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INTRODUCTION

On the road toward artificial general intelligence (AGI), two solution paths have been explored:
neuroscience-driven neuromorphic computing such as spiking neural networks (SNNs) and
computer-science-driven machine learning such as artificial neural networks (ANNs). Owing to
availability of data, high-performance processors, effective learning algorithms, and easy-to-use
programming tools, ANNs have achieved tremendous breakthroughs in many intelligent
applications. Recently, SNNs also attracted a lot of attention due to its biological plausibility and
the possibility of achieving energy-efficiency (Roy et al., 2019). However, they suffer from ongoing
debates and skepticisms due to worse accuracy compared to “standard” ANNs. The performance
gap comes from a variety of factors, including learning techniques, benchmarks, programming tools
and execution hardware, all of which in SNNs are not as developed as those in the ANN domain.

To this end, we propose a Research Topic, named “Understanding and Bridging the Gap
between Neuromorphic Computing and Machine Learning,” in Frontiers in Neuroscience and
Frontiers in Computational Neuroscience to collect recent researches on neuromorphic computing
and machine learning to help understand and bridge the aforementioned gap. We received 18
submissions in total and accepted 14 of them in the end. The scope of these accepted papers covers
learning algorithms, applications, and efficient hardware.

LEARNING ALGORITHMS

How to train SNN models is the key to improve its functionality, thus bridging the gap
between ANN models. Unlike the ANN domain that has grown rapidly via sophisticated
backpropagation-based learning algorithms, the SNN domain is still short of effective
learning algorithms due to the complicated spatiotemporal dynamics and non-differentiable
spike activities. Currently, there are overall two categories of learning algorithms for
SNNs: unsupervised synaptic plasticity with biological plausibility [e.g., spike timing
dependent plasticity, STDP (Diehl and Cook, 2015)] and supervised backpropagation
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with gradient descent [e.g., indirect learning by acquiring
gradients from the ANN counterpart (Diehl et al., 2015; Sengupta
et al., 2019), direct learning by acquiring gradients from the SNN
itself (Lee et al., 2016; Wu et al., 2018; Gu et al., 2019; Zheng
et al., 2021), or the combination of both (Rathi et al., 2020)]. The
latter can usually achieve higher accuracy and has advanced the
model scale to handle ImageNet-level tasks. In the future, we look
forward to seeing more studies on SNN learning to close the gap.

Next, we briefly summarize the recent progress of neural
network (especially SNN) learning presented in our accepted
papers. Inspired by the curiosity-based learning mechanism of
the brain, Shi et al. propose curiosity-based SNN (CBSNN)
models. In the first training epoch, the novelty estimations of
all samples are obtained through bio-plausible synaptic plasticity;
next, the samples whose novelty estimations exceed the threshold
are repeatedly learned and the novelty estimations are updated
in the next five epochs; then, all samples are learned with one
more epoch. The last two steps are periodically taken until
convergence. CBSNNs show better accuracy and higher efficiency
in processing several small-scale datasets than conventional
voltage-driven plasticity-centric SNNs. Daram et al. propose
ModNet, an efficient dynamic learning system inspired from
the neuromodulatory mechanism in the insect brain. An inbuilt
modulatory unit regulates learning based on the context and
internal state of the system. The network with modulatory
trace achieves 98.8% ± 1.16 on average over the omniglot
dataset for five-way one-shot image classification task while
using 20x fewer trainable parameters compared to state-of-the-
art models. Kaiser, Mostafa et al. introduce deep continuous
local learning (DECOLLE), an SNN model equipped with local
error functions for online learning. The synaptic plasticity
rules are derived from user-defined cost functions and neural
dynamics by leveraging existing autodifferentiation methods
of machine learning frameworks. The model demonstrates
state-of-the-art performance on N-MNIST and DvsGesture
datasets. Fang et al. propose a bio-plausible noise structure
to optimize the performance of SNNs trained by gradient
descent. Through deducing the strict saddle condition for
synaptic plasticity, they demonstrate that the noise helps the
optimization escape from saddle points on high dimensional
domains. The accuracy improvement can reach at least 10% on
MNIST and CIFAR10 datasets. Panda et al. modify the SNN
configuration with backward residual connections, stochastic
softmax, and hybrid artificial-and-spiking neuronal activations.
In this way, the previous learning methods are improved
with comparable accuracy but large efficiency gains over the
ANN counterparts.

APPLICATIONS

Unlike the artificial neuron in ANNs, each spiking neuron in
SNNs has intrinsic temporal dynamics, which is appropriate
for processing sequence information. In this Research Topic,
we accepted two papers that discuss SNN applications. Wu
et al. explore the first work that uses SNNs for large-
vocabulary continuous automatic speech recognition (LVCSR)

tasks. Their SNNs demonstrate competitive accuracies on
par with their ANN counterparts while consuming only 10
algorithmic timesteps and 0.68× total synaptic operations.
They integrate the models into the PyTorch-Kaldi Speech
Recognition Toolkit for rapid development. Kugele et al. apply
SNNs for processing spatiotemporal event streams (e.g., N-
MNIST, CIFAR10-DVS, N-CARS, and DvsGesture datasets).
They improve the ANN-to-SNN conversion learning method by
introducing connection delays during the pre-training of ANNs
to match the propagation delays in converted SNNs. In this
way, the resulting SNNs can handle the above tasks accurately
and efficiently.

In addition, besides energy-efficiency (Merolla et al., 2014),
recent studies further find that the event-driven computing
paradigm of SNNs endows them high robustness (He et al., 2020;
Liang et al., 2020) and superior capability in learning sparse
features (He et al., 2020). We believe it is very important to mine
the true advantages of SNNs to determine their true value in
practical applications.

EFFICIENT HARDWARE

Performing neural networks on general-purpose processors is
inefficient, which stimulates the development of various domain-
specific hardware platforms, including those for ANNs [e.g.,
DaDianNao (Chen et al., 2014), TPU (Jouppi et al., 2017), Eyeriss
(Chen et al., 2017), Thinker (Yin et al., 2017), etc.), for SNNs (e.g.,
SpiNNaker (Furber et al., 2014), TrueNorth (Merolla et al., 2014),
Loihi (Davies et al., 2018), DYNAPs (Moradi et al., 2017)], and
for cross-paradigm modeling [e.g., Tianjic (Pei et al., 2019; Deng
et al., 2020)]. In this Research Topic, we accepted seven papers
for neural network hardware: three for ANNs, two for SNNs, and
two for cross-paradigm.

Sim and Lee propose SC-CNN, the bitstream-based
convolutional neural network (CNN) inspired by stochastic
computing (SC) that uses bitstreams to represent numbers,
to improve machine learning hardware. Benefitting from
the CNN substrate, SC-CNN can achieve high accuracy;
further benefitting from SC, SC-CNN is highly efficient,
scalable, and fault-tolerant. Different from the common digital
machine learning accelerators, Kaiser, Faria et al. present a
clockless autonomous probabilistic circuit, wherein synaptic
weights are read out in the form of analog voltages, for
fast and efficient learning with no use of digital computing.
They demonstrate a circuit built with existing technology to
emulate the Boltzmann machine learning algorithm. Muller
et al. introduce bias matching, a top-down neural network
design approach, to match the inductive biases required in
a machine learning system to the hardware constraints of
its implementation.

To alleviate the high cost training of SNNs using
backpropagation, Lee et al. propose a spike-train level direct
feedback alignment (ST-DFA) algorithm. Compared to the
state-of-the-art backpropagation learning algorithm, they
demonstrate excellent performance vs. overhead tradeoffs
on FPGA for speech and image classification applications.
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Dutta et al. propose an all ferroelectric field-effect transistors
(FeFET)-based SNN hardware that allows low-power spike-
based information processing and co-localized memory and
computing. They implement a surrogate gradient supervised
learning algorithm on their efficient SNN platform, which
further accounts for the impacts of device variation and
limited bit precision of on-chip synaptic weights on the
classification accuracy.

Parsa et al. build a hierarchical pseudo agent-based multi-
objective Bayesian hyperparameter optimization framework for
both software and hardware. They can not only maximize
the performance of the network, but also minimize the
energy and area overheads of the corresponding neuromorphic
hardware. They validate the proposed framework using both
ANN and SNN models, which involves both deep learning
accelerators [e.g., PUMA (Ankit et al., 2019)] and neuromorphic
hardware [e.g., DANNA2 (Mitchell et al., 2018) and mrDANNA
(Chakma et al., 2017)]. Instead of implementing ANNs
and SNNs separately, integration of them has become a
promising direction to achieve further breakthroughs toward
AGI via complementary advantages (Pei et al., 2019). Therefore,
the efficient hardware that can support individual modeling
of ANNs and SNNs as well as their hybrid modeling
is very important. This has been achieved by the cross-
paradigm Tianjic platform (Deng et al., 2020), based on
which Wang et al. further present an end-to-end mapping
framework for implementing various hybrid neural networks.
By constructing hardware configuration schemes for four
typical signal conversions and establishing a global timing
adjustment mechanism among different heterogeneous modules,
they implement hybrid models with low execution latency and
low power consumption.

CONCLUSION

Machine learning and neuromorphic computing are two
modeling paradigms on the road toward AGI. ANNs have
achieved tremendous breakthroughs in many intelligent
applications benefitting from big data, high-performance
processors, effective learning algorithms, and easy-to-use
programming tools; in contrast, SNNs are still in its infant stage
and there is a dire need for more neuromorphic benchmarks.
Through cross-discipline research, we expect to understand
and bridge the gap between neuromorphic computing and
machine learning. This Research Topic is just a small step in this
direction, and we look forward to more innovations that can
achieve brain-like intelligence.
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