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ABSTRACT In many contexts, the problem arises of determining which of many candidate mutations is the
most likely to be causative for some phenotype. It is desirable to have a way to evaluate this probability that
relies as little as possible on previous knowledge, to avoid bias against discovering new genes or functions.
We have isolated mutants with blocked cell cycle progression in Chlamydomonas and determined mutant
genome sequences. Due to the intensity of UV mutagenesis required for efficient mutant collection, the
mutants contain multiple mutations altering coding sequence. To provide a quantitative estimate of prob-
ability that each individual mutation in a given mutant is the causative one, we developed a Bayesian
approach. The approach employs four independent indicators: sequence conservation of the mutated
coding sequence with Arabidopsis; severity of the mutation relative to Chlamydomonas wild-type based
on Blosum62 scores; meiotic mapping information for location of the causative mutation relative to known
molecular markers; and, for a subset of mutants, the transcriptional profile of the candidate wild-type genes
through the mitotic cell cycle. These indicators are statistically independent, and so can be combined
quantitatively into a single probability calculation. We validate this calculation: recently isolated mutations
that were not in the training set for developing the indicators, with high calculated probability of causality,
are confirmed in every case by additional genetic data to indeed be causative. Analysis of “best reciprocal
BLAST” (BRB) relationships among Chlamydomonas and other eukaryotes indicate that the temperature
sensitive-lethal (Ts-lethal) mutants that our procedure recovers are highly enriched for fundamental cell-
essential functions conserved broadly across plants and other eukaryotes, accounting for the high informa-
tion content of sequence alignment to Arabidopsis.
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The use of model genetic systems to obtain insight into related
organisms is well established; as a leading example, yeast genetics
has been highly revelatory about fundamental cell biology in
animals (Botstein and Fink 2011). Because fungi diverged from
animals considerably after their last common ancestor diverged
from the plant lineage (Rogozin et al. 2009), it is an open question
to what extent yeast/animal paradigms will apply to the plant
lineage.

To address this question, we initiated a genetic screen for Ts-lethal
mutations in the green alga Chlamydomonas reinhardtii, focusing on
cell cycle control mutations (Tulin and Cross 2014). The reasoning was
that facile microbial genetics and cell culture would facilitate isolation
of informative mutants, compared to carrying out a related screen di-
rectly in higher plants. A specific feature likely to make such a screen
easier in green algae than in higher plants is the high degree of gene
duplication in plants, largely due to multiple whole-genome duplica-
tions in the plant lineage after divergence from green algae. Loss-of-
function genetics is severely hampered by the presence of duplicated
sequences; theChlamydomonas genome is largely (though not entirely)
single-copy for protein-coding sequence.

From the broad spectrum of Ts-lethal phenotypes, we concentrated
on two classes:mutants that initiated some cytological features of the cell
division program but failed to complete division, and mutants with
competence at cell growth thatwere unable to initiate divisionprocesses.
We called these mutant classes “DIV” and “GEX”, respectively. Cell
cycle-related genes based on annotations (e.g., DNA polymerase sub-
units) were mainly in the DIV class; GEX genes were more diverse in
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function based on annotations. Together, these classes represented a
few percent of the total Ts-lethal spectrum (Tulin and Cross 2014).

The assumption behind the project, with respect to gaining insight
into higher plant genomes, is that evolutionary conservation will likely
preserve the function of essential genes, so that genes identified by
Ts-lethal screening as essential inChlamydomonaswill be essential (or will
be members of essential sequence families) in higher plants. This assump-
tion is plausible but by no means certain. As a trivial example, yeast cell
walls are essential, but animal cells lack walls and genes for their pro-
duction. Additionally, replacement of important cell cycle regulators by
entirely unrelated proteins carrying out similar functions is documented
comparing yeast and animals (Cross et al. 2011; Medina et al. 2016).

In our approach, Ts-lethal mutations were induced by UV
mutagenesis; identification of likely causative mutations was by
next-generation sequencing analysis of bulked segregant pools,
which identifies SNPs at or linked to the causative mutation (Tulin
and Cross 2014). Two problems remain. First, the sequencing approach
identifies the causative mutation in most but not all cases; second, the
density of UV-induced mutagenesis needed for efficient screening
(Breker et al. 2016) is such that the causative SNP is frequently very
difficult to separate by meiotic recombination from a small number of
linked “passenger” SNPs. These problems mean that formally, in no
case can we assert with certainty that a given SNP is causative; if it is one
of a number of linked candidates, a priori any of them could be caus-
ative, and even if it is the only candidate, it is possible that it is a
passenger with an unsequenced, truly causative mutation.

To solve this problem, we followed three routes. First, complemen-
tation and linkage analysis can demonstrate that we have multiple
independent alleles in the same gene. In such a case, if independent
mutations altering the same gene model are found by sequence
analysis, we assume that these mutations are causative. Second, in
many cases we could isolate revertants by selection at high temper-
ature.When sequence analysis showed that the revertants altered one
of the gene models hit by the original set of SNPs (typically by exact
reversion, or by pseudoreversion at a nearby residue), we assume that
this also constitutes definitive identification.

Third, for mutants not covered by either method, we developed a
Bayesian method, based on sequence characteristics of the candidate
SNPs and linkage analysis. This method was sketched out previously
(Tulin and Cross 2014). Here, we specify and develop the exact model.
We extend the method, substantially increasing its power, by the ad-
dition of a new indicator: transcriptional profiling of candidate genes
through the cell cycle. Critically, we validate the method by analysis of
new genetic and molecular data, with mutations not in the training set
used to develop the indicators. Finally, we use bioinformatics tests,
including analysis of BRB-defined sequence families, to show that es-
sential genes in Chlamydomonas are preferentially conserved with re-
spect to higher plant genomes.

MATERIALS AND METHODS

Mutant isolation and mutation detection
Ts-lethal (“Ts2”) mutants were isolated after UV mutagenesis, and
screened for proliferation-specific defects as described (Tulin and Cross
2014; Breker et al. 2016). Candidate causativemutations were identified
by bulked segregant sequence analysis, as described (Tulin and Cross
2014), or by a new method for parallel bulked segregant sequence
analysis in combinatorial pools (M. Breker, K. Lieberman, F.R. Cross,
unpublished results). Candidate causative mutations were those that
were uniformlymutant in pools of Ts2 segregants from a cross towild-
type (or, reciprocally, uniformly wild-type in pools of Ts+ segregants.

We call a candidate causativemutation “definitive” (Tulin andCross
2014) if it hits a gene model that is also hit in an independent isolate
and the two isolates fall in the same linkage/complementation group, or
if we have isolated an intragenic revertant that alters the mutation (true
or pseudorevertants). For the present analysis, we employed definitive
mutations defined in Tulin and Cross (2014). “Passenger” mutations
(UV-induced mutations that do not cause the Ts2 phenotype) were
identified either as those present at , 100% prevalence in pools of
Ts2 segregants from crosses of various mutants to wild-type, or that
were uniform but distinct from the true causative mutation, pro-
vided the latter was known “definitively.” In this way, we collected
67 independent definitive causative mutations, described in Tulin
and Cross (2014), and 137 passenger mutations. These mutations
constitute the “training set” for finding Bayesian discriminators.

Importantly fordevelopmentof thepresent analysis, identificationof
the causative andpassengermutations in the training set is entirely based
on genetic data, and is independent of annotations (beyond the essential
segmentation of the genome into gene models (Blaby et al. 2014),
mutational severity, or transcriptional pattern.

For the “test set,”we employed the 20mutants isolated in Tulin and
Cross (2014) as single members of their complementation groups. All
of these mutants were mapped to a chromosomal location relative to
physical markers (generally to within 1–2 Mb), and all had varying
numbers of candidate mutations for causality within the mapped re-
gion. For seven of these mutants, additional mutant screening (Breker
et al. 2016) yielded new alleles based on linkage and complementation
testing, and causative mutations were obtained from the genomic se-
quences of these new mutants as well.

Linkage mapping
We carried out meiotic mapping of Ts-lethals mainly employing two
methods. First,we developed allele-discriminatoryPCRprobes (using the
competitive approach described by Onishi et al. (2016)) that allow de-
termination of wild-type or mutant in a single reaction, and tested mul-
tiple meiotic segregants (Ts2 or Ts+) for marker status. This procedure
has the benefit of anchoring the mapping at exactly the site of interest,
but the disadvantage that it is hard to test large numbers of progeny.
Ts2 segregants lacking the mutant marker or Ts+ segregants with
the marker are counted as recombinant chromosomes. A second
method is tetrad analysis of a mutant against a tester Ts-lethal with
a known physical location. We have developed a “microtetrad” ap-
proach in which hundreds of tetrads can be rapidly dissected and
analyzed on a single plate, by dissecting over an area of �1 mm and
transferring the plate to restrictive temperature only when meiotic
products have just germinated and formed microcolonies. It is then
simple to count the number of Ts+ segregants per tetrad to deter-
mine PD, NPD, and T tetrad classes.

For analysis, we combine mapping data obtained with independent
alleles of the same gene, defined by noncomplementation and lack of
recombination in meiosis since the latter property, using our current
recombination assay (Breker et al. 2016), implies no recombination in
hundreds or thousands of meioses, and thus very close linkage.

The computation of probability requires specification of a physical
region that is assumed to contain the causative mutation. For simplicity,
we use as boundaries positions 2Mb away from the leftmost or rightmost
SNPsdetectedasuniformlymutant inbulkedsegregant sequenceanalysis.

Transcription data
The cell cycle transcriptome data of Zones et al. (2015) consists of
RNAseq gene counts of two replicates of a light:dark-synchronized cell
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cycle. We averaged the replicates and carried out three-point running-
average smoothing, then determined the time point when each gene
reached its smoothed maximum (“peak time”) and the ratio of the
maximum to the minimum of the smoothed series for each gene
(“peak-to-trough ratio,” PTR). This simple calculation obviously dis-
cards a lot of information, but these simple features are enough tomake
an effective discriminator.

BRB analysis
If two sequences, one from each of two genomes,find each other as their
best BLAST hit in cross-genome comparisons, this provides the basis of
forming a potential “orthologous” family, containing these two se-
quences as well as potential recent gene duplicates from within each
genome (“in-paralogs”) (Remm et al. 2001). Here, we report anal-
ysis of such orthologous families “seeded” by searching with each
Chlamydomonas protein as query against seven genomes: Arabidopsis,
Brachypodium, and Physcomitrella (dicot, monocot, andmoss from the
land plants); Homo and Drosophila (two animals); and Saccharomyces
and Aspergillus (two fungi). Reference proteomes were downloaded
from public-access databases Phytozome, UniProt, SGDB, and ADB.

Data availability
See Supplemental Material, File S1 for the MATLAB code. Figure S1
illustrates how BRB analysis will likely pick out sequences in different
genomes originating from a single gene ancestor at the time of the
species split. Figure S2 contains a construction of a theoretical proba-
bility distribution for location of a causative mutation based on genetic
mapping, and also the assignment of candidate SNPs to either the
“causative” probability density function (pdf) derived from mapping,
or to a uniform “passenger” pdf. Figure S3 illustrates the transcriptional
pattern of Chlamydomonas genes, segregated by BLAST scores vs.
Arabidopsis. Figure S4 is a test of the computation with synthetic data.

RESULTS

The training set
TodetermineusefulBayesian indicators, it isnecessary tohave a training
set of positive and negative examples. To obtain these, we made the
assumption that causative mutations were “definitively” (i.e., ground
truth) detected in a specific genemodel in the following cases: (1) where
multiple alleles in the same gene, defined by failure of genetic comple-
mentation and recombination, were shown to have mutational lesions
altering coding sequence in the same gene model; and (2) where at least
a subset of selected revertants of the mutant were found to have
reverted the original lesion in the gene model (either exact or pseudor-
evertants). In almost all cases, these assignments were also supported by
meiotic mapping. These constitute positive examples of causative mu-
tations. The bulked segregant sequence analysis to determine candidate
causative mutations (Tulin and Cross 2014) also yields sequences of
noncausative mutations induced by UV (“passengers”). We consider
such mutations to be definitive passengers if they are either linked to
but distinct from a definitive causative mutation or if they are on a
different chromosome from the causative mutation [note that we usu-
ally can definitively identify the chromosome bearing the causative
mutation even when the causative mutation itself is not definitively
identified, based on uniform detection in the region of mutations (fre-
quently passengers) linked to the causative mutation]. This analysis
resulted in a training set of 69 causative and 137 passenger mutations.

The training set is only useful if it is an unbiased sample. In this case,
bias appears unlikely. Identification of the causative mutations is based
entirely on formal genetic criteria, and is independent of any annotation

information (e.g., alignment or previous information about the gene or
its relatives).

BLAST-detected conservation with Arabidopsis
The DIV/GEX Ts-lethal mutations identify essential functions, and
genes required for essential functions might be more conserved across
evolution than nonessential genes. The land plants Arabidopsis and
Chlamydomonas diverged �1 billion years ago (Yoon et al. 2004),
and their common ancestor diverged from other eukaryotes including
animals and yeast�1.6 billion years ago. Only 40% ofChlamydomonas
genes have detectable BLAST homology over any part of their sequence
withArabidopsis, and this number drops to 30%with a requirement for
a BLAST bit-score of at least 100 (data not shown). Thus, conservation
withArabidopsis is a strict criterion, but one that likely allows detection
of core machinery conserved in the Viridiplantae lineage.

Retaining protein function through evolution generally requires
much greater conservation in some protein regions (e.g., active sites)
than others (e.g., protein loops and N- and C-termini). The scheme
used here (Figure 1) subdivides the relationship of mutational position
to BLAST results as follows:

Class A: mutation falls within a segment of BLAST alignment (high-
scoring pair or HSP), and the mutation alters a conserved residue
within this segment [“conserved” is defined operationally as fol-
lows: the Blosum62 score (Henikoff and Henikoff 1993) between
Arabidopsis and Chlamydomonas at the position is. 0 (meaning
that conservation is observed more often than would be expected
by chance)].

Class B: mutation falls within an overall conserved region, but alters
an unconserved residue; is BLAST-aligned across a small deletion
in the Arabidopsis sequence in the HSP; or is found between two
distinct HSPs (these three distinct possibilities are joined into one
category to prevent excessive slicing of the training set, and be-
cause in all cases the mutation is to an unconserved residue but is
surrounded by regions of conservation)].

Class C: mutation is N-terminal or C-terminal to all detected HSPs.
Class D: no Arabidopsis BLAST hit.

The order A. B. C. D seems plausible for likely disruption of
conserved protein structure/function. While finer-grained classifica-
tions are possible, it is important to keep the number small enough
that the training set can provide reasonable occupancy of the bins.

The distributions of causative and passenger mutations from the
training sets among these classes showed sharpdifferentiation (Figure 2,
top left). Most notable was the extreme enrichment of classes A and B
among causative mutations, indicating a strong correlation between
essential functional regions of key proteins, and conserved alignment
through evolution.

Best reciprocal BLAST analysis
BLAST alignments can reflect a range of degree of relationship. High,
end-to-end similarity might reflect orthologous function. However,
many alignments are due solely to conservation of a common small
protein domain (e.g., WD40-repeats). One way to discriminate among
BLAST hits is best reciprocal BLAST analysis (BRB): when protein X
from genome A finds protein Y from genome B as one of the best hits,
and reciprocally, protein Y from genome B has protein X from genome
A as one of the best hits (Remm et al. 2001). Frequently, there are other
sequences in genome A, more similar to X than is protein Y from
genome B; these may be derived from duplication of X after separation
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of lineage A from lineage B (Figure S1). We have carried out reciprocal
BLAST analysis along these lines between Chlamydomonas and
a range of other eukaryotes: three representative land plants:
Arabidopsis, a dicot; Brachypodium, a monocot; Physcomitrella,
a moss; two animals, humans, and Drosophila; and two fungi,
Aspergillus and Saccharomyces.

To validate the BRB search, we note that Chlamydomonas
should be approximately equally diverged from Arabidopsis (a
dicot), Brachypodium (a monocot), and Physcomitrella (a moss),
since these are all in the higher land plant lineage with a single
divergence time from Chlamydomonas. Consistent with this idea,
a Venn diagram shows very strong overlap between Chlamydomonas
proteins identified as BRB family members using these three genomes
as targets (Figure 3, top left). This set of 2818 orthologous families may
be broadly distributed among Viridiplantae.

In the Chlamydomonas vs. Arabidopsis search, most candidate
ortholog families contain single members in Chlamydomonas, but fre-
quently containmultiple members inArabidopsis (Figure 4). This may be
due to ancient gene or genome duplications in the land plant lineage
(Adams andWendel 2005) after the split from green algae. Similar results
for gene family sizes were obtained in comparisons ofChlamydomonas to
Brachypodium and Physcomitrella (data not shown).

Eight-hundred and nine Chlamydomonas genes were in ortholo-
gous families with family members in all seven genomes tested (three
plant, two animal, and two fungal); these may be near universal among
eukaryotes.

DIV/GEX gene enrichment in the BRB gene sets
In carryingout thismutant hunt (Tulin andCross 2014), the phenotypic
sorting of mutants, and concentration on the “DIV/GEX” class, was
based on the idea that genes with these mutant phenotypes might
specifically identify core conserved cellular functions. Confirming this
idea, while only 26% of Chlamydomonas genes are in a BRB-defined
orthologous family with any of the seven genomes tested, 79% of DIV
and GEX genes are in a BRB family with a gene from at least one of the
test genomes. This enrichment is even greater in the plant-orthologous
families (76% vs. 16%), and is especially strong in the plant–animal–
fungi orthologous families: (44% vs. 5%) (Figure 3). This finding
strongly suggests that theDIV/GEX class is strongly enriched for deeply
conserved functions, dating back to the LCA of plants and Opistho-
konts [thus, near to the eukaryotic LCA (Rogozin et al. 2009)].

Mutational severity
Amino acid substitutions vary in their potential to disrupt protein
function. Tomeasure the likely severity of effect of substitutions caused
by UV-induced mutations, we use the Blosum62 score (Henikoff and
Henikoff 1993). Blosum scores have been shown to perform well com-
pared to most other measures for the determination of mutational se-
verity (Yampolsky and Stoltzfus 2005). Distributions of this score for
causative and passenger mutations are broad, but there is a clear shift
of the causative mutations to more negative (more severe) Blosum62
scores. Empirically, a cutoff of score , 21 gives a good separator be-
tweenmost causative andmost passengermutations (Figure 2, top right).

“BLAST/Blosum” combined index
Tomakea simplediscriminator, theBLASTclassesA–Dwere combined
with the severity index (mutation has Blosum,21, or$21) tomake
eight classes. Notably, the occupancy of these classes by causative and
passenger mutations was almost exactly that expected from multipli-
cation of the marginals, that is, the BLAST criterion and the mutational
severity criterion were almost entirely independent (compare Figure 2
lower left and lower right). The overall discriminatory power of this
index is high, with log10-likelihood ratios ranging from 0.9 for category
1 to 21.4 for category 8, which is up to a 200-fold differential.

Blosum scores are used for both aspects of the BLAST/Blosum
categorization, but in different ways. The “mutational Blosum” is for
the comparison of wild-type and mutant Chlamydomonas genes,
while the BLAST-related score is for the comparison of wild-type
Chlamydomonas to wild-type Arabidopsis. These two Blosum scores
can, thus, be high or low independently of each other [e.g., mutation
of a Leu to Ile in a residue that is Pro in Arabidopsis (mutation
severe, conservation low) or mutation of a Leu to Pro in a residue
that is also Leu in Arabidopsis (mutation nonsevere, conservation
high)]. The observation that the theoretical distribution derived by
multiplication of marginals in Figure 2 lower right is almost iden-
tical to the actual distribution is empirical proof that these criteria
are indeed independent.

The distribution of passengermutations among these categorieswas
similar to that of mutations randomly generated in silico (data not
shown), suggesting that the passenger training set is largely reflective
of the initially generated mutational spectrum, with little effective se-
lection operating against most mutations over the short term of these
experiments. This computational finding implies that the distribution
of passenger mutations among these categories is robust, and not a
statistical fluke or an artifactual consequence of the training set selec-
tion procedure. A priori one might expect in silico-generated random
mutations to have a higher content of severe mutations in conserved

Figure 1 Relationship of mutation to BLAST alignments of Chlamydo-
monas gene model (C.r) to Arabidopsis (A.t.). (A) Mutation falls within a
conserved segment; (B) mutation falls between conserved segments;
(C) mutation is N- or C-terminal to a conserved segment; or (D) no
conserved segment detected by BLAST. Note that for empirical clas-
sification, a mutation in an unconserved residue, in an unaligned res-
idue within a high-scoring pair (conserved segment), or a mutation
falling between two conserved segments are all assigned to class B.
Rules for truncating mutations (stop codons and splice donor/acceptor
mutations; found in a small minority of the causative temperature-
sensitive-lethal mutations): if upstream of the C-terminal-most con-
served segment, class A; otherwise class B.
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regions, since the actual passengers were subject to in vivo negative
selection. This probably reflects the severe population bottleneck in-
volved in a mutant hunt, where all that is required is proliferation of a
mutated cell to make a moderate-sized colony, in the essential absence
of competition.

Construction of a formal Bayesian model
The full presentation is in the Appendix. Briefly, suppose there are N
candidate SNPs. We assume the causative mutation is a single-gene
lesion (since a large majority of Ts-lethals segregate 2:2 in tetrad anal-
ysis). Note that, in the present experimental context, N is generally not
large, since the bulked segregant sequencing approach (Tulin andCross
2014) will rule out most of the mutations in the original mutant since
the wild-type and mutant alleles will both be detected (typically �50%
each) in sequence from a pool of �10 Ts segregants from a cross to
wild-type. This reduces N from hundreds to single digits.

Bulked segregant sequencing fails to detect any candidate causative
SNPs in a minority of cases (Tulin and Cross 2014) (discussed further
below). The reason for this is presently unknown; a simple explanation
would be if the mutated gene is not present in the assembled genome
(which is known to have gaps), but this is unlikely to be the complete
explanation (Tulin and Cross 2016). Call U the probability [which we
estimate at�25% (Tulin and Cross 2014)] that the causative mutation
escaped detection by sequencing and therefore is none of the N candi-
dates. If the causative mutation was detected by sequencing, we assume
that it is exactly one of the N SNPs.

From Figure 2, define Bi as the likelihood ratio for SNPi: the prob-
ability that a causative mutation is in the BLAST/Blosum class of the
SNP, divided by the probability that the passenger mutation is in this
class. Define Q as the likelihood ratio of unsequenceability U/(12U).

Then, the probability that one specific SNPi is causative, given the
BLAST/Blosum characteristics of the collection of N SNPs, by Bayes’
theorem (see Supplemental Material for detailed derivation), is:

PðSNPi  is  causativeÞ ¼ Bi=½ΣkðBkÞ þ NQ�
The probability that the causative mutation escaped detection by
sequencing is:

Pðcausative  SNP  unsequencedÞ ¼ NQ=½ΣkðBkÞ þ NQ�
Mutations with high Bi (such as severe mutations in conserved resi-
dues) are more likely to be causative. Increasing numbers of candidate
mutations (higher N) decreases the likelihood that any individual one
is causative. Conversely, the likelihood that the causative mutation
escaped detection by sequencing decreases with increasing numbers
of SNPs with high Bi.

Mapping information
In principle, meiotic mapping could reduce the interval carrying the
causative mutation to an arbitrarily small size. However, meiotic
distances are in centimorgans. Conversion to physical distance
(needed for causative SNP identification) requires knowing the
centimorgan/megabase conversion ratio. This is known on average
to be �10 cM/Mb (Merchant 2007; Tulin and Cross 2014), but it is
well known in many organisms that this ratio is variable across the
genome due to hot- and cold-spots for recombination. We have
found one region of �0.5 Mb across which there is no detectable
recombination (no recombinants in at least 1000 meioses; F. R.
Cross, unpublished results); this is an extreme case, but surely not
the sole such interval.

Figure 2 Constructing Bayesian classifiers. Mutational Blosum scores, BLAST category, and BLAST/Blosum category distribution (top left, top
right, and bottom left) for definitive DIV/GEX vs. coding sequence-changing passenger mutations (the training set). Lower right: BLAST/Blosum
categories computed by multiplication of individual Blosum and BLAST probabilities. Near identity of the two lower graphs indicates indepen-
dence of these measures. DIV, mutants that initiated some cytological features of the cell division program but failed to complete division; GEX,
mutants with competence at cell growth that were unable to initiate division processes.
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However, in cases where candidatemutations are separated by 1Mb
orgreater,meioticmappingcanprovidediscriminatorypower,using the
mapping strategies described in theMaterials inMethods. It is useful to
translate such mapping results into estimated probabilities for physical
location of the causative mutation. The full development of these esti-
mates is described in the Supplemental Material. Briefly, we assume a
normal-like distribution of probable location of the causative mutation,
with the mean at the best estimate (measured centimorgans from the
known marker � 0.1 Mb/cM), and SD 0.5 Mb [based on the maximum
nonrecombining interval detected, and on apparent measured error
(deviation from the 0.1 Mb/cM average) in many such mapping ex-
periments (Tulin and Cross 2014)]. Passenger mutations have proba-
bility density that is uniform across the known possible region
(typically a chromosome or chromosome arm). Then, if Li is the
location of SNPi, g(Li) is a scaled relative probability density at this
position, and Q is the likelihood ratio that the causative mutation was
not sequenced [that is, if U is the probability of unsequenceability,
Q = (U/(12U)], then the probability that ofN SNPs, SNPi is causative is:

PðSNPi   is  causativeÞ ¼ gðLiÞ½ΣkðgðLkÞÞ þ NQ�
where Li is the location of SNPi, and g is an appropriately scaled
probability density function intended to conservatively represent plau-
sible locations of the causative SNP [derivation of g (Supplemental

Material) essentially assumes that a given mapping result is equivalent
to an approximately normal distribution for probability of true loca-
tion, with mean the best estimated location, and SD based on mapping
error).

Chromosomal location is almost surely independent of BLAST/
Blosum values since, like most eukaryotes, Chlamydomonas exhibits
broad dispersal of functionally-related genes across chromosomes. In-
dependent probabilities multiply; therefore, BLAST/Blosum informa-
tion can be integrated with mapping information to produce a single
probability of causality for each candidate SNP:

PðSNPi   is  causativeÞ ¼ gðLiÞ � Bi=½ΣkðgðLkÞ � BkÞ þ NQ�

Transcriptional regulation
Chlamydomonas exhibits very strong differential transcription through
its mitotic cycle. In particular, many genes, including many that are
probably specifically required for DNA replication and cell division, are
induced by huge factors (. 100-fold) in S/M-phase cells compared to
newborn G1 cells (Tulin and Cross 2015; Zones et al. 2015). The
mutations we isolated previously as blocking cell cycle progression
(Tulin and Cross 2014) were separated into two broad phenotypic

Figure 3 BRB analysis was carried out with the Chlamydomonas proteome as query, against Arabidopsis thaliana, Brachypodium distachyon,
Physcomitrella patens, Homo sapiens, Drosophila melanogaster, Saccharomyces cerevisiae, and Aspergillus niger genomes (three plants, two
animals, and two fungi). Top left: overlap of identity of Chlamydomonas genes in BRB-orthologous families with the three plant genomes.
2818 Chlamydomonas genes are in such families with proteins from all three plant proteomes. Top right: overlap of Chlamydomonas genes
in BRB-orthologous families with all three plant proteomes, both animal and both fungal genomes. Below: proportion of total Chlamydomonas
genes (blue) and definitive DIV/GEX genes (red; Tulin and Cross 2014) in the overlap classes shown at top. A.th, Arabidopsis thaliana; B.di,
Brachypodium distachyon; BRB, best reciprocal BLAST; Cre, Chlamydomonas; DIV, mutants that initiated some cytological features of the cell
division program but failed to complete division; GEX, mutants with competence at cell growth that were unable to initiate division processes;
P.pa; Physcomitrella patens.
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categories: “div” mutations, that showed evidence of entry into the
replicative cycle followed by arrest, and “gex” mutants, that showed
no signs of even initial replication/division processes. It was noted
(Tulin and Cross 2015; Zones et al. 2015) that DIV genes, but not
GEX genes, were highly likely to exhibit the transcriptional pattern
noted above, of huge induction in S/M phase. Since this induction is
observed with only a small proportion of genes overall, this provides
another plausible Bayesian discriminator, specifically for the DIV class
of genes.

To set up such a discriminator, we made use of a cell cycle tran-
scriptome derived from RNAseq of two replicates of a light:dark-
synchronized cell cycle (Zones et al. 2015). We converted data for every
gene into two numbers: PTR and time of peak (T) (Figure 5A). Almost
80% of genes are at least twofold differentially regulated through the
timecourse, as previously reported (Zones et al. 2015). It is also notable
that peak times are mostly in three clusters: early [�6 hr, before com-
mitment to a replicative cell cycle (Zones et al. 2015)], middle (�13 hr,
in the middle of the S/M cycles), and late (20–24 hr, as newborn cells
mature and hatch). DIV genes identified in Tulin and Cross (2014) are
marked on the figure. MostDIV genes are expressed in the S/M period,
at very high PTR, clearly separated from the large majority of other
genes (Tulin and Cross 2015; Zones et al. 2015).

The number of definitively identified DIV genes is not large, so the
data will not at present support a fine-grained analysis. Around seventy
percent of DIV genes have T between 12 and 13.5 hr and PTR $ 2,
while this category includes only 13% of the total genes. We used this
criterion as a binary discriminator to detect a “DIV-like” pattern (Fig-
ure 5B). Importantly, this criterion was established using only the de-
finitively identifiedDIV genes from Tulin and Cross (2014), although it
is evident that the broader class of probableDIV genes follows the same
pattern (Figure 5A). This criterion provides another Bayesian test. Call
“Ti” the transcriptional likelihood ratio (DIV/all genes) for the gene in
which SNPi is found (two classes, DIV-like or not):

PðSNPi   is  causativeÞ ¼ Ti=½ΣkðTkÞ þ NQ�
Perhaps surprisingly, the cell cycle transcriptional pattern is largely
independent of BLAST homology to Arabidopsis (Figure S3), and is
surely independent of mutational Blosum scores for individual SNPs.
Absence of functional clustering implies that the transcriptional pat-
tern is likely also independent of map position. Therefore, the test for

transcriptional category can be combined multiplicatively with
BLAST/Blosum scores and mapping information to yield an inte-
grated probability that a given SNP is causative for a mutation in
the div phenotypic class:

PðSNPi   is  causativeÞ ¼ gðLiÞ � Bi � Ti=½ΣkðgðLkÞ � Bk � TkÞ þ NQ�

The transcriptional regulation test is more preliminary than the
BLAST/Blosum and mapping tests, because it is based on only a small
training set and is restricted to a single phenotypic class. This will
doubtless improve as more mutants are defined, growing the training
sets for div and for other phenotypic classes. Initial analysis supported
some subclustering among the gex phenotypic class of genes, for
example (Zones et al. 2015).

Thus, given the results of BLAST for the candidate gene against
Arabidopsis, the severity and location of the mutation, any available
mapping data, and (for DIV-class mutations) the transcriptional pat-
tern, a Bayesian probability of causality for each SNP can be calculated
directly from the equation above. The values in Figure 2 and Figure 5
generate the likelihoods, and the computational procedure outlined
in the Appendix converts mapping data for each mutant also into
likelihood (see Appendix; MATLAB code is provided in Supplemental
Material to carry out this calculation). U, the probability of unsequen-
ceability or failure to detect a Ts-lethal lesion by sequencing, is esti-
mated at a flat 25% (Tulin and Cross 2014).

Validation of the approach
To test the accuracy of the derivation, we generated in silico “mutants”
with varying numbers of candidates over a region, where the causative
and passenger mutations had the empirically observed distributions of
indicators, the causative mutation had 25% probability of unsequence-
ability, and linkage data were generated by explicit simulation of cross-
over generation. We then calculated the probability of being causative
for each SNP in this set. The assigned probability was accurate, and the
detection had high sensitivity and selectivity based on ROC curves
(Figure S4).

This finding shows that the method has potential as a strong
discriminator, but provides no independent validation of the approach.
Toaccomplish this,wemadeuseofnewmutant isolationdata, generated
since the publication of the training set in Tulin and Cross (2014). In
Table 1, we report the calculated Bayesian probabilities for causality for

Figure 4 Gene duplicates in BRB-
defined orthologous families. Orthol-
ogous families containing Cre and At
members were sorted by which pro-
teome contributed more members to
the family (top). Left: Cre . At; mid-
dle: same numbers from each; right:
At . Cre. Bottom: mean and SEM of
the number of family members from
each proteome, in each case. A.t,
Arabidopsis thaliana; BRB, best recip-
rocal BLAST; Cre, Chlamydomonas.
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candidate SNPs found in genome sequences of mutants in 20 comple-
mentation groups. These complementation groups were identified in
Tulin and Cross (2014) by single mutant alleles, therefore causative
mutation identification was not considered definitive. Importantly,
for this reason, none of the mutants or SNPs in Table 1 were used
for the training set for BLAST/Blosum values or transcriptional pattern.

Tests in Table 1 used the BLAST/Blosum score, linkage, or tran-
scriptional pattern, alone or in all combinations, using the equations
above (source data in SupplementalMaterial). Note that while the initial
mutants contained large numbers (10–100) of coding sequence-
changing mutations, the bulked segregant sequencing strategy
(Tulin and Cross 2014), and in some cases additional mapping
crosses, whittles these down to a much smaller number, based on
the principle that temperature-sensitive segregants WITHOUT
some SNP, or temperature-resistant segregants WITH some SNP,
eliminate that SNP from consideration for causality (we take this as
ground truth). For each mutant background, all remaining candidate
SNPs are tested in the table. The calculation is carried out as described
above with input for each SNP: BLAST/Blosum category 1–8, transcrip-
tional category (DIV-like or not), and linkage data (marker location and
numbers of recombinant/nonrecombinant progeny).

In �85% of cases, a single SNP is identified as a strongly preferred
candidate from eachmutant background (calculated probability 0.966
0.05). In mutants with multiple “competing” SNPs, probability distri-
butions are in general strongly bimodal: one high-probability
SNP (usually P . 0.9), with other SNPs assigned probabilities
of 0.00–0.10. These two clusters most likely represent causative
mutations and passengers.

The three criteria (BLAST/Blosum, linkage, and transcriptional
pattern) interact. For the presumed causative mutations (high proba-
bility), the single, double, and triple tests gave probability estimates of
0.756 0.24, 0.886 0.16, and 0.966 0.05 (mean6 SD), respectively;
thus, combining tests increased the probability estimates. For the pre-
sumed passenger mutations, the estimates for single, double, and triple
tests were 0.15 6 0.16, 0.07 6 0.13, and 0.02 6 0.03, respectively;
combining tests decreased the probability estimates. This is expected
if the presumed causative mutations are likely to share all three attri-
butes, while random passenger mutationsmight fortuitously score high
for one but probably not for another one. Thus, the multiple tests inter-
acted to drive divergence in probability estimates between the presumed
causative mutations and passengers, resulting in more reliable spe-
cific detection. For gex mutations, the transcription test is not applicable;

Figure 5 The DIV-like transcriptional
pattern. (A) Cell cycle transcriptional
data of Zones et al. (2015) was ana-
lyzed: two timecourses were aver-
aged, and a three-timepoint running
average calculated. Two values were
extracted: peak time (time point at
which the plot was maximal), x-axis;
and PTR (highest level divided by low-
est level), y-axis. The heat map (scale
at right) shows the complete gene set.
Placement of def and non-def DIV
genes on the plot is indicated by
green and blue circles. (B) proportion
of DIV genes and of all genes in two
bins of PTR/peak expression time, the
“S/M”-like pattern (PTR $ 4, peak
time 12–14 hr; Zones et al. 2015),
and all other patterns. def, definitive;
DIV, mutants that initiated some cyto-
logical features of the cell division pro-
gram but failed to complete division;
GEX, mutants with competence at cell
growth that were unable to initiate di-
vision processes; non-def, nondefini-
tive; PTR, peak-to-trough ratio.

2088 | F. R. Cross et al.



nevertheless, the BLAST/Blosum and linkage tests interacted in the
same way to give high probability identification in most cases.

Critically, new mutant isolation (Breker et al. 2016; Breker et al.,
unpublished results) has resulted in definitive determination of 13 caus-
ative mutations falling in six genes (div43, div45, div46, div48, div50,
and div72) (Table 1). This determination is based on the criterion
(Tulin and Cross 2014; see above) that lesions in the same gene model,
found in multiple independent isolates in the same complementation
group, definitively identify the causative target gene. We also consider

the assignment ofDIV68 to the sole profilin homolog inChlamydomonas
to be definitive, since the div68-1 mutation results in almost com-
plete loss of profilin detectable by Western blotting, and also has
multiple phenotypes consistent with loss of actin function, as
expected for profilin inactivation (M. Onishi, personal communi-
cation). Thus, 14 mutations, newly determined to be causative, have
high calculated Bayesian probabilities (0.93 6 0.14).

These results contrastwith those forDIV40.div40-1 contains a single
candidate coding sequence-changing SNP; however, it is a very weak

n Table 1 Bayesian testing with mutations in 20 genes not in the training set

Tests

B L T BL BT LT BLT Assigned Gene Model
Confirmed
Causality

div34-1 0.90 0.91 0.84 0.98 0.98 0.98 1.00 Cre07.g341700/MPS1
0.01 0.00 0.05 0.00 0.00 0.00 0.00

div40-1 0.22 0.09 0.94 0.01 0.59 0.33 0.04 (Cre17.g704950)
div40-2 NA NA NA NA NA NA NA No candidate SNP
div41-1 0.39 0.82 0.84 0.68 0.78 0.96 0.92 Cre06.g292850/CDC6

0.06 0.00 0.05 0.00 0.01 0.00 0.00
div42-1 0.86 0.18 0.84 0.76 0.98 0.73 0.97 Cre12.g513600/SGT1A

0.05 0.70 0.05 0.17 0.00 0.18 0.01
div43-1 0.80 0.82 0.94 0.86 0.95 0.96 0.97 Cre04.g220700/Aurora B Yes
div43-2 0.80 0.75 0.94 0.80 0.95 0.94 0.95 Cre04.g220700/Aurora B Yes
div45-1 0.86 0.59 0.84 0.94 0.98 0.93 0.99 Cre01.g015250/PolD-cat Yes

0.05 0.28 0.05 0.03 0.00 0.03 0.00
div45-2 0.84 0.25 0.44 0.84 0.96 0.44 0.97 Cre01.g015250/ PolD-cat Yes

0.01 0.25 0.03 0.01 0.00 0.03 0.00
0.01 0.25 0.44 0.01 0.01 0.44 0.01

div46-1 0.06 0.44 0.84 0.07 0.47 0.90 0.50 (Cre01.g017450/PolA2) Yes
0.84 0.46 0.05 0.90 0.41 0.06 0.45 (Cre01.g012950/MLTK)

div46-2 0.95 0.75 0.94 0.95 0.99 0.94 0.99 Cre01.g017450/PolA2 Yes
div47-1 0.90 0.29 0.84 0.79 0.98 0.73 0.95 Cre01.g055200/GIF3

0.01 0.25 0.05 0.01 0.00 0.04 0.00
div48-1 0.95 0.89 0.94 0.98 0.99 0.98 1.00 Cre08.g372550/CDKB Yes
div48-2 0.80 0.75 0.94 0.80 0.95 0.94 0.95 Cre08.g372550/CDKB Yes
div48-3 0.80 0.75 0.94 0.80 0.95 0.94 0.95 Cre08.g372550/CDKB Yes
div49-1 0.95 0.83 0.94 0.97 0.99 0.96 0.99 Cre12.g525500/GCP2
div50-1 0.45 0.22 0.44 0.36 0.86 0.35 0.81 Cre12.g521200/RFC1 Yes

0.03 0.37 0.44 0.04 0.06 0.59 0.10
0.45 0.34 0.03 0.57 0.06 0.04 0.08

div50-2 0.90 0.38 0.84 0.90 0.98 0.84 0.98 Cre12.g521200/RFC1 Yes
0.01 0.38 0.05 0.01 0.00 0.05 0.00

div51-1 0.95 0.67 0.94 0.93 0.99 0.91 0.99 Cre15.g636300/TFC-B
div52-1 0.95 0.75 0.94 0.95 0.99 0.94 0.99 Cre17.g715900/THY2
div53-1 0.18 0.82 0.94 0.26 0.54 0.96 0.64 (Cre17.g744247)
div57-1 0.58 0.90 0.94 0.98 0.99 0.98 0.96 Cre06.g278950/Aug4
div60-1 0.95 0.52 0.51 0.87 0.87 0.27 0.71 (Cre01.g039350/P450 reductase)
div65-1 0.95 0.86 0.94 0.97 0.99 0.97 1.00 Cre06.g270250/CDC45
div68-1 0.82 0.26 0.76 0.85 0.97 0.78 0.98 Cre10.g427250/Profilin Yes

0.05 0.23 0.05 0.04 0.00 0.05 0.00
div70-1 0.81 0.34 0.17 0.90 0.65 0.28 0.83 Cre09.g398650/Cactin

0.01 0.32 0.17 0.01 0.01 0.27 0.01
0.06 0.22 0.17 0.04 0.05 0.18 0.04

div72-1 0.80 0.95 0.94 0.96 0.95 0.99 0.99 Cre07.g312350/PolA3,4 Yes
div72-2 0.95 0.75 0.94 0.95 0.99 0.94 0.99 Cre07.g312350/PolA3,4 Yes

All 20 DIV genes reported in Tulin and Cross (2014) as single alleles not confirmed by reversion testing were analyzed to determine Bayesian probabilities that
candidate SNPs in each mutant (full table in Supplemental Material) are causative, based on Equations 1a, 2a, 4, and combined tests; triple “BLT” test from equation
5. Tests based on: B, BLAST/Blosum values; L, linkage; and T, transcriptional pattern. Double and triple letters indicate combined tests. In the cases of div45, div46,
div48, div50, and div72, new alleles (“22”, “23”) have been isolated in recent mutant screening (Breker et al., unpublished results). Assigned gene model: most likely
carrier of causative mutations (annotation information for orthologous Arabidopsis gene also provided). Confirmed causality: ‘Yes’ (also bold-face gene name and
probability estimate) indicates isolation of an independent allele (noncomplementing, nonrecombining) with a lesion in the same gene model. In the case of div68-1,
we assume the assignment of DIV68 as a profilin homolog is definitive, even in the absence of a second allele, since div68-1 mutants have almost no detectable
profilin protein by western blotting (M. Onishi, personal communication).
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candidate (similar in probability estimates to the collection of known
passenger mutations). We have now isolated a second independent
allele div40-2 (defined as allelic since div40-1 and div40-2 fail to comple-
ment in transheterozygous diploids, are both located on the left arm of
chromosome 17, and fail to recombine with each other in hundreds of
meioses.) However, bulked segregant sequencing of div40-2 revealed no
coding sequence-changing mutation that was uniformly present in
Ts2 segregants (data not shown), and nomutation at all within hundreds
of kilobases of the div40-1 candidate. Therefore, we suspect that both the
div40-1 and div40-2 causative mutations escaped detection by sequenc-
ing, and that the single candidate for div40-1 is indeed a passenger.

This phenomenon, in which multiple independent alleles in a well-
defined complementation group fail to share lesions in any one gene
model (or have no candidate lesions at all), was observed previously and
was examinedwith care in the cases of div14 and div16 (Tulin andCross
2014). Four alleles of div14 were mapped in multiple crosses and by
complementation testing to the same position on chromosome 4 (�4
Mb on the physical map), and five alleles of div16 to chromosome 10 at
�6.5 Mb (data not shown). Bulked segregant sequencing to high cov-
erage (. 200 · in the cases of one allele each of div14 and div16, and at
least 50 · coverage of the other seven independent alleles) failed to
reveal the causative mutations. We call this phenomenon unsequence-
ability, and we estimated previously that �25% of Ts-lethal mutations
fall into unsequenceable genes (Tulin and Cross 2014). We do not
know the explanation for this problem, but it is taken into account in
the Bayesian calculation (Appendix). The results on div40 suggest that it
may be in this class. This interpretation also supports the value of the
Bayesian calculation, since a possible candidate for causation of div40-1
had a low calculated probability, and was subsequently found to be
likely a passenger to an unsequenced true causative mutation.

div53-1 and div60-1 mutants are intermediate cases; they contain
stronger candidates for causality than div40-1, but the candidates are
outliers relative to the larger population of presumed causative muta-
tions. The causative mutation in these strains may be atypical with
respect to the “rules” followed by the training set. These intermediate
cases quantitatively identify mutants for which identification is not
strong, and further data are required before relying on the identification
for additional experiments.

The data are clearly insufficient for a full analysis of efficiency of the
test, but qualitatively the empirical results follow the shape of the curves
derived from simulated data (Figure S4): high calculated Bayesian prob-
ability correlates with high true-positive proportion (0.936 0.13, 14 ex-
amples), while low calculated Bayesian probability may correlate with a
false-positive (0.04 for the sole candidate in div40-1; effectively zero for
div40-2 because of the absence of any candidate).

These results constitute strong validation, since the approachdeveloped
with the initial training set of definitive causative mutation generalizes to
mutants not in the training set, and inmost cases yields a strongpreferential
identification of a single highly likely causative mutation, even in back-
grounds also carrying multiple passenger mutations.

The “BL” column shows the power of the BLAST/Blosum and
linkage tests alone. These tests are sufficient to identify a most-likely
candidate in most cases, but it is clear that the orthogonal transcrip-
tional information provides considerable additional resolving power.

DISCUSSION

Identification of causative mutations in an
unbiased screen
Untargetedmutagenic screens are unbiased, requiring no hypotheses as
to which genes might be involved in a given system; this is a clear

advantage over targeted approaches such as genome editing. However,
to attain reasonable efficiency of isolation of informativemutations, it is
necessary to “pack” a large number of mutations into each clone be-
cause most point mutations have little or no phenotypic effect. This
means that, although high-throughput sequencing can identify (nearly)
all mutations in a mutant strain of interest, the problem remains of
determining which mutation is causative among hundreds or thou-
sands of candidates. For any individual mutant, there are methods that
will allow absolute certainty as to the causative SNP: high-resolution
genetic mapping, sufficient screening to identify multiple independent
alleles, isolation of intragenic revertants, and rescue by transforma-
tion. However, these approaches are impractical for large numbers
of mutants.

The Bayesianmethod converts diverse types of data to the “common
currency” of probability. This then allows statement of a quantitative
degree of certainty that our identifications are correct, which provides a
rational basis for evaluating the need for further work to confirm the
identifications.

Annotation-independent identification of
causative mutations
The problemof identifying causativemutations from a set of candidates
is a common one; for example in analyzing cancer genomes, or in
population genetics when aQTL is known to be located somewhere in a
highly polymorphic haplotype block. In those contexts, it is verydifficult
to proceed without relying on annotation-based information (e.g., a
height QTL with a SNP in a growth hormone-related gene within the
haplotype block). In the experimental context discussed in this paper,
genetic methods are sufficiently powerful that annotation-based infor-
mation can be dispensed with altogether. This is fortunate since first,
restriction to annotations largely restricts discovery to things that are
already at least partially known, and second, it is not obvious how to
assign a quantitative probability value to annotation-based information.
The approach above is a uniform Bayesian calculation, which should
integrate diverse sorts of information on a quantitatively equal basis.

However, it is important tonote that thepowerofmeioticmappingto
eliminate most SNPs from consideration is essential for successful
restriction to a singlehighly likely candidate inour analysis; theBayesian
discriminators are strong enough to detect one likely positive out of a
small number of candidates, but cannot do so from a larger field. This
aspect is less applicable in the haplotype block case, and obviously
completely unavailable in the cancer genome case. In these situations,
additional discriminators are clearly essential.

One class of annotation-based information is required in our
approach: parsing of the raw genome sequence into genemodels (exons
and coding sequence especially). Fortunately, this has been done quite
carefully and effectively in the Chlamydomonas case (Merchant et al.
2007; Blaby et al. 2014); our detailed examinations of specific issues
with the annotation (Cross 2015; Tulin and Cross 2016) have revealed
problems with only a small minority of genes.

Conservation, divergence, gene duplication,
and essentiality
A central aspect of this computation is based on the observation that
essential genes, identified by Ts-lethal single-gene mutations blocking
cell proliferation, are much more likely than the Chlamydomonas gene
set overall to lie in proteins and specific residues conserved in higher
plants, and frequently across yeast and animals as well. In contrast,
a substantial majority of Chlamydomonas genes have either no Arab-
idopsis BLAST hit, or only a hit suggestive of a small protein domain.
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Most of these genes have unknown, possibly algal-specific functions;
our results suggest that few of these functions are essential for cell
viability, or at the least very seldom are specifically essential for cell
cycle progression. Evolution of cell-essential processes is slow.

Isolation of single-gene Ts-lethals implies that there is no effective
backup in the genome; in particular, there is no gene duplicate retaining
substantial functional overlap (since otherwise the lethal phenotype
should require at least a double hit). Gene families with presumed
orthologous members in Chlamydomonas and Arabidopsis tend to be
single copy in Chlamydomonas. In Arabidopsis, multiple gene family
members are common (Figure 4), a well-known observation substan-
tially due to multiple whole-genome duplications in the higher land
plant lineage (Adams and Wendel 2005). It is a commonplace obser-
vation in Arabidopsis genetics that strong phenotypes frequently re-
quire disruption of multiple gene family members. Gene duplication
has been proposed to provide genetic “robustness” (Gu et al. 2003). In
general, theChlamydomonas genome lacks this robustness mechanism:
in most cases, mutation of the single Chlamydomonas family member
has the potential to immediately expose the maximum phenotype (Fig-
ure 4). Our results suggest that Chlamydomonas has an essential gene
set substantially conserved with higher plants, and nearly free of dupli-
cates, supporting its utility as a genetic and cell biological model for the
crucially important plant kingdom.
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APPENDIX

DETAILED DEVELOPMENT OF BAYESIAN MODELS FOR BLAST/BLOSUM, LINKAGE, TRANSCRIPTION, AND
COMBINATION MODELS

BLAST/Blosum model
Assume there areNSNPs. EachSNP falls into oneof the eight BLAST/Blosumclasses.Associatedwith each classk (k=1:8), there are two likelihoods:
Caus(k), the probability that a causative mutation is in class k, and Pass(k), the probability that a passenger mutation is in class k. These values are
exactly those plotted in Figure 2, lower right, derived from the training set (multiplication of marginals is used to avoid zeros).

Then, the set of N SNPs is associated with two 1 · N vectors C and P:

Ci ¼ Causðclass  of   SNPiÞ ði ¼ 1; . . . :;NÞ
Pi ¼ Passðclass  of   SNPiÞ

Call U the probability that the causative mutation is none of the N candidates (this corresponds to unsequenceability, we estimate U at �25%;
Tulin and Cross 2014).

Weassume that either themutation is unsequenceable (probabilityU), inwhich case all of theN SNPs arepassengers, or exactly oneof theNSNPs
is causative, therefore the remaining N21 are passengers. Call model Mi the model that SNPi is causative. The prior probability of Mi is (12U)/N,
and the probability of MU (unsequenceability) is U. These models are mutually exclusive and exhaustive.

Then, the relative probability of S = (S1,S2. . .Sn) (the set of N SNPs) given Mi is:

PðSjMiÞ ¼ P1 � P2 � . . .Pi-1 � Ci
� Pi þ 1 � . . .Pn ¼ Pj

�
Pj
� � Ci=Pi

because in this model, all SNPs are passengers except for SNPi (Pj (Pj) denotes the product of the Pj’s, j = 1 to N).
The relative probability of S given MU (unsequenceable) is:

PðSjMUÞ ¼ P1 � P2 � . . .Pi-1 � Pi � Pi þ 1 � . . .Pn ¼ Pj
�
Pj
�

because in this model, all SNPs are passengers.
These terms are in relativeprobability units becausenoprobability estimate is provided for having exactly theN SNPs found in S. This probability,

if expressed, would multiply every term and therefore divides out.
Call Q the unsequenceability likelihood ratio U/(12U).
Bayes’ theorem, given the assumption that exactly one of [M1, M2,..Mn, MU] must be true, gives:

PðMijSÞ ¼ PðSjMiÞ � PðMiÞ=fΣk½PðSjMkÞ � PðMkÞ� þ PðSjMUÞ � PðMUÞg
(where Σk denotes the sum over k = 1 to N)

Substituting:

PðMijSÞ ¼
�
Pj

�
Pj
� � Ci=Pi � ð1-UÞ=N

�
�
Σk

�
Pj

�
Pj
� � Ck=Pk � ð1-UÞ=N

�þPj
�
Pj
� � U�

Dividing top and bottom by Pj (Pj), multiplying top and bottom by N/(12U), and substituting Q for U/(12U) gives:

PðMijSÞ ¼ ðCi=PiÞ=½ΣkðCk=PkÞ þ NQ�
PðMUjSÞ ¼ NQ½ΣkðCk=PkÞ þ NQ�

Call Bi the likelihood ratio Ci/Pi (the relative prior probability that SNPi is causative relative to the probability that it is a passenger); then

PðMijSÞ ¼ Bi=½ΣkðBkÞ þ NQ�
PðMUjSÞ ¼ NQ=½ΣkðBkÞ þ NQ�

P(Mi | S) is the probability that SNPi is causative, given the BLAST/Blosum classes of all N candidate SNPs, and the probability U that the
causative mutation escaped detection by sequencing.

These probabilities have natural and expected properties. Mutations with high Bi (such as severe mutations in conserved residues) have greater
probability of being causative [high P(Mi | S)]. Increasing numbers of candidate mutations (higherN) decreases P(Mi | S), whichmakes sense since
there are many possible candidates to choose from. MU decreases in probability given the presence of one or more SNPs with high Bi. This makes
sense, since high Bi is unlikely; so seeing such a SNP in the collection leads to high likelihood that it is causative. In contrast, if all SNPs have
negligible Bi, the probability of MU approaches 1.

2092 | F. R. Cross et al.



Linkage model
In themain text,we summarized twomethods formeioticmappingof aTs-lethal: cosegregationwith a SNPmarker (inmost cases, the SNPsuspected
of being causative), or segregation compared to a secondTs-lethal with known (or strongly supported) physicalmap location. Thesemapping results
yield the numberof recombinant/nonrecombinant chromosomes between aphysicalmarker (the candidate SNPor the known location of the second
Ts-lethal) and the Ts-lethal of interest. The aim is to translate this information into probabilities for physical location of the causativemutation, since
this information can then be used as above to discriminate the different models [M1, M2,..Mn, MU].

Todo this,weemployedthe followingquantitativeapproach.Weassumethat thephysical locationofonemarker isknown(thePCR-detectedSNP
for thefirst approach, or the location of the known secondmutation in the secondapproach).We assume an average 10 cM/Mb ratio (Merchant et al.
2007; Tulin and Cross 2014), and further assume that theminimum error on themapping is 5 cM� = 0.5Mb, based on the largest cold-spot that we
have detected, as well as apparent mapping errors over a large number of such experiments (Tulin and Cross 2014). In almost all experiments,
sufficient meioses are tested that this uncertainty (rather than sampling error) is the main source of error.

We then suppose that the probability density for mutant location is approximately normal, withmean at the exact estimated location. The SD is
estimatedbyfinding95%C.I. limits for the true recombinationrate, given theobservednumbersof recombinantsandnonrecombinants.For anormal
distribution, these 95% C.I. limits will be separated by �4 SD. The theoretical SD is then set as the minimum of this distance/4, and 0.5 Mb (to
account for uncertainty about the uniformity of the 10 cM/Mb genomic average; see above). Mapping is bidirectional (e.g., 10 cM from a marker
could be 10 cM to the left or the right), so we construct both normals, sum them, and renormalize tomake the area 1. In cases where the distribution
is terminated (the end of the chromosome or the end of a region of uniformity in bulked segregant sequencing analysis), we truncate the distribution
and renormalize. This also means that the probability of causality on unlinked chromosomes is set to zero. Note that presence of the causative
mutation on this limited region is set as ground truth in this approach. This is reasonable, since linkage to a chromosome is generally established
already to extremely high probability.

If there are multiple suchmapping experiments, the probability densities are multiplied at each point and renormalized tomake a single model.
Thus, for example, a bimodal distribution of likely locations is converted by this multiplication to an essentially unimodal one, by finding
cosegregation of Ts-lethality with a SNP near the center of one of the bimodal peaks.

An illustration of the generation of such a probability density function is shown in Figure S2A, assuming one experiment showing 25/100
recombinants of a marker at 3 Mb with Ts2, and another showing 10/100 recombinants of a marker at 5 Mb with Ts2. The two mapping
experiments (top and middle) are bimodal because distance is approximately known (using 10 cM/Mb conversion) but direction is not. The two
combined (bottom) strongly favor a location of the Ts2 lesion at�5.5 to be consistent with bothmapping experiments. All curves have total area 1.
Call this function f, where f(location) = probability of the causative mutation being at the location.

f is in units of (probability/basepair), and is nonzero only over the interval known (as ground truth) to contain the Ts-lethal mutation.
Thus, the probability density for location of the causative SNP should be just f.
In contrast, the probability density for a passenger SNP should be uniform over the ground truth interval and zero elsewhere, because presence

somewhere in this interval is required for it to be in consideration. Thus, this probability is identically 1/(length of ground truth interval) for all
candidates (all positions equally likely). Call the length of this interval G; so probability for passengers at each basepair in the interval is 1/G (units of
probability/basepair, the same units as for f).

Call Li the location of SNPi (L is the vector over the N SNPs). Then:

pðLjMiÞ ¼ ð1=GÞ̂ ðN-1Þ � fðLiÞ
pðLjMUÞ ¼¼ ð1=GÞ̂ N

Rescale probability density for passenger and causative SNPs by multiplying by G; then the relative pdf of each passenger is 1, and that of the
causative SNP is G�f. Call G�f function g.

Then:

pðLjMiÞ ¼ G � fðLiÞ ¼ gðLiÞ
pðLjMUÞ ¼ 1

where p is proportional to probability density.
Prior probabilities of Mi’s and MU are as before.
Then Bayes’ theorem yields:

PðMijLÞ ¼ gðLiÞ=½ΣkðgðLkÞÞ þ NQ�
PðMUjLÞ ¼ NQ=½ΣkðgðLkÞÞ þ NQ�

(scaled probability density above is converted to probability here, because all terms are in the same units of relative probability density).
Figure S2B shows placement of two SNPs on the probability curves according to models [M1, M2, MU] (only two candidate SNPs in this

example). In this case, M2 is most likely (product of probabilities for the two SNPs is highest for this model).

Volume 7 July 2017 | Bayesian Analysis of Causative Mutations | 2093

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.039016/-/DC1/FigureS2.pptx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.039016/-/DC1/FigureS2.pptx


Combined model
Note that location of a SNP on the chromosome is independent of the BLAST/Blosum characteristics of the SNP. This means that probabilities
multiply. So:

PðMijL; SÞ ¼ gðLiÞ � Bi½Σkðg ¼ ðLkÞ � BkÞ þ NQ�
PðMUjL; SÞ ¼ NQ½ΣkðgðLkÞ � BkÞ þ NQ�

Transcription
For the DIV subclass, we can also integrate the probability that SNPi is causative, based on whether its containing gene follows the transcriptional
pattern of most of these genes (since transcriptional pattern is essentially independent of the other classifications). Using the set of strongly
identifiedDIVs, we have a simple 2 · 2 classification table:DIV gene vs. all genes and S/M transcription pattern vs. different pattern (Figure 5). If Ti
is the likelihood ratio for the gene model containing SNPi relative to transcription pattern, based on the training set of definitive DIVs vs. all genes
(Figure 5), we can integrate this information into the calculation:

PðMijL; S;TÞ ¼ gðLiÞ � Bi � Ti½ΣkðgðLkÞ � Bk � TkÞ þ NQ�
PðMUjL; S;TÞ ¼ NQ=½ΣkðgðLkÞ � Bk � TkÞ þ NQ�

To confirm that the model is correctly generated and the code calculating probabilities are accurate, we generated 20,000 “mutants” in silico
(Figure S4), aiming for a reasonable simulation of the observed distributions, and number and scale of typical linkage experiments. High
accuracy, sensitivity, and selectivity were observed, verifying the correctness of the calculations.
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