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Grain Yield, Starch Content and 
Activities of Key Enzymes of Waxy 
and Non-waxy Wheat (Triticum 
aestivum L.)
Yan Zi1,2,3, Jinfeng Ding1, Jianmin Song2, Gavin Humphreys3, Yongxin Peng1, Chunyan Li1, 
Xinkai Zhu1 & Wenshan Guo1

Waxy wheat has unique end-use properties; however, its production is limited due mainly to its 
low grain yield compared with non-waxy wheat. In order to increase its grain yield, it is critical to 
understand the eco-physiological differences in grain filling between the waxy and non-waxy wheat. In 
this study, two waxy wheat and two non-waxy wheat cultivars were used to investigate the differences 
in starch-associated enzymes processes, sucrose and starch dynamics, yield components, and the final 
grain yield. The results indicated that the mean total grain starch and amylose content, the average 
1000-kernel weight and grain yield of the waxy wheat were lower than those of the non-waxy wheat 
at maturity. The amylose content was significantly and positively correlated with the activity of GBSS 
(r = 0.80, p < 0.01). Significant positive correlation also exists among activities of AGPase, SSS, GBSS, 
and SBE, except for GBSS-SBE. In summary, our study has revealed that the reduced conversion of 
sucrose to starch in the late grain filling stage is the main cause for the low kernel weight and total 
starch accumulation of the waxy wheat. The reduced conversion also appears to be a factor contributing 
to the lower grain yield of the waxy wheat.

With the growing in health-conscious consumers, there has been an increase in demand for high-quality wheat 
flour. The endosperm starch content and composition are two critical parameters for evaluating the quality of 
wheat flour. For conventionally cultivated wheat, namely non-waxy wheat, starch is a mixture of about 75% amyl-
opectin and 25% amylose. To further improve the quality of wheat flour products such as reducing staling in flour 
products, keeping baking goods fresh for a longer period of time, and improving the palatability of noodles, the 
replacement of regular wheat flour with waxy wheat flour may provide a promising solution, as waxy wheat grains 
contain almost 100% amylopectin in their starch1. Common wheat cultivars have three homeologous waxy genes, 
Wx-A1, Wx-B1 and Wx-D1, and waxy wheat mutants lack all three Wx proteins. The Wx proteins are also known 
as granule-bound starch synthases, which have a role in the synthesis of amylose1–5. However, due to low grain 
yield, the waxy wheat has not been widely cultivated in recent years. To improve the current situation, there is an 
urgent need for improved understanding of the differences in yield performance between the waxy and non-waxy 
wheat cultivars at the field level.

The endosperm starch content (approximate 70% of the dry weight) not only influences the grain weight 
and quality6,7, but also reflects the capacity of the sink tissues. Regarding the source-sink relationship, the pho-
toassimilates produced in source tissues as leaf, stem and root were transported into the amyloplast in the form 
of sucrose, which is the main carbohydrate transported in higher plants. Sucrose is degraded to fructose and 
uridine diphosphate glucose (UDPG) which are the main precursors of starch synthesis by sucrose synthase (SUS: 
EC 2.4.1.13)8,9. The ability of the sink tissues to accept and convert photoassimilates can be affected by the sink 
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strength, which is an important limiting factor to wheat grain yield, and the activity of SUS can be considered as 
an indicator of sink strength8,10,11.

A coordinated series of enzyme-catalyzed reactions in wheat endosperm result in starch synthesis12, including 
ADPG pyrophosphorylase (AGPase: EC 2.7.7.27), starch branching enzyme (SBE: EC 2.4.1.18), starch debranch-
ing enzyme (DBE), granule bound starch synthase (GBSS: EC 2.4.1.21) and soluble starch synthase(SSS: EC 
2.4.1.21). GBSS and SSS are the two forms of starch synthase13,14. For catalyzing the first unique step in starch 
synthesis, AGPase is the rate-limiting enzyme and is the most important determinant of seed sink strength15,16. 
Starch synthases catalyse the elongation of the linear glucan chains13,17, moreover the different genetic character-
ization assigns preferential functions for individual isoforms to synthesize amylose or amylopectin. It is generally 
known that in the endosperm, amylose is synthesized by AGPase and GBSS13. SBE that was formerly known as 
Q-enzyme plays an important role on amylopectin synthesis, which is the only plant enzyme that can introduce 
α-1,6-glucosidic linkages into α-polyglucans18,19.

Previous researches on waxy wheat have focused on the end-use quality, composition of the grain and the 
expression of the Wx genes4,20–22. It is reported that the seed weight of inferior spikelets of rice can be improved 
by increasing the starch-synthesizing enzymes activities23. In this study, we compared two waxy wheat cultivars 
with two non-waxy wheat cultivars to investigate the starch content and accumulation, the activities of enzymes 
responsible for starch biosynthesis in developing grain, 1000-kernel weight and grain yield with the objective 
to better understand the differences between the wheat varieties and elucidate factors affecting the 1000-kernel 
weight and grain yield of the waxy wheat.

Materials and Methods
Experimental site.  Field experiments were conducted at the Agricultural Experiment Station (32°39′N, 
119°25′E) of the Agricultural College of Yangzhou University in China during the winter wheat growing seasons 
in 2012–2013, and 2013–2014. The field site is situated in a humid subtropical climate zone, with average air tem-
perature of 13 °C to 16 °C, total precipitation of 800 to 1200 mm, total sunshine of 2000 to 2600 h, and a frost-free 
season of 220 to 240 d. The meteorological data during the wheat growing seasons across the two study years, 
including temperature and precipitation are shown in Fig. 1. The soil of the site is loamy clay. Pre-planting soil 
samples were collected prior to any fertilizer applications. The soil before sowing contained 8.38 g kg−1 organic 
matter, 100.01 mg kg−1 alkali hydrolysable N, 50.11 mg kg−1 Olsen-P, and 149.08 mg kg−1 exchangeable K at 
0–20 cm soil depth in 2012, while 19.57 g kg−1 organic matter, 107.97 mg kg−1 alkali hydrolysable N, 33.92 mg 
kg−1 Olsen-P, and 124.23 mg kg−1 exchangeable K at 0–20 cm soil depth in 2013.

Materials.  A total of four wheat cultivars were tested, including two types of waxy wheat cultivars 
Yangnuomai1 (YN1), Ningnuomai1 (NN1), [which lack functional Wx-A1, Wx-B1, Wx-C1 alleles based on a PCR 
test (data not shown)] and two non-waxy wheat cultivars Yangmai20 (Y20) and Yangfumai4 (YF4), (contained 
three functional Wx genes).

Crop management.  All plots were supplied with 240 kg N ha−1, applied with the ratio 5:1:2:2 at four stages: 
pre-sowing, four-leaf stage, jointing stage and booting stage, respectively. Application rate of P2O5 (P) and K2O 
(K) were both 144 kg ha−1: half the amounts of P and K were applied before sowing and the remaining half were 
applied at the jointing stage. The seeds were sown at a planting density of 225 × 104 ha−1 with 30 cm row spacing 
on 3 November of 2012 and 28 October of 2013. Seedling number was maintained at 225 × 104 ha−1 by removing 
or adding seedlings at the three-leaf stage. Plants were harvested on 3 June of 2013 and 28 May of 2014. Weeds, 
insects and diseases were controlled as required to avoid yielding loss; other production management practices 
were based on those used by local farmers.

Figure 1.  Mean maximum temperature, mean minimum temperature and total precipitate during the wheat 
growing season of wheat in 2012–2013 (a) and 2013–2014 (b).
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Sampling and measurements.  Measurement of grain yield, components and grain volume.  At matu-
rity, an area of 1.2 × 1 m (4 rows included) was harvested manually for the determination of the grain yield. 
Grain yield was adjusted to 13% moisture. Number of spikes was counted manually for two rows within 1 m. The 
number of kernels per spike was counted manually to calculate the mean value from 50 continuous spikes. For 
1000-kernel weight, 1000 kernels were randomly selected and weighed. The average seed volume was determined 
via the displacement method24.

Measurement of the starch, amylose, and amylopectin content.  The total starch, amylose, and amylopectin con-
tents were determined via the dual wavelength iodine binding method25,26. Wheat grains that were marked flow-
ering on the same day were first ground using a mortar, and the powder was then degreased twice with anhydrous 
ether. A 100 mg fraction of each sample was used to determine amylose and amylopectin contents. A calibration 
curve was derived using pure amylose from potato (A0512; Sigma–Aldrich, St. Louis, MO, USA) and pure amy-
lopectin from potato (A8515; Sigma–Aldrich). The sum of amylose and amylopectin contents was designated as 
the total starch content.

Measurement of the activities of AGPase, GBSS, SBE and SSS.  Twenty kernels weighed at different filling stages 
were tested. AGPase activity was assayed according to Nakamura and Cheng27,28. SSS and GBSS activities were 
assayed according to Nakamura and Cheng27,28. SBE activity was assayed according to Li et al.29.

Measurement of the sucrose content.  The sucrose content was measured by the resorcinol technique30,31. Ten 
dried spikes those were flowered on the same day were selected and killed at 105 °C for 30 min and then dried 
at 80 °C for measurements of grain weight and starch content. And then they were weighed, and then the dried 
endosperm was ground into powder for analysis. Samples of the powdered endosperm prepared as mentioned 
above (100 mg) were extracted with 8 mL of 80% ethanol at 80 °C for 30 min, followed by two extractions with 
8 mL of 80% ethanol. The supernatants were combined and purified by 10 g activated carbon overnight, fixed 
to a constant volume at 50 ml, and purified by filtering. One-hundred microliters of 2 M sodium hydroxide was 
added to 0.9 ml filtrate, boiled at 100 °C for 10 min. The mixture was cooled to room temperature, then 1 ml of 
0.1% resorcinol and 3 ml of 10 mol/L hydrochloric acid were added. The reaction mixture was boiled at 80 °C for 
60 min, cooled to room temperature, and the sucrose content was determined by measuring OD at 500 nm.

Measurement of the activity of Sucrose Synthase (SUS).  The SUS activity was assayed according to Rufty, Doehlert 
and Wardlaw32–34.

Statistical analysis.  All data were checked for normality based on the Kolmogorov–Smirnov test with SAS 
proc mixed (SAS V.9.1). The effects of year, cultivar and their interaction on test parameters were tested with 
year, cultivar as fixed effects, year as repeated measurements, and block as a random effect. Differences among 
least square means (LSMEANS) for all treatment pairs were tested by the LSD procedure at a significance level of 
P = 0.05. Pearson’s correlation analysis (SAS V.9.1) was performed to establish the relationships among all meas-
ured properties. The ANOVA (α = 0.05) was performed to identify significant differences between treatments, 
multiple comparisons between means (SAS V.9.1) were made using the least significant difference (LSD0.05) test 
if the F-tests were significant.

Results
Sucrose, total starch, amylose and amylopectin contents in grains among waxy and non-waxy 
wheat.  The test found that grain sucrose content was significantly affected by cultivar, year and their inter-
actions (Fig. 2a). Averaged to cultivars, the sucrose content of waxy wheat was 117.67% and 189.82% higher 
than that of non-waxy wheat (2012–13 and 2013–14, respectively). Similarly, total starch content was strongly 
governed by cultivar, year and their interactions (Fig. 2b). The waxy wheat had 14.13% and 12.41% lower total 
starch content in the 2012–13 and 2013–14 growing seasons respectively, when compared to the non-waxy wheat. 
Separate effect of year and cultivar significantly affected amylose and amylopectin content, while the interaction 
of year and cultivar to the amylase and amylopectin content was not significant (Fig. 2c,d). The average amylose 
contents under waxy wheat were 88.09% and 88.46% lower than that in non-waxy wheat in 2012–13 and 2013–14 
seasons respectively. No significant differences in amylopectin levels were detected between waxy and non-waxy 
wheat cultivars.

Changes in total starch, amylose, and amylopectin accumulation and accumulation rate in 
grains of waxy and non-waxy wheat.  As shown in Fig. 3, the grain total starch, amylose, and amylopec-
tin accumulation in waxy and non-waxy wheat showed overall increases during the grain-filling stage in both test 
years. The total starch (Fig. 3e,f) and amylose accumulation (Fig. 3a,b) were generally lower in waxy wheat com-
pared with non-waxy wheat, particularly after day 25 after anthesis. There was no significant difference observed 
on amylopectin accumulation between the waxy and non-waxy wheat over both years (Fig. 3c,d). The greatest 
rates of accumulation for grain total starch, amylose, and amylopectin occurred 10th–25th days after anthesis, but 
decreased after the 25th day after anthesis for both types of wheat (Fig. 4). The amylose accumulation rate in waxy 
wheat was significantly lower than that in non-waxy wheat (Fig. 4a,b). At 25 days after anthesis, the accumulation 
rate of total starch in waxy wheat was lower than that in non-waxy wheat (Fig. 4e,f). No significant difference 
was observed in amylopectin accumulation rate between waxy and non-waxy wheat (Fig. 4c,d). At maturity, the 
rates of accumulation for total starch, amylose, and amylopectin declined and the accumulation of total starch, 
amylose, and amylopectin reached the maximum levels.
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Changes in the sucrose content and SUS activity of grains in waxy and non-waxy wheat.  The 
grain sucrose content of both waxy and non-waxy wheats declined gradually after anthesis during both growing 
seasons (Fig. 5a,b). The grain sucrose content of waxy wheat tended to be higher than that of non-waxy wheat 
beginning ten days after anthesis. As shown in Fig. 5c and d, the SUS activities of the waxy wheat cultivars were 
higher than that of the non-waxy wheat cultivars up to day 20. Afterwards, the SUS activities of all cultivars 
dropped

Changes in the AGPase, GBSS, SSS and SBE activities of grains in waxy and non-waxy wheat.  
For both the waxy and non-waxy wheat cultivars over both years, the activities of four major enzymes (AGPase, 
GBSS, SBE and SSS) increased during early grain filling period and decreased during the late period after anthe-
sis. The peak activities of the AGPase and GBSS occurred on the 25th day after anthesis; while for SBE and SSS, 
the peak activities happened during the period of the 25th to 30th day (Fig. 6). The AGPase in waxy wheat were 
significantly lower than those in non-waxy wheat, especially after the 20th day after anthesis. Throughout the grain 
filling, the GBSS activities in waxy wheat were significantly lower than those in non-waxy wheat. In contrast, 
the activity for SBE was higher in waxy wheat than that in non-waxy wheat before the 25th day after anthesis; 
this trend was reversed after the 25th day after anthesis. The SSS activity was higher in waxy wheat than that in 
non-waxy wheat between the 20th and the 30th day after anthesis.

Grain yield, components and grain volume.  The year and cultivar significantly affected the number 
of kernels per spike (py = 0.0072, pc < 0.0001), number of spikes (py = 0.0006, pc = 0.0007) and the 1000-kernel 
weight (py < 0.0001, pc < 0.0001); however, the interaction between year and cultivar was not significant. For the 
grain yield, a significant cultivar effect was detected (pc < 0.0001), but not for year and year-cultivar interaction.

The number of kernels per spike in YN1 and Y20 were higher than that in NN1 and YF4 for both test years 
(Fig. 7a). The lowest value of spike number was observed in NN1 in two years, but there was no significant differ-
ence between cultivars in 2013–2014 (Fig. 7b). The 1000-kernel weight and grain yield in waxy wheat were lower 
than those in non-waxy wheat and in 2013–2014 the difference was significant (Fig. 7c,d). Across cultivars, the 
kernels per spike, number of spikes, 1000-kernel weight and grain yields of waxy wheat were reduced by 2.22, 

Figure 2.  Grain content of sucrose (a), total starch (b), amylose (c) and amylopectin (d) in grains between 
waxy and non-waxy wheats. Values followed by the same letters in each cultivar are not significantly different at 
p < 0.05 level. Each bar represents the SD value.
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5.03, 8.45, 13.02% and 0.11, 5.15, 5.70, 11.62% respectively in 2012–13 and 2013–14 growing seasons, compared 
with the non-waxy wheat. Trying to verify our hypothesis, we test the grain volume among wheat cultivars in the 
2013–2014season,and we found there was no significant difference among wheat cultivars(Fig. 8).

Correlation analysis.  The total starch content in grains was not correlated with the 1000-kernel weight, 
but amylose was significantly and positively correlated with the 1000-kernel weight (Table 1). Amylopectin and 
sucrose content did not significantly correlate with the 1000-kernel weight. The total starch and amylopectin 
accumulation rate were significantly and positively linked with the activities of all five enzymes (r > 0.4, p < 0.01), 
while the amylose content did not significantly correlate with other enzyme activities except for GBSS (Table 2). 
The total starch content, amylopectin content and amylose accumulation rate were significantly and positively 
correlated with AGPase, SSS and GBSS activities. In addition, significant correlations were detected between the 
four enzymatic activities (i.e. AGPase, SSS, GBSS and SBE), with the exception of GBSS-SBE (Table 3).

Discussion
Grain yield an sink strength.  The inherent low grain yield of the waxy wheat was reported in previous 
study35,36, and it has limited its commercial production. Improving the agronomic performance is critical in order 
to meet human demands on high-quality wheat products. In practice, grain yield is determined not only by fac-
tors such as the number of spikes, number of kernels per spike and 1000-kernel weight but also by the source-sink 
relationships8. Two key stages, enlargement and grain filling, are responsible for seed size and weight12,37.

Figure 3.  Changes in grain accumulation of amylose (a,b), amylopectin (c,d) and total starch (e,f) in one kernel 
between waxy and non-waxy wheats after anthesis. Each bar represents the LSD value at p < 0.05.
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The sink strength is formed by sink size (i.e. endosperm cell numbers) and sink activity as indicated by activ-
ities of the enzymes such as SUS and AGPase in endosperm, which is closely associated with carbohydrate uti-
lization and storage38. Gleadow et al.39 reported that the endosperm cell number was positively correlated with 
grain size. Sucrose is the main photoassimilate transported to sink tissues, and then the degradation from sucrose 
to materials for starch synthesis reflects the sink strength in grains40. Previous studies have shown that the grain 
dry weight is potentially determined by sink strength in wheat39 and rice38. Enhancement of the sink size and 
sink activity are two critical factors for increasing sink strength. In this study, there was no significant difference 
in grain volume between the waxy and non-waxy wheat. However, the 1000-kernel weight of waxy wheat was 
significantly lower than that of non-waxy wheat.

Sucrose content and SUS activity.  The conversion of sucrose to starch in wheat grain was closely related 
to starch accumulation, for example, high starch accumulation was observed when the conversion of sucrose to 
starch was high41. Moreover, early studies have found that waxy wheats generally have higher sucrose content 
and lower transforming ability compared with non-waxy wheat42. The sucrose content is significantly correlated 
with the starch synthesis in the early period of grain filling (before 25th days after anthesis) in wheat43 and rice44. 
The SUS plays an important role in sucrose synthesis and degradation in plants, especially in wheat grains; It is 
generally believed that the main function of the SUS is to catalyze the degradation of sucrose in grains45,46. The 
decrease of SUS activity leads to lower rate of conversion from sucrose to starch and a high residual sucrose 
content43, and further resulting in a lower dry matter accumulation characteristic of rice grains47,48. In this study, 
we recorded significant differences in the sucrose content and SUS activity in grains among waxy and non-waxy 

Figure 4.  Changes in the accumulation rate of amylose (a,b), the amylopectin (c,d) and total starch (e,f) in one 
kernel between waxy and non-waxy wheats after anthesis. Each bar represents the LSD value at p < 0.05.
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wheat cultivars after anthesis. Throughout the grain filling, the grains of waxy wheat had higher sucrose content, 
but SUS activity in grains was different between the earlier and later stage after anthesis. Our results suggested 
that waxy wheat had higher sucrose degradation and bioavailability during early grain filling stages, but was lower 
at the later stage compared with non-waxy wheat. More sucrose and less grain starch synthesis ability could be 
characteristic of waxy wheat in comparison to non-waxy wheat especially in the late period after anthesis. These 
results were in agreement with some previous studies conducted in waxy20,42 and non-waxy43,46 wheats.

Starch accumulation and starch-synthesizing enzymes activities.  Starch is synthesized and accu-
mulated during the grain-filling process49, which is the major factor influencing both grain yield and quality7,12. 
The first unique step of the starch synthesis is catalyzed by AGPase, which is considered to be the rate-limiting 
enzyme because of the positive correlation between the activity and starch accumulation rate8,28,50,51. In this study, 
AGPase activity increased at the early grain filling stage, leading to increased accumulation of the total starch, 
amylose and amylopectin, as well as their accumulation rate. We also found that the AGPase activity in waxy 
wheat was lower than that in non-waxy wheat in the whole grain filling period, resulting in lower total starch 
content in waxy wheat seeds compared with non-waxy wheat. At 30d after anthesis, the AGPase activity started 
to decrease, resulting in a reduction in the rate of starch, amylose and amylopectin accumulation. During the 
later grain filling period, the starch accumulation and accumulation rate of waxy wheat were lower than that 
of non-waxy wheat. Similar findings have also been reported in previous studies: in other crops higher AGPase 
activity resulted in higher crop starch biosynthesis and grain yield including maize52, rice53 and wheat16,54.

GBSS is exclusively involved in the synthesis of amylose, where it catalyzes the extension of long glucans 
within the amylopectin fraction15,17. The absence of waxy protein resulting from waxy mutations in wheat and 
other cereals could lead to amylose-free starch in endosperm, with low activity of GBSS in waxy wheat1,2,55. GBSS 
activity determines amylose content in the endosperm of rice56 and wheat57. In this study, the GBSS activity of 
waxy wheat was significantly lower than that of non-waxy wheat throughout the grain filling period; the amylose 
accumulation and accumulation rate in waxy wheat were also lower than that in non-waxy wheat. These results 
indicated that waxy wheat had lower grain starch and amylose synthesis capacity compared with non-waxy wheat, 
particularly in the case of amylose. Moreover, GBSS is a critical component in the process of amylose formation58; 
some studies have also reported that reduction of amylose content and GBSS activity has been observed in many 
species that lack amylase and all of these specifically lack GBSSI activity14. GBSS is a critical enzyme in the process 
of amylose biosynthesis58 and its activity is closely associated with amylose content as observed in many species 
that lack amylase and GBSS, specifically the GBSSI activity14.

Figure 5.  Changes in sucrose content (a), and SUS activity in grains between waxy and non-waxy wheats after 
anthesis. Each bar represents the LSD value at p < 0.05.



www.nature.com/scientificreports/

8SCIenTIFIC REPOrTS | (2018) 8:4548 | DOI:10.1038/s41598-018-22587-0

The SSS and SBE play an important role in the formation of the branched structure of amylopectin mol-
ecules17,28,59. Amylose, amylopectin and total starch accumulation rate in wheat grains were significantly and 
positively correlated with activities of SBE, SSS and GBSS60, and a reduction in enzyme activity appears to be the 
main factor affecting decreased starch synthesis43. In this study, enzymatic activities of SSS and SBE were higher 
in waxy wheat than in non-waxy wheat, while amylopectin accumulation and amylopectin accumulation rate was 
significantly higher in waxy wheat compared with the non-waxy wheat during early grain filling stages. During 
the late grain filling stage, activities of both enzymes were lower, while the amylopectin accumulation and accu-
mulation rate decreased more quickly in waxy wheat compared with non-waxy wheat. These results were similar 
to those of Tan et al.61 who reported that lower activities of AGPase, SSS, GBSS and SBE and the lower accumula-
tion of amylose, amylopectin and starch in waxy wheat compared with non-waxy wheat and also in lower starch 
accumulation cultivar had lower enzyme activities in non-waxy wheat58.The SBE activity did not significantly 
influence the amylopectin content but significantly positively related to the amylopectin accumulation rate, it is 
postulated that SBE might not play an important role in the formation of amylopectin, but to its fine structure 
modification, it is stated in maize for the unique function of SBEI in modulating the branching pattern in normal 
starch by decreasing local clustering of amylopectin branch points62.

Figure 6.  Changes of AGPase (a,b), GBSS (c,d), SSS (e,f) and SBE (g,h) activity in wheat grains between waxy 
and non-waxy wheats. Each bar represents the LSD value at p < 0.05.
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Relationship between enzymes activity and kernel weight.  Waxy wheat was found to have lower 
starch content and higher sugar content than non-waxy wheat22,42, and also lower starch, amylose and amylopec-
tin accumulation and accumulation rate than non-waxy wheat in the grain filling period42,61. It is possible that 
higher soluble sugar content and lower starch content were due to a low conversion efficiency and the absence 
of GBSS at the period of grain filling because these two factors have been shown to influence grain weight in 
waxy rice63 and in waxy wheat20. Higher activities of SBE, APGase, SSS and GBSS are generally attributed to 
increased kernel weight in wheat, while starch accumulation rate is significantly correlated with activities of SBE, 

Figure 7.  Kernels per spike (a), Number of spikes (b), 1000-kernel weight (c) and grain yield (d) between 
waxy and non-waxy wheats. Values followed by the same letters in each cultivar are not significantly different at 
p < 0.05 level. Each bar represents the LSD value at p < 0.05.

Figure 8.  Grain volume between waxy and non-waxy wheats. Values followed by the same letters in each 
cultivar are not significantly different at p < 0.05 level.
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AGPase, SSS and GBSS in both waxy wheat61 and non-waxy wheat41. Seed sink strength and seed yield would all 
be expected to be enhanced by increasing the AGPase activity16. The activities of AGPase, SSS, GBSS and SUS 
play important roles in determining individual grain weight in wheat by regulating starch synthesis in grain 
endosperm64. Further, many studies show that there is a coordinating action in starch biosynthesis among these 
enzymes60. The four important enzymes for starch biosynthesis played the important role but not the whole starch 
biosyntheses net.

In this study, grain yield appeared to be influenced by sucrose and starch factors. The total starch and amylose 
content at maturity in grains of waxy wheat were 13.29 and 88.27% lower respectively than those of non-waxy 
wheat. The 1000-kernel weight of waxy wheat was 7.05% lower than non-waxy wheat, and the grain yield of waxy 
wheat was 12.33% lower than that of non-waxy wheat. Reduced activities of AGPase, SSS, GBSS and SBE and a 
lower accumulation of amylose, amylopectin and starch were also observed during the later stage of grain filling 
in waxy wheat compared with non-waxy wheat. The amylose content was significantly and positively correlated 
with GBSS activity, while amylose was significantly and positively correlated with the 1000-kernel weight. The 
total starch content and amylopectin content were significantly and positively correlated with AGPase, SSS and 
SBE activities. Among the activities of AGPase, SSS, GBSS and SBE, there were significant correlations, except 
between the activities of GBSS and SBE.

Conclusions
Our study suggests that low AGPase activity could be the cause of low total starch content in waxy wheat grain, 
and low GBSS activity could be the contributing factor to insufficient amylose content. During the early grain fill-
ing period, no significant difference was found in sink size between the waxy and non-waxy wheat, while higher 
sucrose degradation and bioavailability and activities of SSS and SBE in grains of waxy wheat were found. Low 
activities of SSS and SBE in waxy wheat are likely the cause of low amylopectin accumulation in the later stage of 
grain filling. We speculate that the four enzymes, AGPase, SSS, GBSS and SBE, may have a complementary rela-
tionship with regards to starch biosynthesis; thus, the absence of GBSS can reduce the activity of the other three 
enzymes, leading to low total starch content in grains of waxy wheat. The low activity of SUS during later period 
of grain filling may have caused the reduced degradation of sucrose and the absence of the precursor of starch in 
grains of waxy wheat. It appears that weakened starch synthesis in the later stage of grain filling of waxy wheat is 
likely to be the main cause of low kernel weight and total starch accumulation, which ultimately leads to lower 
grain yield in waxy wheat.

1000-kernel weight

r value p value

Sucrose −0.35 0.40

Total starch 0.69 0.06

Amylose 0.75 0.03

Amylopectin −0.63 0.09

Table 1.  Pearson Correlation among 1000-kernel weight and contents of sucrose, total starch and starch 
components in wheat grains.

Total starch 
content

Amylose 
content

Amylopectin 
content

Total starch 
accumulation rate

Amylose 
accumulation rate

Amylopectin 
accumulation rate

SUS −0.26* −0.21ns −0.24ns 0.43** 0.06ns 0.47**

AGPase 0.43** 0.24ns 0.43** 0.90** 0.60** 0.90**

SSS 0.36** 0.18ns 0.37** 0.73** 0.55** 0.72**

GBSS 0.48** 0.80** 0.35** 0.61** 0.90** 0.51**

SBE 0.08ns −0.13ns 0.12ns 0.60** 0.16ns 0.65**

Table 2.  Pearson Correlation analysis on total starch accumulation rate, total starch accumulation with the 
enzyme activities in grains *Significant at p < 0.05. **Significant at p < 0.01. nsNot Significant.

AGPase SSS GBSS SBE

AGPase 1

SSS 0.82** 1

GBSS 0.59** 0.51** 1

SBE 0.66** 0.59** 0.11ns 1

Table 3.  Pearson Correlation analysis among activities of the enzyme in grains. *Significant at p < 0.05. 
**Significant at p < 0.01. nsNot Significant.
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