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Abstract

The study of tumorigenic rewiring of metabolic flux is
at the heart of cancer metabolic research. Here, we
review two widely used computational flux inference
approaches: isotope tracing coupled with Metabolic
Flux Analysis (13C-MFA) and COnstraint-Based
Reconstruction and Analysis (COBRA). We describe the
applications of these complementary modeling
techniques for studying metabolic adaptations in
cancer cells due to genetic mutations and the tumor
microenvironment, as well as for identifying novel
enzymatic targets for anti-cancer drugs. We further
highlight the advantages and limitations of COBRA
and 13C-MFA and the main challenges ahead.
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Inferring metabolic flux in cancer research

Cellular metabolism is a dynamic system in which meta-
bolic nutrients are being constantly consumed and catabo-
lized to generate energy (Fig. 1a). Proliferating cancer cells
further activate anabolic pathways to produce metabolic
precursors for synthesizing macromolecules, including
DNA, RNA, proteins, and lipids [1, 2]. This is facilitated
via a complex metabolic network consisting of thousands
of biochemical reactions [3, 4]. The dynamics of metabol-
ism can be described in terms of the rate of metabolic
reactions, typically referred to as metabolic flux (denoting
the rate of transformation of a substrate to product me-
tabolites in units of moles per unit of time per cell). A
major goal of cancer metabolic research is understanding
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how metabolic flux is rewired by tumors to support
energetic and biosynthetic demands [5, 6]. Understand-
ing tumor-specific alterations in metabolic flux facili-
tates the identification of induced dependency on specific
enzymes whose pharmacological inhibition selectively tar-
gets cancer cells [7].

A major complication in cancer metabolic research is
that, unlike the concentration of mRNA, proteins, and
metabolites, metabolic flux, which reflects the cellular
metabolic phenotype, is not a directly measurable quan-
tity (Fig. 1b). However, it can be inferred through a com-
bination of experimental and computational techniques.

The most direct approach for interrogating intracellular
metabolic flux in cancer cells is isotope tracing [8—10].
This works by feeding cancer cells with isotopically labeled
nutrients and measuring the isotopic labeling pattern of
metabolites via mass spectrometry or nuclear magnetic
resonance (NMR). We discuss here the common applica-
tion of this approach in cancer cells grown in culture,
though it is also utilized for in vivo studies [11, 12]. The
isotopic labeling pattern of metabolites is indicative of the
relative contribution of different pathways to their biosyn-
thesis. While a manual inspection of measured metabolite
isotope distributions facilitates the qualitative assessment
of metabolic activities, computational interpretation via
13C-Metabolic Flux Analysis (13C-MFA) further enables
quantitative inference of fluxes.

Another commonly used flux inference approach is
COnstraint-Based Reconstruction and Analysis (COBRA),
enabling flux assessment through genome-scale metabolic
networks. COBRA has traditionally been utilized to model
microbial metabolism for biotechnological and bioengin-
eering purposes [13—15]. More recent reconstructions of
genome-scale human metabolic network models enabled
applying this approach for large-scale modeling of nor-
mal tissues and various human diseases, including can-
cer [3, 16—-19]. COBRA predicts fluxes under metabolic
steady state by taking into account physicochemical
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Fig. 1 Metabolic flux describes the dynamics of cellular metabolism. a Metabolic nutrients are constantly consumed and metabolized to generate
energy and synthesize biomass to support cell replication. b Metabolic fluxes provide a direct view of the cellular metabolic phenotype that is
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considerations, specifically stoichiometric mass-balance,
requiring metabolite total production and consumption
rates to be equal under steady state conditions. An im-
portant feature of COBRA is its ability to predict flux and
metabolic rewiring by incorporating various ‘omics’ data-
sets, such as transcriptomics, proteomics, and metabolo-
mics. This enables flux prediction for large collections of
cell lines and tumors via existing functional genomics and
metabolomics datasets, including TCGA [20], NCI60 [21],
CCLE [22-24], and Connectivity Map [25].

Here, we provide a brief overview of how COBRA and
13C-MFA work (readers are referred to comprehensive
reviews on COBRA [26] and 13C-MFA [27] for further
technical information), recent usage of these approaches
in cancer research studies, and the limitations and open
challenges with each flux inference approach.

Isotope tracing coupled with MFA

13C-MFA calculations require a metabolic network
model consisting of a set of biochemical reactions, with
information on the mapping of atoms between the sub-
strate and product metabolites (and specifically carbon
atom mappings for "3C tracing; Fig. 2). 13C-MFA works
by searching for the most plausible steady-state fluxes
satisfying stoichiometric mass-balance for intracellular
metabolites (i.e, metabolite total production rate equals
total consumption rate) for which a simulated isotopic
labeling pattern of metabolites optimally matches experi-
mental measurements [8, 27]. From an algorithmic per-
spective, 13C-MFA is computationally hard, requiring
solving of a non-convex optimization [29]. Hence, 13C-
MFA calculations are typically performed via heuristic
solving of optimization problems; e.g., using Sequential
Quadratic Programming (SQP) or interior-point, which

do not guarantee convergence to an optimal solution.
To speed up the heuristic solving, various methods were
proposed to efficiently simulate metabolite isotope label-
ing given a possible set of fluxes [30, 31]. The most com-
monly used method is the Elementary Metabolite Unit
(EMU) [30], implemented in a variety of user-friendly
software tools, including INCA, Metran, and '*CFlux2
[32-34]. These tools enable straightforward inference of
flux through a given metabolic network based on isotope
tracing measurements. Additional measurements of me-
tabolite uptake and byproduct secretion rates from and
to media can be utilized by the above computational
tools to improve 13C-MFA flux estimation. Estimates of
cellular flux demands for biomass production, determined
based on the macromolecular composition of cells, can be
incorporated in 13C-MFA to further constrain estimated
fluxes. A rigorous statistical framework enables computing
flux confidence intervals, representing the extent of the
uncertainty of inferred fluxes [35, 36]. Integration of mea-
surements from multiple isotope tracing experiments is
an especially useful feature of 13C-MFA that reduces the
uncertainty in estimated fluxes [37].

The most common 13C-MFA approach, stationary 13C-
MEFA, is based on measuring metabolite labeling patterns
once metabolite labeling converges to isotopic steady state.
In some cases, however, this is not possible due to metabol-
ite secretion from cells gradually changing the labeling of
metabolite pools in the culture media (which in turn alters
intracellular metabolite labeling) [38]. When an isotopic
steady state cannot be reached, non-stationary 13C-MFA
can be used to infer fluxes based on measurements of me-
tabolite labeling kinetics [39]. Acquiring and analyzing iso-
tope labeling kinetic data is more demanding from both
experimental and computational perspectives [40]. Data
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Fig. 2 Both 13C-MFA and COBRA rely on measurements of metabolite uptake and secretion, cell biomass composition and growth rate, and
information on reaction reversibility based on thermodynamic considerations. 13C-MFA further requires isotope tracing measurements and
absolute concentrations of intracellular metabolites in a case of non-stationary 13C-MFA; COBRA relies on a variety of ‘omics’ datasets (genomics,
transcriptomics, proteomics, and metabolomics). Inset COBRA image taken from [28]
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analysis is performed similarly as in stationary 13C-MFA
via non-convex optimizations searching for optimal fluxes,
though utilizing ordinary differential equation (ODE)
models to simulate metabolite isotope labeling kinetics.
The simulation of metabolite isotopic labeling kinetics fur-
ther requires the measurement of absolute concentrations
of intracellular metabolites. In some cases, kinetic iso-
tope tracing measurements can be directly utilized to
infer flux without ODE-based simulations utilizing
Kinetic Flux Profiling (KFP) [41] or cumulative isoto-
pomer balance equations [42]. While being experimen-
tally and computationally demanding, non-stationary
13C-MFA is advantageous in terms of being able to infer
fluxes via linear pathways based on the labeling kinetics of
subsequent metabolic intermediates, as compared to sta-
tionary 13C-MFA only estimating flux ratios through con-
verging pathways producing a certain metabolite (based
on the characteristic isotopic labeling pattern produced by
each pathway).

13C-MFA has been frequently used for investigating
cellular metabolic rewiring in response to genetic muta-
tions in cancer, revealing the link between signaling cir-
cuitry and cancer metabolism. For example, oncogenic
activations of Ras [43, 44], Akt [44], and Myc [45] were
found to induce aerobic glycolysis (in accordance with
the Warburg effect), glutamine consumption, and oxida-
tion in the TCA cycle. In addition, KEAP1 mutations
were shown to alter cancer redox network and oxidative
pentose phosphate pathway flux [46].

Employing 13C-MFA to probe flux alterations follow-
ing genetic silencing of metabolic enzymes provided
means to explore enzyme importance and mechanisms:
depletion of MTHFDI1L, an enzyme in the mitochondrial
folate cycle that produces formate, was shown to repress
mitochondrial one-carbon metabolism and lead to re-
duced cancer invasion [47]. Deletion of Hexokinase 2 in
hepatocellular carcinoma inhibits glycolysis and induces
oxidative phosphorylation flux [48]. PDH deletion in
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lung cancer cells induces scavenging of extracellular
lipids and lipogenesis through increased reductive IDH1
flux [49]. Flux rewiring due to compromised metabolite
transporters was also investigated using 13C-MFA: the de-
pletion of the mitochondrial pyruvate carrier (MPC) in-
creased the oxidation of fatty acids and glutaminolytic flux
[50]; and ablation of mitochondrial citrate transport pro-
tein (CTP) increased glucose-dependent anaplerotic flux
and cytosolic reductive carboxylation for lipogenesis [51].
This suggests novel therapeutic targets, inhibiting cancer
cell-specific utilization of the above nutrients or enzymes.
Metabolic rewiring due to non-genetic factors such as
the tumor microenvironment has also been investigated
utilizing 13C-MFA. Hypoxia promotes tumor cell reliance
on reductive glutamine metabolism for lipogenesis [52, 53]
and malic enzyme for NADPH production [54]. Increased
reductive glutamine flux also promotes anchorage-
independent growth [55]. 13C-MFA was recently employed
to examine how metabolic flux in tumors differs between
in vitro and in vivo conditions; e.g., human NSCLCs were
shown to depend on increased PC and PDH flux and rely
extensively on lactate catabolism in vivo [56, 57].
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Identifying and characterizing metabolic rewiring with
13C-MFA in specific cancer cells not only contributes to
our understanding of metabolic regulation but can also
lead to the discovery of novel targets for anticancer
drugs. For example, applied to studying the effect of
PHGDH amplification in breast cancer cells, 13C-MFA
revealed that de novo serine biosynthesis is responsible
for up to half of the total anaplerotic flux of glutamine
into the TCA cycle, suggesting that targeting the serine
synthesis pathway may be therapeutically valuable in
breast cancers with elevated PHGDH expression [58].
Likewise, 13C-MFA identified induced essentiality of
oxidative mitochondrial metabolism in IDHI-mutant
cells that can be therapeutically exploited [59].

A major limitation of flux inference via isotope tra-
cing coupled with 13C-MFA regards the inference of
metabolic flux in specific organelles (Fig. 3a, b). Sub-
cellular compartmentalization is a defining character-
istic of eukaryotic cells, with metabolic enzymes being
localized and operating in specific organelles. For example,
mitochondrial metabolism is highly inter-linked to cyto-
solic metabolism via the shuttling of energy and redox
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equivalents through the mitochondrial membrane. Fur-
thermore, numerous isozymes catalyze the same meta-
bolic transformation in both compartments, in some cases
utilizing distinct energy and redox cofactors. Considering
that mass spectrometry approaches typically measure the
average whole-cell level metabolite concentrations and
isotopic labeling, 13C-MFA methods are generally limited
to inferring whole-cell level fluxes. Notably, not account-
ing for distinct metabolite isotopic labeling patterns and
concentrations in different cell compartments can bias the
interpretation of isotope tracing experiments and result in
a false estimate of metabolic flux. This can be partially
overcome by considering a metabolic network model in
which metabolite pools and reactions are localized in dif-
ferent compartments, and inferring the isotope labeling of
metabolites in specific subcellular compartments based on
specific metabolite markers known to be synthesized in a
specific compartment. For example, fatty acid labeling can
be measured to infer cytosolic acetyl-CoA, considering
that this biosynthetic activity takes place in the cytosol
[60]. Mass spectrometry-based measurement of metabolic
byproducts secreted to media provides information on the
isotopic labeling of cytosolic metabolite pools [61]. In
some cases, compartment-specific enzymes were engi-
neered to produce reporter metabolites to infer mitochon-
drial and cytosolic NADPH labeling [54, 62]. Gene
expression measurements and in vitro enzymatic assays
were performed in specific cell lines to determine that
some metabolic transformations occur solely in one com-
partment [61]. The expression level of alanine amino-
transferase isozymes in breast cancer cell lines indicated
that only the mitochondrial isoform is active, suggesting
that the whole-cell level isotopic labeling pattern of
alanine reflects mitochondrial pyruvate labeling [63]. To
address the challenge of inferring compartment-specific
metabolic flux, isotope tracing has been applied to iso-
lated mitochondria [55, 64, 65]. However, isolation and
purification of mitochondria typically involve a lengthy
and perturbative process, potentially resulting in non-
physiological conditions. More recently, a method was
suggested to infer mitochondrial and cytosolic fluxes by
rapidly fractionating isotopically labeled cells in a man-
ner of seconds. This is shown to enable flux inference
through isozymes catalyzing the same metabolic trans-
formation in mitochondria and cytosol, and even be-
tween distinct isozymes within mitochondria, based on
co-factor specificity [66].

Metabolic activities are not only spatially compartmen-
talized within cells but also vary with time (Fig. 3c). For
example, as cells progress through different cell cycle
phases, their metabolism adapts to the changing metabolic
and energetic demands. Temporal compartmentalization
is typically not accounted for by 13C-MFA studies relying
on isotope tracing experiments performed on a population
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of cells that are heterogeneous in their cell cycle stage.
Instead, 13C-MFA typically estimates the “average” flux
through the cell population. Recently, a temporal-
fluxomics method was developed for inferring metabolic
flux dynamics throughout the cell cycle by performing iso-
tope tracing experiments on a growth-synchronized popu-
lation of cells [67]. This involved computational modeling
of single-cell level metabolite isotopic labeling dynamics
throughout the cell cycle as well as non-stationary 13C-
MFA techniques. This study presented, for the first time,
metabolic flux dynamics throughout the cell cycle in the
central energy metabolism of proliferating cancer cells.

Genome-scale metabolic network modeling in
cancer with COBRA

COBRA predicts metabolic fluxes by considering physi-
cochemical constraints, including stoichiometric mass-
balance of intracellular metabolites, reaction reversibility
based on thermodynamic considerations, and bounds on
nutrient consumption and byproduct secretion rates
(Fig. 2). Nutrient consumption and byproduct secretion
rates in cells grown in culture are readily measurable via
mass spectrometry-based analysis of metabolite accumula-
tion and depletion from the growth media [68]. These
measurements can be directly incorporated with COBRA
to facilitate flux prediction. Another useful constraint is
on the production rate of biomass constituents needed for
synthesizing DNA, RNA, proteins, and fatty acids required
to support experimentally observed cell doubling time
(typically incorporated in the model via a pseudo cell-
growth reaction) [69].

The high level of redundancy in the metabolic network
in terms of alternative pathways typically prevents the in-
ference of a unique set of fluxes. This is typically ad-
dressed by exploring the flux solution space via methods
such as flux variability analysis [70, 71], flux coupling ana-
lysis [72], or flux sampling [73]. Alternatively, assumptions
of metabolic efficiency can reduce the space of possible
fluxes and predict likely metabolic phenotypes. For ex-
ample, Flux-Balance Analysis (FBA) assumes biomass pro-
duction with a high yield [74]; or parsimonious FBA,
assuming a minimization of total fluxes needed to realize
a certain metabolic objective [75]. The identification of
such optimized fluxes is typically performed via efficient
linear or quadratic programming algorithms. The COBRA
Toolbox is a widely used MATLAB software package
implementing many of the methods described in this
review and others [76].

COBRA modeling of hallmark metabolic
adaptations in cancer cells via measured nutrient
and uptake secretion rates

Several studies have utilized COBRA to explore the pro-
duction and consumption of central energy (ATP) and
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redox cofactors (NAD(P)"/NAD(P)H). Metabolite uptake
and secretion rates across the NCI-60 cancer cell lines
collection were used to model fluxes in these cells, ex-
ploring different metabolic strategies used by cells to
generate energy and redox cofactors and explaining the
abilities of different cell lines to support respiration [77].
An analysis of fluxes in NCI-60 using uptake and secre-
tion rates, cell proliferation rates, and DNA content
showed an important contribution of one-carbon metab-
olism to NADPH and ATP biosynthesis [78]. The poten-
tial importance of serine and glycine metabolism to ATP
production was further noted based on a molecular
crowding effect in mitochondria—i.e., a limit on the total
mitochondrial enzyme content per cell volume [79]. Fan
et al. [80] demonstrated the importance of the cytosolic
one-carbon metabolic pathway as an efficient way of pro-
ducing NADPH, providing biochemical and genetic evi-
dence for the role of this pathway in NADPH production.

Several studies used COBRA to explore overflow me-
tabolism in cancer—i.e., excess consumption and non-
efficient utilization of metabolic nutrients, including for
glucose [81], glutamine [82], and serine [47]. Induced
glucose consumption and fermentation into lactate
under the presence of oxygen by cancer cells is known
as the Warburg effect [83, 84]. This phenomenon is
counter-intuitive as it provides a markedly lower ATP
yield per molecule of glucose than through complete
oxidation in mitochondria coupled with oxidative phos-
phorylation. However, utilizing FBA and considering the
effect of molecular crowding (also referred to as the ef-
fect of solvent capacity), it was shown that switching to
aerobic glycolysis, although of a low ATP yield, enables
induced biomass production to support an increased
proliferation rate [85] (as also shown by [86] using a tai-
lored mechanistic model). In a recent study, overflow
metabolism of glucose, glutamine, and serine were inves-
tigated via flux analysis of NCI-60 cell lines (utilizing
measured metabolite uptake and secretion rates) [87].
This study shows that overflow glucose and glutamine
metabolism is due to a constraint on the maximal cata-
bolic capacity of mitochondria, providing excess redox
and energy production that facilitates resistance to meta-
bolic stress.

Construction of cell line-specific metabolic models
via omics data predicts metabolic gene
essentiality

While measured metabolite uptake and secretion rates
in a given cell line provide readily usable constraints for
flux analysis by COBRA, utilizing abundant transcrip-
tomic, proteomics, and metabolomics datasets (available
for large collections of cell lines) as input for flux predic-
tion is highly challenging. This is due to metabolic flux
being regulated at multiple levels and depending on the

Page 6 of 11

concentration of the active enzyme (which is affected by
multiple post-translational modifications), the concentra-
tion of reactants and allosteric regulators, and complex
enzyme kinetic mechanisms (requiring knowledge of kin-
etics constants that are rarely known under physiological
cellular conditions). Numerous computational techniques
have been proposed to generate metabolic network
models for specific tumors (i.e., context-specific models).
Specifically, these methods aim to identify a subset of
enzymes from a genome-scale metabolic network that is
expected to be active based on the mRNA, protein, and
metabolite concentrations, enzyme-specific biochemical
or genetic measurements, and known cell line-specific
metabolic functions. Various methods such as GIMME
[88], iMAT [89, 90], MBA [91], mCADRE [92], INIT [93],
PRIME [94], and FASTCORE [95] differ in terms of the
specific criteria used to select the relevant set of enzymes
per cell line (see review and comparison in [96, 97]).

Predictions of cell line-specific gene essentiality de-
rived with cell line-specific metabolic network models
were shown to correlate significantly with measured
growth response to CRISPR-based gene knockouts [98],
achieving a stronger correlation than that expected by
chance or obtained for predictions made with a generic
genome-scale metabolic network model. However, while
various methods for predicting the effects of gene
knockouts in cell lines were comprehensively compared
to one another [97], the actual predictive performance of
most of these methods remain somewhat unclear as in-
formation on the correlation between model predictions
and measured growth inhibition effect (or sensitivity and
specificity) is typically not available.

While predicting cell line-specific response to genetic
silencing or chemical inhibition is technically difficult, iden-
tifying enzymes whose inhibition selectively affects cancer
cells while sparing normal cells is even more challenging.
This was previously addressed by searching for enzymes
whose inhibition would prevent cell proliferation, while not
affecting basic metabolic functionality such as ATP produc-
tion [99]. Additional studies generated cell line-specific
metabolic models for normal and cancer tissues, identifying
cancer liabilities and predicting the response for drug inhib-
ition of metabolic enzymes [92, 94, 100]. Yizhak et al. sug-
gested an algorithm, Metabolic Transformation Algorithm
(MTA), for identifying metabolic genes whose perturbation
has a tumorigenic effect [101]; searching for genes whose
change in expression in tumors is predicted to drive meta-
bolic adaptations consistent with observed alterations in
gene expression patterns. This was used to uncover FUT9
as a metabolic driver of colorectal cancer, which was vali-
dated in vitro and in mouse xenografts [102].

Another appealing approach for identifying selective anti-
cancer metabolic targets is based on the concept of syn-
thetic lethality [103]. Specifically, two genes are considered
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to be synthetically lethal if the perturbation of each of them
separately has no effect on cell viability while their com-
bined perturbation is lethal. In cancer cells, somatic inacti-
vation of one gene makes its synthetic lethal partner an
attractive target for selective eradication of cancer cells.
This concept was used to predict synthetic lethal partners
of the known metabolic tumor suppressors fumarate hydra-
tase (FH) and succinate dehydrogenase (SDH). It success-
fully identified heme oxygenase (HMOX) as a synthetic
lethal partner of FH, as was validated in HLRCC cells with
a loss-of-function mutation in FH [104], and pyruvate carb-
oxylase (PC) as a synthetic lethal partner of SDH, which
was also later experimentally validated [105]. An extended
framework was proposed for finding sets of synthetic lethal
genes such that the combined knock out of which blocks a
desired metabolic task, utilizing the concept of minimal cut
sets [106]. A related concept of synthetic dosage lethality
(SDL) represents the case where increased expression of
one gene is indicative of induced dependency on another.
A COBRA method developed for identifying dosage lethal-
ity effects (IDLE) revealed that the expression pattern of
SDL genes is predictive of tumor size and patient survival
[107]. To summarize, cell line-specific metabolic models
were utilized for a wide variety of applications, including
the identification of cancer vulnerabilities and synthetic le-
thal targets.

Advantages and limitations of 13C-MFA and
COBRA

Isotope tracing is widely used to probe intracellular
metabolic activities in cancer cells. However, most stud-
ies still rely on manual assessment of measured metabol-
ite isotopic labeling to qualitatively infer metabolic
activities [8], while 13C-MFA is typically performed in a
small number of labs that have expertise in these ap-
proaches. Manual inspection of isotopic labeling mea-
surements is highly complicated and may bias the
assessment of metabolic activities. For example, an in-
crease in the fractional labeling of a metabolite under
isotopic steady state may be falsely interpreted as an in-
crease in flux through a producing pathway, although
this may merely result from a change in the labeling of
an upstream metabolic intermediate. With kinetic iso-
topic labeling measurements, faster labeling kinetics of a
metabolite may be interpreted as increased flux, though
this may result from a drop in the concentration of the
metabolite. Isotope exchange effects also complicate man-
ual interpretation of metabolic activities, with reactions
close to chemical equilibrium simultaneously carrying flux
in opposite directions [108, 109]. A comprehensive and
quantitative view of metabolic fluxes derived by 13C-MFA
enables us to evaluate how well we understand the work-
ing of complex metabolic systems and leads to important
discoveries. For example, quantitative flux analysis of
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NADPH metabolism revealed that a major fraction of
NADPH turnover is not explainable by the canonical
NADPH-producing pathways, leading to the finding of a
major contribution of folic acid metabolism to NADPH
production [80]. Another example is with quantitative
modeling of flux in cancer cells during anchorage-inde-
pendent growth, showing that measured isotope labeling
patterns of metabolites cannot be explained without tak-
ing into account subcellular compartmentalization effects,
revealing citrate shuttling from the cytosol to mitochon-
dria [55].

While both 13C-MFA and COBRA were demonstrated
to be highly useful in cancer metabolic research, there are
inherent limitations and complications with each ap-
proach. We provide a brief comparison of the two model-
ing approaches in terms of scope, required experimental
data, and possible output (Table 1).

In terms of the scope of metabolic systems analyzed,
COBRA is typically applied to infer flux via genome-scale
metabolic networks, while 13C-MFA is applied to inspect
central metabolism (typically spanning glycolysis, TCA
cycle, and the pentose phosphate pathway). Analyzing
genome-scale metabolic networks enables COBRA to re-
veal non-canonical pathways with an important contribu-
tion to some cancer cells. However, it can falsely predict
flux through enzymatic reactions that were included in
the model based on weak biochemical evidence. Further
work by the metabolic modeling community is needed to
further refine and extend the existing genome-scale meta-
bolic network reconstructions based on accumulating
knowledge of enzymatic activities in human cells. An im-
portant future challenge for COBRA methods is improv-
ing the reliability of biochemical enzymatic activities that
are included in the model. With 13C-MFA, on the other
hand, it is challenging to determine the boundaries of the
analyzed metabolic system, while reactions that are left
out of the model could potentially bias flux estimation.
Applying 13C-MFA for larger scale networks is an experi-
mentally challenging task which requires the measure-
ment of metabolite isotopic labeling outside the central
metabolism. Furthermore, it is highly computationally
challenging to apply 13C-MFA for genome-scale net-
works, though some attempts in this direction have been
made [110, 111]. Further work is required to make such
genome-scale 13C-MFA methods more accessible for the
research community.

While both 13C-MFA and COBRA rely on measure-
ments of metabolite uptake and secretion rates for flux
estimation, 13C-MFA that relies on isotope tracing mea-
surements is more experimentally demanding. Omics
data, and specifically genomics, transcriptomics, proteo-
mics, and metabolomics, can be utilized as input by
COBRA methods, though this typically relies on simpli-
fied heuristics that do not account for the complexity of
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Table 1 A comparison between 13C-MFA and COBRA

Page 8 of 11

13C-MFA

COBRA

Network size Small-scale (typically central metabolism)

Difficult to determine network model boundaries
Experimentally and computationally hard to extend for

larger networks

Typical experimental inputs

Computational

requirements metabolite concentrations

Mostly hard non-convex optimization problems

solved heuristically

Determining a unique flux
solution

Typically possible

Compartmentalization
specific markers, cell fractionation

Applicability

Isotope tracing measurements; potentially absolute

Assessing uncertainty with confidence intervals

Partially addressed with specific tracers, compartment-

Genome-scale

Enables finding activity of non-canonical metabolic pathways
Potential false prediction of non-canonical metabolic activities
due to the inclusion of reactions with weak biochemical
evidence in the network model

Biomass composition, growth rate, and metabolite uptake and secretion rates

A variety of ‘omics’ datasets
Requires simplifying assumptions for integrative analysis

Mostly computationally tractable optimizations (linear or
quadratic programming)

Requires simplifying optimizations (e.g., maximal growth rate)

Addressed via simplifying optimization assumptions

Inferring fluxes in a specific condition

Predict flux adaptation following chemical/genetic alterations

regulatory and enzyme kinetic mechanisms. A major
open challenge in COBRA is developing improved
methods for utilizing quantitative proteomics and meta-
bolomics data for flux inference via enzyme-mechanistic
models accounting for kinetic and thermodynamic
considerations.

In terms of the ability to uniquely infer flux, this is
typically possible with 13C-MFA applied to analyze flux
in central metabolism, rigorously evaluating flux confi-
dence intervals. With COBRA, over-simplified optimal-
ity assumptions are typically employed to derive unique
fluxes (e.g., parsimonious FBA [75]). Subcellular
compartmentalization is typically accounted for in
genome-scale metabolic network models analyzed by
COBRA (though the prediction of flux by mitochondrial
versus cytosolic enzymes is based on simplifying
optimization criteria rather than concrete measure-
ments). With 13C-MFA, inferring subcellular flux is
technically challenging and typically not accounted for.
While several approaches have recently been proposed
to infer compartmentalized fluxes via specific isotopic
tracers or rapid cell fractionation, this remains as a
major challenge.

In terms of common applications, both COBRA and
13C-MFA enable the inference of flux in cells based on
measurements performed under a specific genetic and
cell culture condition. Derived flux maps by these ap-
proaches provide a holistic understanding of metabolic
processes, while changes in flux due to genetic or envir-
onmental perturbations provide means to examine meta-
bolic regulation. The identification of induced flux
through specific enzymes in cancer cells reveals the in-
creased dependence on metabolic transformations that
could be therapeutically targeted. Note that unlike 13C-

MFA, COBRA can further address the more challenging
task of predicting how metabolic flux will be rewired in
response to genetic or pharmacological interventions in
silico, providing means to investigate potential anti-
cancer drug targets.

Concluding remarks

Overall, COBRA and 13C-MFA provide complementary
capabilities for understanding the rewiring of metabolic
flux in cancer. While 13C-MFA analyzes isotopic tracing
measurements to provide an accurate quantitative view
of flux through central metabolic pathways, COBRA an-
alyzes flux through genome-scale metabolic networks
based on physicochemical constraints and ‘omics’ data
integration. In some cases, isotope tracing is used to
quantify specific fluxes in human tissues under different
physiological conditions, while these are used as inputs
for COBRA-based flux analysis on a genome scale [112,
113]. In others, COBRA flux predictions are validated by
comparison with 13C-MFA inferred fluxes [80]. Given
the ever-growing interest in probing cellular metabolic
fluxes, we expect COBRA and 13C-MFA to continue
playing an important role in cancer metabolic research.
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