The first is the ease of 
preparing the training dataset: the training requires only 
normal PET/CT images, and neither abnormal images nor 
lesion annotations are required. The second is the capa-
bility to detect lesions in various locations including both 
pulmonary and extrapulmonary regions. As mentioned in 
Introduction, the anomaly detection approach can detect 

Fig. 4  Results of per-voxel 
ROC analysis for our Z-score vs 
SUV. Left: density plots of our 
Z-score and SUV in normal and 
abnormal voxels. Right: ROC 
curves of our Z-score and SUV 
(AUROC 0.992 vs 0.940)

Fig. 5  Results of per-slice ROC 
analysis for our Z-score vs 
SUV. Left: density plots of our 
Z-scoremax and  SUVmax. Right: 
ROC curves of our Z-scoremax 
and  SUVmax (AUROC 0.852 vs 
0.582)
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any type of abnormality. Our results show that the pro-
posed method has this capability.

Our method showed detection performance comparable to 
those developed in the previous studies of anomaly detection 
in PET or PET/CT [6–8] (Table 2). The main advantage of 
our method over them is whole-image anomaly detection in 
a simple way, which is derived from the use of deep learn-
ing. Previous studies based on machine learning techniques 
[7, 8] mainly utilized local features derived from CT values 
and SUVs. However, it is difficult to learn the variation in 
FDG uptake between organs only from such local features. 
To deal with this problem, in those studies, each detector 
targeted only a specific organ. In this case, abnormal uptake 
outside the target organs cannot be detected, which loses one 
of the advantages of anomaly detection, which can detect 
any type of abnormality. In another study [6], a nonrigid 
image registration of PET volumes to a standard human 
body atlas was performed. This anatomical standardiza-
tion enables whole-body anomaly detection by voxel-wise 
comparison of the SUVs between images from the target 
patient and the healthy control group. However, this image 
registration requires a complicated, multi-step procedure. 
Such complex preprocessing may reduce the robustness 
of anomaly detection. Unlike these studies, in our method, 
both training and anomaly detection can be performed from 
the PET/CT images in raw form. This naturally provides 
whole-image anomaly detection, without requiring any com-
plicated preprocessing. This capability to directly process 
high-dimensional data such as images is a great advantage 
of deep learning over conventional machine learning meth-
ods [16].

Our results also show the usefulness of the Z-score 
approach using Bayesian deep learning. Our BNN learns 
the probability distribution of the SUVs instead of the SUVs 
themselves. This is a major difference from recent anomaly 
detection studies in other medical images [13, 18–22]. In 
these studies, image anomalies are typically detected by 
the difference, or absolute error, from the expected nor-
mal image. However, this absolute-error approach may not 

Fig. 6  FROC curves of the proposed method. Our model detected 
41 of 45 (91.1%) of the abnormal FDG uptake foci with 12.8  FPs/
scan, which include 26 of 28 pulmonary and 15 of 17 extrapulmonary 
abnormalities. The sensitivity at 3.0 FPs/scan was 82.2% (37/45)

Fig. 7  Performance comparison between the proposed method 
(Bayesian deep learning) and the baseline methods (non-Bayesian 
deep learning and simple SUV thresholding). The proposed method 
showed higher detection performance than the baseline methods

Table 2  Summary of previous anomaly detection studies using PET or PET/CT

FP: false positive

Modality Organ(s) Lesions Performance

Kamesawa et al. [7] PET/CT Lung Nodules, Pneumonia Sensitivity of 81.9% with 5.0 FP lesion candidates per scan
Tanaka et al. [8] PET/CT Lung, neck, and 

mediastinum
(Not specified) Sensitivities of 88.1% (right lung) and 87.5% (left lung) with 

1,000 FP voxels per scan
Sensitivity of 83.7% (neck and mediastinum) with 20,000 FP 

voxels per scan
Hara et al. [6] PET Whole body Lesions from biopsy-

proven malignant 
cases

417/432 (96.5%) lesions showed Z-score > 2.0 (FP not examined)
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provide sufficient detection performance in PET images, 
since it cannot reflect the different widths of normal SUV 
ranges among organs. For example, an SUV of 1.0 higher 
than the normal average is almost certainly abnormal in the 
pulmonary region but may not necessarily mean abnormal 
in the myocardial region. Our results show that the Z-score 
approach based on Bayesian deep learning outperforms the 
absolute-error approach (Fig. 7 Bayesian vs non-Bayesian). 
The proposed method can only be applied to pairs of two 
anatomically matched images. Although the proposed 
method cannot be applied as is to general medical images, 
other pairs of functional and anatomical images such as 
PET/MRI and whole-body diffusion-weighted MRI meet 
this requirement and can be targets of the proposed method. 
We will investigate the application of our method to these 
modalities in our future work.

This study is a preliminary one and has the following 
limitations. First, the performance of our anomaly detec-
tion method was evaluated only for chest lesions in a rela-
tively small number of images. To better demonstrate the 
usefulness of the proposed method, we are now preparing 
datasets containing various abnormalities found throughout 
the body. Second, this method cannot provide a qualitative 
diagnosis, such as whether the detected FDG uptake is from 
a malignant or a benign lesion. This is the limitation of the 
anomaly detection approach itself of learning the normal 
FDG distribution and detecting out-of-normal findings. In 
this sense, the proposed method will be suitable for initial 
screening, rather than for making a final diagnosis. Third, 
what our method detects is affected by the choice of the 
training dataset. For example, a bias of the training dataset 
towards older people will cause false-positive detections 
for the physiological findings specific in younger people, 
such as ovarian and endometrial uptake in premenopausal 
women. This problem may be addressed by the careful selec-
tion of training datasets depending on the target patients or 
by improving our method so that it can take clinical infor-
mation such as age and gender into account. Finally, fur-
ther performance improvements may be necessary before 
our proposed method can be used in clinical practice. The 
proposed method showed sufficient sensitivity in the lesion 
localization task, but it output up to approximately ten false-
positive candidates per scan. A large number of false posi-
tives can lead users to neglect CAD outputs and impair the 
benefits of CAD, even with CAD’s high sensitivity [23]. 
Therefore, it is important to reduce the number of false posi-
tives while maintaining sensitivity. For example, employing 
a three-dimensional neural network or investigating more 
sophisticated postprocessing algorithms than simple Z-score 
thresholding may improve the detection performance.

In conclusion, our method based on a Bayesian deep 
learning technique successfully detected both pulmonary 
and extrapulmonary abnormalities in chest PET/CT images 

by training only with normal PET/CT images. In our future 
work, we plan to extend our target to whole-body PET/CT 
and also other modalities such as PET/MRI and whole-body 
diffusion weighted MRI.

Appendix

Training

Our BNN has a U-net [17] architecture as shown in Table 
3. Its input is a two-dimensional CT slice and its output is a 
two-channel image, which consists of a predicted PET slice 
and a pixel-wise variance image. As in ref. [14], this BNN 
is trained using normal PET/CT images by maximum likeli-
hood estimation. Assuming that each pixel value (SUV) of 
the PET slice follows a Gaussian distribution, the network 
can be trained by minimizing the following objective func-
tion L(�) , which is derived from the negative log-likelihood 
of Gaussian distribution:

where � is the network weights, D is the number of output 
pixels, yi is the i-th pixel of the ground-truth PET image, ŷi 
is the i-th pixel of the predicted PET image, and �̂2

i
 is the i

-th pixel of the predicted variance image.

(2)L(𝜃) =
1

D

∑

i

((
yi − ŷi

)2

2�̂�2
i

+
1

2
log�̂�2

i

)

,

Table 3  Architecture of our U-net

“Conv” and “Deconv” denote a convolutional and a transposed con-
volutional layer, respectively, both with a kernel size of 4 × 4 and a 
stride of 2. Every layer other than the last is followed by a Leaky Rec-
tified Linear Unit (ReLU) activation function with a 0.2 slope

Layer #Channels Output Size BatchNorm Dropout

(Input) (1) (256 × 256) – –
Conv1 64 128 × 128 No No
Conv2 128 64 × 64 Yes No
Conv3 256 32 × 32 Yes No
Conv4 512 16 × 16 Yes No
Conv5 512 8 × 8 Yes No
Conv6 512 4 × 4 Yes No
Conv7 512 2 × 2 Yes No
Conv8 512 1 × 1 Yes No
Deconv1 512 2 × 2 Yes Yes
Deconv2 512 4 × 4 Yes Yes
Deconv3 512 8 × 8 Yes Yes
Deconv4 512 16 × 16 Yes No
Deconv5 256 32 × 32 Yes No
Deconv6 128 64 × 64 Yes No
Deconv7 64 128 × 128 Yes No
Deconv8 2 256 × 256 Yes No



737Japanese Journal of Radiology (2022) 40:730–739 

1 3

In the actual experiments, we employed a Laplace dis-
tribution instead of Gaussian, which is reported to provide 
better performance in regression tasks in vision [14]. We 
also found that network training progresses well by adding 
the L1 loss 

∑
i
�
�yi − ŷi

�
� to the objective function in addition 

to the above log-likelihood. The final objective function to 
minimize is:

where λ is a hyperparameter that controls the contribution 
of L1 loss. We empirically set λ to 100 in the experiments.

The training was conducted for 50 epochs using the 
Adam optimizer [27] with a learning rate of 0.0002 and the 
momentum parameters β1 = 0.5 and β2 = 0.999. We used 
1,800 out of the 1,878 training scans for the actual training 
of the BNN, and the remaining 78 for validation. We calcu-
lated the validation loss for the validation set at the end of 
each training epoch, and the parameters (network weights) 
with the minimum validation loss were used for the final 
evaluation. Figure 8 shows the learning curve of our BNN.

The non-Bayesian neural network for the baseline experi-
ment had exactly the same U-net architecture as the Bayes-
ian one, except that the number of output channel(s) was 1 
instead of 2. This was trained to simply predict the PET slice 
from the corresponding CT slice using the L1 loss function.

Inference

The inference is performed using a technique called Monte 
Carlo Dropout [14, 24]. Dropout [25] is a technique used to 
prevent neural networks from overfitting, which randomly sets 
the model weights to 0 during training. Here, dropout is also 

(3)

L(�) =
1

D

�

i

�√
2��yi − ŷi

�
�

�̂i

+ log�̂i

�

+
�

D

�
�

i

�
�yi − ŷi

�
�

�

,

used during inference (test time) and the inference is per-
formed T times. From the T sets of U-net outputs 

{
ŷt, �̂t

2
}T

t=1
 , 

the mean and variance of normal SUVs can be estimated as

where E(yi) and Var
(
yi
)
 are the mean and variance of SUVs 

at the i-th pixel, and ŷti and �̂ti
2 are the i-th pixel values of 

the t-th U-net outputs ŷt and �̂t

2 respectively.

Lesion candidate extraction for FROC analysis

The lesion candidates in FROC analysis were extracted from 
Z-score maps by binary thresholding and connected-compo-
nent analysis as follows,

1. Applying a median filter with a kernel size of 3
2. Masking the out-of-body area, which is automatically 

extracted from the CT image by the method of Nomura 
et al. [26]

3. Binary thresholding with Z > 3
4. Extracting connected components as lesion candidates

FROC analysis including normal scans

In the main text, FROC analysis was performed only for the 
abnormal scans. Here, to show that the tendency for false posi-
tives to be generated does not largely change for normal scans, 

(4)E(yi) ≈
1

T

∑

t

ŷti

(5)Var
(
yi
)
≈

1

T

∑

t

�̂
2
ti
+

1

T

∑

t

ŷ2
ti
− E

(
yi
)2
,

Fig. 8  Training and validation losses of our BNN

Fig. 9  FROC analysis without (w/o) and with (w/) normal scans, 
which both showed almost the same performances. The curve “w/o” 
is the same as “Overall” in Fig. 6
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we collected 61 additional normal scans (47 from males and 14 
from females; mean age, 57.0 years; age range, 41–78 years) 
and added them to those for the evaluation for FROC analysis. 
These additional scans were collected similarly to those in the 
dataset described in the main text, from adults who visited 
our hospital between November 1st and 7th, 2015. Figure 9 
shows that the addition of normal scans does not change the 
results significantly.
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