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Endometriosis is considered a serious public health issue because of the large number of females affected by this illness. Chronic
pain management in patients with endometriosis demands new strategies to increase the life quality of these patients. The
development of drug delivery systems represents a new approach in pain treatment among endometriosis patients. Diclofenac
sodium, one of the most utilized nonsteroidal anti-inflammatory drugs (NSAID), has its own limitations when being used in
formulas such as oral, parental, or local applications. In this paper, a series of four drug release formulations based on
chitosan, 2-hydroxy-5-nitrobenzaldehyde, and diclofenac sodium salt were prepared in view of the investigation of the drug
release ability. The formulations were analyzed from a morphological and supramolecular point of view by scanning electron
microscopy and polarized light microscopy. The in vitro drug release ability was investigated by mimicking a physiologic
environment. A mathematical model, using the fractal paradigm of motion, is utilized to explain the behaviors of the drug
delivery system presented in this paper. These results suggest a great potential of the proposed drug delivery system, based on
chitosan and 2-hydroxy-5-nitrobenzaldehyde to improve the diclofenac sodium salt bioavailability, and it may represent a
future treatment formula for endometriosis pain.

1. Introduction

Endometriosis is a wide benign, chronic, and inflammatory
pathology among fertile women that is characterized by pain-

ful symptomatology and infertility. The distinctive mark of
endometriosis diagnosis is represented by the presence of stro-
mal and glandular endometrial tissues outside the uterus. The
symptoms related endometriosis comprises dysmenorrhea,
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dyspareunia, and pelvic or lower abdominal pain that fre-
quently has a negative impact on the patient’s life quality,
career, daily activities, relationships, and fertility. Sometimes,
patients may accuse cyclical pain in other areas correlated with
endometriosis [1]. Even if endometriosis is a very popular con-
dition, the diagnosis can be difficult, especially in the less
severe stages (stages I-II), and at this moment, laparoscopy is
considered the “gold standard” for diagnosis [2].

The mechanisms of endometriosis are not entirely
understood. It is believed to be an inflammatory condition
that involves various endocrine, genetic, immunological,
and environmental interplays with great impact in the
initiation and progression of the pathology. The disfunction
of the immunological system plays a critical role for the
development and persistence of endometrial implants inside
the peritoneal cavity. Peritoneal fluid represents an impor-
tant immunological barrier system that contains different
immune cells such as mesothelial cells, macrophages, natural
killer (NK) cells, T and B lymphocytes, and monocytes.
Immunoinflammatory factors, angiogenic factors, and endo-
crine pathways establish specific and dynamic circumstances
that are necessary to create and grow endometriotic
implants. The macrophage population is higher within peri-
toneal fluid and endometriotic implants and contributes to
the inflammatory environment but, compared with none-
ndometriozic patients, presents a decreased phagocytic func-
tion and low expression of B scavenger receptor CD36. The
ratio between M2 anti-inflammatory macrophages and M1
proinflammatory is inverted in endometriosis patients. An
increase level of M1 macrophages found in endometriosis
tissue contributes to profibrotic activity, survival, and pro-
gression of ectopic implants by angiogenesis and immune
tolerance induction [3, 4]. Moreover, oestrogen receptors
(ER) may play an important role in macrophage regulation,
suggesting a correlation between immunological response
and oestrogens. In endometriosis patients, it was shown that
ER-α expression is positively linked to proinflammatory
cytokine expression in macrophages and ER-β presents
anti-inflammatory function [5]. An increased number of
proinflammatory cytokines were found within endometrial
implants. Therefore, ectopic implants showed a higher
expression of transcription factor, nuclear factor-kB (NF-
kB), along with fibronectin, intercellular adhesion molecule
1 (ICAM1), insulin-like growth factor I (IGFI), tumor necro-
sis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-8
(IL-8) which enhances growth function within the ectopic
implant by promoting the proinflammatory environment
[3]. These cytokines launch and enhance the inflammatory
response, targeting the recruitment of various proinflamma-
tory cells and mediators. Tumor necrosis factor and its
receptors, TNFR1 and TNFR2, represent an extrinsic apo-
ptosis pathway involved in endometriosis genesis, being
implicated in inflammatory and endometrial repair [6, 7].

Natural killer (NK) cells are normally abolished by the
peritoneal barrier environment, but within endometriosis
patients, an overexpression of different surface receptors that
can activate or suppress their function was found. They rep-
resent cytotoxic effector lymphocytes that do not need a
major histocompatibility complex or previous exposure to

the antigen to lyse the target cells. Lately, research has been
focused to identify various factors, which may suppress NK
cell cytolytic function such as IL-6, IL-15, and TGF-β1
[8–11]. The endocrine premature dendritic cells reach matu-
rity and are carried through the lymphatic vessels in
response to foreign antigens or various antigens on top of
T cells from inflammatory targets. In endometriozic tissues,
this physiological process is being modified and the popula-
tion of CD83+ dendritic cells is significantly decreased, lead-
ing to endometrial antigen misrecognition by the circulating
antiendometrial stromal cells [7].

Inflammation represents an important key in endome-
triosis pathogenesis, and further studies focused on the
intracellular signaling mechanisms will contribute to under-
stand better the inflammatory pathogenesis of endometriosis
to develop future therapeutic strategies.

The treatment of symptoms is very wide, having various
options, but the underlying pathology frequently demands
repeated medical and surgical interventions. The possibili-
ties of medical treatment include oral contraceptives,
testosterone derivatives, progestogens, and gonadotropin-
releasing hormone (GnRH) agonists. Regarding the surgical
approach, there are two modalities used for endometriosis
treatment such as ablative techniques and excision [12, 13].
In the management of pain-related endometriosis, they are
utilized as first-line therapy nonsteroidal anti-inflammatory
drugs (NSAIDs) which represent a group of analgesic drugs.
This drug class inhibits the cyclooxygenase- (COX-) 1 and
COX-2 enzymes. The COX-2 enzyme is responsible for
prostaglandin formation, an important key in inflammatory
response initiation, and its inhibition determines therapeutic
anti-inflammatory effects. Diclofenac sodium is a traditional
NSAID that inhibits both COX-1 and COX-2 with greater
impact on COX-2, being comparable to celecoxib, a first
generation of the COX-2 inhibitor [14]. Depending on the
dose that is used and the time between administrations,
diclofenac like other COX-1 and COX-2 inhibitors, associ-
ates an increased risk of gastrointestinal, cardiovascular,
and renal complications. To reduce the side effects and to
improve the variability of diclofenac indications, the phar-
maceutical industry developed different formulas with large
approaches such as oral, parental, and local applications.

Drug delivery is a research direction of high contempo-
rary interest, meant to improve the bioavailability of thera-
peutic drugs, to overcome impairments such as limited
drug solubility or tendency of aggregation and to limit their
side effects by targeted delivery. In time, many types of drug
carriers were proposed to fulfill the requirements of in vivo
drug release, such as liposomes, hydrogels, nanogels, and
micelles [15–18]. Among them, the hydrogels present the
advantage of high similarity with human tissues, while those
based on natural or derivatives of natural have good biocom-
patibility and biodegradability. Along this line of thought,
chitosan-based hydrogels proved the potential to skip the
barrier towards real-world applications, because besides
biocompatibility and biodegradation, it has also a large
realm of biologic properties [19]. Recent research in the area
of chitosan hydrogels revealed a new crosslinking method
with monoaldehydes, based on a combined physicochemical
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method consisting in the self-assembling of the newly
formed imine units into ordered clusters which play the role
of crosslinking nodes [20–23]. This nontraditional hydroge-
lation method proved a great potential for the design of drug
delivery formulations, bringing the advantage of the use of
biocompatible natural aldehydes with synergic biologic
properties [24–26]. In this context, hydrogels prepared from
chitosan and a vanillin derivative, 2-hydroxy-5-nitrobenzal-
dehyde, showed thixotropic behavior [24] and antimicrobial
activity [27], promising to be an excellent matrix for the
local delivery of diclofenac for the treatment of endometri-
osis. To further understand the mechanism behind the slow
release of drugs from these chitosan-based hydrogels, a mul-
tifractal mathematic model is proposed to explain the drug
delivery complex mechanisms.

2. Materials and Methods

2.1. Materials. Chitosan of low molecular weight (217.74 kDa,
DA: 85%), 2-hydroxy-5-nitrobenzaldehyde (98%), diclofenac
sodium salt (DCF) (99%), and phosphate buffer solution
from Aldrich were used as received.

2.2. Preparation of the Formulations. A series of four drug
delivery formulations were prepared by in situ crosslinking
of chitosan with 2-hydroxy-5-nitrobenzaldehyde in the pres-
ence of diclofenac sodium salt, according to reference [16].
Shortly, (i) a chitosan solution was prepared by dissolving it
in 0.7% acetic acid to give a 2% solution, (ii) a 1% solution
of 2-hydroxy-5-nitrobenzaldehyde in ethanol was mixed with
DCF, and then, (iii) it was slowly poured into the chitosan
solution under vigorous magnetic stirring. The quantities of
chitosan and 2-hydroxy-5-nitrobenzaldehyde were calculated
to reach four different crosslinking degrees in the final formu-
lations, corresponding to four different ratios of the amine and
aldehyde functional groups: 5/1, 4/1, 3/1, and 2/1. The diclofe-
nac amount was kept constant, consistent with the accepted
dose (g/kg). The formulation codes were formed from the
number corresponding to the ratio of functional groups and
the letter D of DCF: 5D, 4D, 3D, and 2D.

2.3. Methods and Equipment. The formulations were frozen
in liquid nitrogen and then lyophilized using a Labconco-
FreeZone Freeze Dry System equipment for 24h at −54°C
and 1.512mbar, to obtain the corresponding solid state as
xerogels.

The morphology of the formulations was investigated on
the corresponding xerogels, using a field emission scanning
electron microscope (SEM) EDAX—Quanta 200 at an accel-
erated electron energy of 20KeV.

The supramolecular architecture of the formulations was
observed by polarized light microscopy (POM) with a Leica
DM 2500 microscope, on slim slices of xerogels placed
between two lamellae.

In vitro investigation of the DCF release from formula-
tions was investigated applying a standard procedure [28].
Briefly, the formulation samples were immersed into vials
containing 10mL of phosphate buffer and maintained at
37°C. At certain moments, 2mL of the supernatant was

withdrawn and replenished with fresh buffer solution. The
concentration of DCF released into the supernatant was
assessed by measuring the specific DCF absorbance and its
fitting to a calibration curve. The experiments were per-
formed in triplicate. The absorbance spectroscopy was done
on a HORIBA spectrophotometer.

3. Results and Discussions

A series of four formulations were prepared by chitosan
hydrogelation with 2-hydroxy-5-nitrobenzaldehyde in the
presence of diclofenac sodium salt. The designing of these
formulations considered the properties of the components
and the intermolecular forces which can be developed
between them. Thus, chitosan is a well-known biopolymer
with excellent biocompatibility and biodegradability and
valuable biologic properties such as antimicrobial activity
and blood clotting, hypocholesterolemic, or immunoenhan-
cing effects. 2-Hydroxy-5-nitrobenzaldehyde has been cho-
sen as a chitosan crosslinker, due to the fact that it is a
vanillin derivative, nontoxic for the human body, and with
good antimicrobial properties [27, 29], having promising
synergistic effect with diclofenac drug. The chemical struc-
ture of the three components displays polar groups such as
–Cl, –OH, –COO–, and –NO2, which promotes intermolec-
ular forces among the three components (such as H-bonds
and polar forces) creating the possibility of a prolonged
release of the drug and thus a prolonged bioavailability. To
appreciate the influence of the matrix on the release kinetic
of the drug, four formulations were prepared by varying
the ratio between the amine and aldehyde groups and conse-
quently the crosslinking density.

Polarized light microscopy was used to assess the encap-
sulation of the drug into the matrix (Figure 1). The formula-
tions revealed birefringent banded textures, signatures of the
layered phases [20, 24, 30], confirming thus that the self-
assembling of the imine units formed between chitosan
and 2-hydroxy-5-nitrobenzaldehyde was the main promotor
of formulation hydrogelation [20–24]. This texture pattern
was evident for all four formulations, signifying that the
DCF presence did not hamper the hydrogelation for any of
them. Besides, the texture was continuous, without crystals,
suggesting that DCF molecules were dispersed into the
hydrogel matrix at least at the submicrometric level, under
the evaluation limits of the POM [28].

As the formulation morphology is in an important factor
affecting the drug kinetics release, scanning electron micros-
copy was performed to have a better understanding of it.
Figure 2 shows that the microstructure of the formulations
was not significantly affected by the crosslinking degree.
Except for the 2D formulation, which showed a more com-
pressed structure with no clear pores, the other samples
revealed a porous morphology, with well-delimited inter-
connected pores with a diameter around 50μm. Compared
to the neat hydrogels without drug, their pore walls were
thick, indicating the encapsulation of DCF into them [24].
This hypothesis is supported by the strong interactions
which can develop between the DCF and the hydrogel
matrix, which clearly prompted the drug anchoring into
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matrix. In this view, it can be expected that the diffusion of
the DCF molecules through the matrix will be retarded, pro-
moting its prolonged release [31].

The in vitro release of DCF from the formulations was
monitored by applying conditions which mimic the physio-
logic environment. As can be seen in Figure 3, the DCF was
released in a pulsatile manner, no matter what was the cross-
linking degree of the matrix [32]. Taking into consideration
the influence of the drug size on the dissolution rate, this
behavior can be correlated with the encapsulation of the
DCF into the formulations as submicrometric crystals of dif-
ferent sizes [24]. Furthermore, no clear correlation of the
release profile to the crosslinking degree was distinguished.
The hydrogel matrix with the lowest crosslinking degree
(5D) was favorable towards a fast release of almost all DCF
amounts over 9 days. On the contrary, the formulation with
the highest crosslinking degree (2D) presented a more rapid
release compared to those with a medium crosslinking
degree (3D and 4D), attaining more than 80% DCF release
compared to less than 70%. Nevertheless, the exponential
trend line showed a continuous release of the drug for the
entire investigation period (Figure 3). This release behavior,
which did not match to a clear rule, has been correlated with
the dissimilar viscosity of the hydrogelation system,
influencing the DCF crystallization, i.e., the growing of crys-
tals of different sizes.

4. Theoretical Model

Taking into account the complexity of the phenomena that
occur in release processes (drug diffusion, erosion of poly-
mer matrix, drug solubility, etc.), it is admitted (evidently,
as a work hypothesis) that this “complexity” can be “cov-
ered” by multifractality. In other words, the polymer-drug
complex system release dynamics will be described through
continuous and nondifferential curves (multifractal curves
and not monofractal curves, i.e., of a single fractal dimension
DF , as is the usual case in [33]). Then, the multifractal theory
of motion in its hydrodynamic form becomes functional
through the following equations [34, 35]:

∂tV
i
D +Vl∂lV

i
D = −∂iQ, ð1Þ

∂tρ + ∂l ρVl
D

� �
= 0, ð2Þ

Q = 2λ2 dtð Þ 2/f αð Þ½ �−1 ∂l∂
l ffiffiffi

ρ
pffiffiffi
ρ
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∂
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∂
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Figure 1: Birefringent textures of the 2D–5D formulations evidenced by POM.
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Figure 2: Microstructure of the studied formulations visualized by SEM.

0.5
0

20

40

60

80

100

1 2 3 4 8 24 48 72 96 120 144 168 192 216Time (hours)

D
ru

g 
re

le
as

e (
%

)

4D
3D

2D
5D

Figure 3: Drug release profile of DCF from formulations and the corresponding exponential trend line.

5Journal of Immunology Research



In relations (1)–(4), the terms have the following
meanings:

(i) t is the nonfractal time having the role of an affine
parameter of the release curves

(ii) Xl is the multifractal spatial coordinate

(iii) Vi
D is the “multifractal fluid” velocity on a differen-

tiable scale resolution (the polymer-drug complex
system is assimilated to a “multifractal fluid”; for
details on the “behavior” of such a “physical
object,” see [33–35])

(iv) ρ is the state density of the “multifractal fluid”

(v) λ is the structural constant specific to the release
process associated to the multifractal—nonmulti-
fractal transition

(vi) dt is the scale resolution

(vii) f ðαÞ is the singularity spectrum of order α depen-
dent on the fractal dimension DF [36, 37]

Operating with multifractal “manifolds” instead of
monofractal ones (in the case of dynamic release systems)
has some advantages:

(i) Areas of the polymer-drug complex system of a
certain fractal dimension may be identified and
can be characterized from a release dynamic view-
point. From here, the number of zones of the
polymer-drug complex system which have their
fractal dimension in a certain interval of values
may be identified

(ii) Universality classes can be identified in the domain
of dynamic release systems, even when the attractors
have different aspects

Equation (1) corresponds to the multifractal law of spe-
cific momentum conservation and equation (2) corresponds
to the multifractal conservation law of state density, while
equation (3) corresponds to the multifractal specific scalar
potential as a measure of the multifractalization degree of
the release curves.

Introducing the fractal state function of the form

ψ = ffiffiffi
ρ

p exp isð Þ, i =
ffiffiffiffiffiffi
−1

p
, ð5Þ

where
ffiffiffi
ρ

p
is an amplitude and s is a phase, then, two types of

velocities can be defined:

(i) Vi
D velocity at differentiable scale resolution

Vi
D = 2λ dtð Þ 2/f αð Þ½ �−1∂is ð6Þ

(ii) Vi
F velocity at nondifferentiable scale resolution

Vi
F = dtð Þ 2/f αð Þ½ �−1∂i ln ρ ð7Þ

Now, the synchronization of the dynamics at the two
scale resolutions, equivalent to the controlled drug release
process, implies the operation with the following con-
straint:

Vi
D = −Vi

F : ð8Þ

In this condition, the multifractal conservation law of
state density transforms into a diffusion equation of multi-
fractal type:

∂tρ = λ dtð Þ 2/f αð Þ½ �−1∂l∂
lρ = σ∂l∂

lρ: ð9Þ

It results that these “mechanisms” “manifest”/are “per-
ceived” as diffusions at various scale resolutions in a mul-
tifractal space (Fickian-type diffusion, non-Fickian-type
diffusion, etc.). To explain this situation it should be con-
sidered the one-dimensional drug diffusion of multifractal
type from a controlled-release polymeric system with the
form of a plane shut, of thickness δ. If drug release of
the multifractal type occurs under perfect sink condition,
the following initial and boundary conditions can be
assumed:

t = 0,

−
α

2 < x < α

2 ,

ρ = ρ0

t > 0,

x = ± α

2 ,

ρ = ρ1,

ð10Þ

where ρ0 is the initial drug state density of the multifractal
type in the “device” of the multifractal type and ρ1 is the
drug state density at the “polymer-fluid” interface of the
multifractal type. This solution equation under these con-
ditions can take the following form (for details in the clas-
sical case, see [38, 39]). In Figure 4 shows the multifractal
function representation utilized to analyze the drug release

f = ρt
ρ∞

= 2 σt

δ2

� �1/2
= π−1/2 + 〠

∞

n=1
−1ð Þn erfc nδ

2 σtð Þ1/2
" #( )

:

ð11Þ

An accurate expression can be obtained for small
values of t since the second term of (11) disappears, and
then, it becomes:

ρt
ρ∞

= 2 σt

δ2

� �1/2
= const tð Þ1/2: ð12Þ

6 Journal of Immunology Research



In such a context, ρt/ρ∞ can be assimilated to the
fraction of dissolved drug, i.e., Mt/M∞ ≡ ρt/ρ∞, where
Mt is the amount of drug dissolved in time t and M∞ is
the total amount of time dissolved when the pharmaceuti-
cal dosage form is exhausted [40, 41]. The confirmation of

the model is presented in Figure 5, for the release of DCF
from the chitosan-based matrix. The empirical data was
fitted with the multifractal function. The model is well
equipped to predict the drug release dynamics [38]. The
use of any classical model to fit the in vitro release will
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not offer any information regarding the mechanism of the
drug release, as there are a wide span of factors influenc-
ing the release process. Concerning the theoretic model
developed in the multifractal paradigm, this can be vali-
dated through an adequate calibration on the empirical
data, by choosing the constants according to the particu-
larities of our polymer-drug system followed by a normal-
ization of the data. The calibration process is not a trivial
one as it strictly depends on the nature of the phenomena
investigated; the method was previously tested for other
physical phenomena with promising results [42–63]. We
can observe that the model fits well all data sets. The sat-
uration is usually reached at around 24–28 hours depend-
ing on the formulation and its corresponding fractal
degree. This is also due to the morphology of the formu-
lation which has a more organized structure enhancing
the release; thus, a link can be made between the differen-
tial parameters defining the morphology of the polymer
and the fractal degree defining the collective movement
of the drug release scenario in a multifractal model. When
we further analyze these results in the fractal paradigm, it
results that a nonfractal morphology will lead to a higher
fractality of the release drug geodesics as it enhances the
interactions between the drug and the release media. As
the morphology of the polymer formulations becomes
fractalized, the release is reduced and the overall fractaliza-
tion degree of the drug release is reduced.

5. Conclusions

A series of four drug release formulations were prepared by
in situ hydrogelation of chitosan by with 2-hydroxy-5-nitro-
benzaldehyde in the presence of diclofenac sodium salt as a
drug model. The POM and SEM measurements emerged
to the conclusion that the formulations have a homogenous
dispersion of the drug into the pore walls at the submicro-
metric level. The size of DCF crystals appeared to vary
depending on the system viscosity during the hydrogelation.
This favored a pulsatile prolonged release of the drug over 9
days. The mathematical model was performed in the frame-
work of the scale relativity theory and validated by our anal-
ysis and experimental data.

Because pain is the most common unpleasant symptom
associated with endometriosis or deep infiltrative endometri-
osis, the current research on NSAIDs and the development
of drug delivery systems can open new future perspectives
on management of this category of patients. Drug delivery
systems already play an important role in reducing symp-
toms related endometriosis, showing great improvement in
the management of this debilitating condition.
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