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ISCOMATRIX vaccines mediate CD8+ T-cell
cross-priming by a MyD88-dependent
signaling pathway

Nicholas S Wilson1, Becky Yang1, Adriana Baz Morelli2, Sandra Koernig2, Annie Yang1, Stefanie Loeser1,
Denise Airey2, Larissa Provan2, Phil Hass1, Hal Braley2, Suzana Couto1, Debbie Drane2, Jeff Boyle2,
Gabrielle T Belz3, Avi Ashkenazi1 and Eugene Maraskovsky2

Generating a cytotoxic CD8+ T-cell response that can eradicate malignant cells is the primary objective of cancer vaccine

strategies. In this study we have characterized the innate and adaptive immune response to the ISCOMATRIX adjuvant, and the

ability of vaccine antigens formulated with this adjuvant to promote antitumor immunity. ISCOMATRIX adjuvant led to a rapid

innate immune cell response at the injection site, followed by the activation of natural killer and dendritic cells (DC) in regional

draining lymph nodes. Strikingly, major histocompatibility complex (MHC) class I cross-presentation by CD8a+ and CD8a� DCs

was enhanced by up to 100-fold when antigen was formulated with ISCOMATRIX adjuvant. These coordinated features enabled

efficient CD8+ T-cell cross-priming, which exhibited prophylactic and therapeutic tumoricidal activity. The therapeutic efficacy

of an ISCOMATRIX vaccine was further improved when co-administered with an anti-CD40 agonist antibody, suggesting that

ISCOMATRIX-based vaccines may combine favorably with other immune modifiers in clinical development to treat cancer.

Finally, we identified a requirement for the myeloid differentiation primary response gene 88 (MyD88) adapter protein for both

innate and adaptive immune responses to ISCOMATRIX vaccines in vivo. Taken together, our findings support the utility of the

ISCOMATRIX adjuvant for use in the development of novel vaccines, particularly those requiring strong CD8+ T-cell immune

responses, such as therapeutic cancer vaccines.
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Tumor-associated antigens can be of oncogenic viral origin or derived
from self-neoantigens that are mutated, overexpressed or ectopically
expressed by tumor cells.1 The potential immunogenicity of tumor-
associated antigen has stimulated decades of research to develop
efficacious therapeutic cancer vaccines. The effectiveness of a cancer
vaccine hinges on its ability to induce cytotoxic CD8+ T cells that can
infiltrate primary tumors, eradicate disseminated malignant cells and
protect patients from relapse.2,3 Therapeutic cancer vaccines are
typically comprised of a well-vetted TA-Ag and an immune mod-
ulator, such as an adjuvant, to condition the microenvironmental
context and boost the immunogenic potential of the TA-Ag, and to
facilitate its major histocompatibility complex (MHC) class I pre-
sentation by antigen-presenting cells to promote cytotoxic T-lympho-
cyte (CTL) cross-priming.4 Mechanisms underlying most vaccine
adjuvants are incompletely understood; however, include prolonged
half-life of the antigen, enhanced innate cell infiltration into the site
of antigen deposition, improved antigen presentation by antigen-

presenting cells and increased production of immunomodulatory
cytokines and chemokines.5 However, most clinically used adjuvants
(for example: alum, Montanide, MPL and MF59) are limited in their
ability to elicit CD8+ CTL responses.6 The paucity of adjuvants that
can promote tumor-specific CD8+ T-cell responses has led to the
evaluation of many novel adjuvant technologies. ISCOMATRIX adju-
vant (CSL Limited, Parkville, Australia) is a saponin-based particulate
adjuvant (which forms cage-like structures approximately 40 nm in
diameter).7 In pre-clinical models, ISCOMATRIX vaccines have been
demonstrated to generate broad humoral and cellular immune
responses; importantly, this includes CD8+ T-cell immunity.8 How-
ever, the mechanistic details of how ISCOMATRIX vaccines achieve
CD8+ T-cell responses in vivo have not been fully elucidated.

Dendritic cells (DCs) present antigenic peptides to CD4+ T cells via
MHC class II molecules and CD8+ T cells through MHC class I
molecules. In most instances MHC class I presentation is restricted to
endogenously derived proteins; however, certain DC subsets possess
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the ability to deliver exogenously derived proteins into the MHC class
I presentation pathway, a process termed cross-presentation.4,9 In
mice, cross-presentation has been identified as a feature of the
CD8a+ subset of lymphoid organ DCs (CD8 DCs hereafter),10–13

although a second population of tissue-derived CD103+ DCs
may support CD8+ T-cell cross-priming during certain pathogenic
infections.14,15

Pathogen-associated antigens captured by antigen-presenting cells
are generally associated with pathogen-associated molecular patterns
that are detected by pattern recognition receptors, such as those of the
toll-like receptor (TLR) and inflammasome pathways.16,17 Under these
conditions, antigen cross-presentation and appropriate DC activation
favor CD8+ T-cell cross-priming.4 In contrast, tumor-associated anti-
gen can be cross-presented in the absence of appropriate immune
activation, and in the context of tumor-mediated immune suppres-
sion.18,19 As such, DCs cross-presenting tumor-associated antigen
often fail to mount an effective antitumor CD8+ CTL immune
response. Cancer vaccine strategies likely require an adjuvant to
potentiate the immunogenicity of the vaccine antigen by concomi-
tantly activating cross-presenting DCs.3 However, immune activation
without efficient cross-presentation may result in a failed or subopti-
mal antitumor response. Therefore, a desirable feature of an immune
adjuvant is to combine both immune modulation and efficient
antigen delivery into the MHC class I cross-presentation pathway.

In this study we have characterized the innate and adaptive immune
responses elicited by ISCOMATRIX vaccines in mice. We propose that
the integrated capacity of ISCOMATRIX adjuvant to enhance antigen
cross-priming, combined with immune activation, supports its clinical
development as a cancer vaccine adjuvant.

RESULTS

ISCOMATRIX adjuvant promotes an innate immune response
in vivo
The innate immune response to injected ISCOMATRIX adjuvant was
evaluated using the sterile subcutaneous air-pouch technique.20

Gr1high neutrophils rapidy accumulated in the air-pouch within 4 h
of ISCOMATRIX adjuvant administration, Ly6Chigh monocyte infil-
tration peaked at 16 h, relative to phosphate-buffered saline (PBS)-
injected control air-pouches (Figure 1a). The influx in neutrophils and
monocytes correlated with a dramatic increase in the number of
myeloid (CD11bhigh) cells recovered from the air-pouch exudate (data
not shown). To assess the local cytokine and chemokine response to
ISCOMATRIX adjuvant, immune cell infiltrates were isolated and
cultured overnight. Interleukin (IL)-5, monocyte chemotactic protein-
1 and macrophage-colony-stimulating factor (CSF) levels were
significantly elevated in the supernatant collected from immune cells
obtained from ISCOMATRIX adjuvant-treated mice (Figure 1b). No
significant differences were observed in the other chemokines or
cytokines analyzed (data not shown).

We next characterized the innate immune cell response in the
brachial (draining) and inguinal (non-draining) lymph nodes (LNs).
Correlating with an overall increase in cellularity (Supplementary
Figure 1A), the number of natural killer (NK) cells, NK T cells,
monocytes and neutrophils were elevated in the draining LN (DLN),
compared with the non-DLN (Figure 1c, and Supplementary Figure
1B). To evaluate innate immune cell activation, we examined NK cell
interferon (IFN)-g—production and CD69 upregulation following a
single dose of ISCOMATRIX adjuvant. IFN-g-producing NK cells
were detected in the DLN within 3 h of subcutaneous adjuvant
delivery, and peaked at 24 h (Figure 1d). NK cell IFN-g production
correlated with increased surface expression of the early activation

marker, CD69 (Figure 1e). Increased CD69 expression was restricted
to the DLN, and was also elevated on other immune cell populations
including B cells and DCs (data not shown). Given the ability of
ISCOMATRIX adjuvant to recruit a local inflammatory response, we
sought to investigate adaptive immune responses to ISCOMATRIX
adjuvant formulated with two model vaccine antigens, given as a
prime and boost regimen.

ISCOMATRIX vaccines facilitate cellular and humoral immune
responses
To characterize the adaptive immune response to ISCOMATRIX
vaccines, we utilized antigens with well-defined H-2 Kb-restricted
MHC class I epitopes in C57Bl6 mice: ovalbumin (OVA) and a fusion
protein based on herpes simplex virus (HSV) coat proteins glycopro-
tein B (HSV-1) and D (HSV-2) (gB:gD). The endogenous antigen-
specific CD8+ T-cell response was quantified in the spleen following a
prime, or prime-boost vaccination regimen (Figure 2a, schematic). The
percentage of vaccine antigen-specific IFN-g-producing CD8+ T cells is
shown relative to percentage obtained with the day �7, 0 vaccination
protocol (Figures 2b and c). The percentage of antigen-specific IFN-g-
producing CD8+ T cells was routinely between 3 and 8% of the
endogenous CD8+ T cells (Supplementary Figure 2A). This percentage
correlated with the number of CD44high OVA-specific CD8+ T cells
quantified using an H-2 Kb-SIINFEKL tetramer (Supplementary Figures
2B and 2C). The humoral response was evaluated with the same dosing
regimens used to assess the CD8+ T-cell response (Figure 2a, sche-
matic). OVA-specific antibody titers were compared in sera collected
from naive mice or 7 or 28 days after the final vaccination. Initial titers
were highest 7 days after the �28, 0 regimen; however, total levels were
comparable after 28 days with all dosing combinations (Figure 2d).

Depending on the challenge model, cytotoxic CD8+ T-cell priming
can require assistance by CD4+ T helper (TH) cells.21,22 To investigate
whether CD4+ TH participated in ISCOMATRIX adjuvant-mediated
cellular immunity, we compared effector and recall CD8+ T-cell
responses in wild type and MHC class II-deficient mice, which lack
CD4+ T cells.23 MHC class II-deficient mice generated 60% fewer
antigen-specific IFN-g-producing CD8+ T cells compared with wild-
type control mice (Figure 2e). Consistent with this finding, the CD8+

T-cell recall response was severely compromised in MHC class II-
deficient mice (Figure 2f). Vaccinated MHC class II-deficient mice
also failed to develop vaccine-antigen-specific antibodies (Figure 2g).

Antitumor responses require components of innate and adaptive
immunity
We next evaluated the cytotoxic activity of CD8+ T cells generated by
an ISCOMATRIX vaccine by monitoring the lysis of target cells pulsed
with SIINFEKL peptide in pre-vaccinated versus control (OVA)-
treated animals (Figure 3a). To confirm the antitumor activity of
the vaccine antigen-specific CTLs, we used the B16 melanoma tumor
challenge model.24 In all, 80% of vaccinated mice remained tumor-
free after 125 days, as compared with a 100% tumor incidence in mice
that received ISCOMATRIX alone (control) (Figure 3b). All tumor-
free mice rejected a subsequent challenge of OVA-expressing mela-
noma cells but succumbed to parental B16 tumor cell growth (data
not shown). To evaluate the impact of an ISCOMATRIX vaccine in the
therapeutic tumor model, mice were inoculated with OVA-expressing
melanoma cells 5 days before prime and boost vaccination (Figure 3c).
A significant delay in tumor growth was observed only in the
vaccinated cohort, which correlated with improved survival, although
all mice eventually succumbed to tumor burden (Figure 3d). ISCO-
MATRIX or OVA alone did not extend survival, as compared with
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untreated animals (Supplementary Figure 3A). We next assessed
whether ISCOMATRIX vaccines could combine with an immune
modifier to augment the therapeutic antitumor activity. Anti-CD40
agonists are recognized as potent immune modifiers, and as such,
represent an attractive immunotherapy in treating neoplastic dis-
ease.25,26 We found that the anti-CD40 antibody, FGK45, combined
effectively with an ISCOMATRIX vaccine to significantly extend
survival beyond what was achieved with vaccine or anti-CD40 plus
antigen formulations alone (Figure 3e).

To evaluate the contribution of innate and adaptive immune cell
populations in ISCOMATRIX vaccine-mediated tumor protection, we
depleted CD8+, CD4+ or NK cells during the prime and boost
vaccinations. Vaccine-mediated tumor protection was severely atte-
nuated when T cell or NK cell populations were depleted (Figure 3f).

To test the hypothesis that cross-primed CD8+ T cells could confer
tumor protection in our model, we adoptively transferred CD8-
enriched and CD8-depleted splenocyte fractions from previously
vaccinated mice into naive recipients. All mice were challenged 1
day later with B16-OVA melanoma cells (Figure 3g). Only the CD8+

splenocyte fraction was able to provide tumor protection in 40% of
the naive recipients. Taken together, these results indicate that ISCO-
MATRIX vaccines require the coordinated function of the innate and
adaptive response to generate an antitumor CTL response in vivo.

DCs are required for NK cell activation and CD8+ T-cell immunity
in response to an ISCOMATRIX vaccine
DCs are potent stimulators of naı̈ve T cells and NK cells, and as such,
provide a critical link between innate and adaptive immunity.4,27,28 To
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Figure 1 ISCOMATRIX adjuvant activates innate immune cells in vivo. (a) Immune cell infiltrates were gated on the myeloid marker CD11b. Monocyte

(CD11b+Ly6C+) and neutrophil (CD11b+Gr1+) recruitment into subcutaneous air-pouches was evaluated 4, 16 and 24 h following subcutaneous ISCOMATRIX

adjuvant (IMX) administration. Profiles are representative for n¼3–6 mice per time-point. (b) Levels of IL-5, monocyte chemotactic protein-1 a and

macrophage CSF (macrophage-CSF) detected in cultured air-pouch immune exudates. Error bars show the s.e.m. (n¼3 per group). Student’s t-test was used

to calculate statistical significance. (c) Time-course of NK cell accumulation in the DLN (brachial) and non-DLN (inguinal) following subcutaneous IMX

injection. (d) Ex vivo NK cell IFN-g production in the DLN and non-DLN after IMX administration. Error bars represent the s.e.m. (n¼4–8 individual LN per

time-point). (e) Representative profiles showing NK cell expression of CD69 in the DLN of naı̈ve or 24h after IMX injection. No increase in CD69 expression

was observed on NK cells, or other cell populations, from the non-DLN (data not shown). All results are representative of at least two independent

experiments.
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evaluate the importance of DCs for vaccine-mediated CD8+ T-cell
cross-priming, we utilized transgenic mice expressing the diphtheria
toxin receptor (DTR) fused with green fluorescent protein under
control of the DC-associated CD11c promoter (CD11c-DTR).29

Recipient mice were reconstituted with bone marrow from CD11c-
DTR transgenic (Figure 4a, schematic). This rendered DTR-expressing
CD11c+ cells sensitive to diphtheria toxin (DT) (Figure 4b). Notably,
radio-resistant Langerhans cells,30,31 represented the green fluorescent
protein-negative CD11c-expressing cells in DLN of the chimeric mice.
CD11c+ DC ablation significantly impaired the generation of antigen-
specific CD8+ T cells (Figure 4c and Supplementary Figure 4A).
Depletion of CD11c-expressing cells had no effect on ISCOMATRIX
adjuvant-mediated NK cell accumulation in the DLN but significantly
reduced NK cell IFNg production (Figure 4d and data not shown).
Given the dependence on DCs for ISCOMATRIX adjuvant-mediated
NK cell and CD8+ T-cell immune responses, we next sought to
evaluate the effect of ISCOMATRIX adjuvant on DC activation
in vitro and in vivo.

ISCOMATRIX adjuvant administration results in potent DC
activation in vivo
A characteristic feature of TLR-induced DC activation is increased cell
surface expression of T-cell co-stimulatory molecules and MHC class
II.13,32 To establish whether ISCOMATRIX adjuvant directly activated

DCs, we generated DCs in vitro using the FMS-like tyrosine kinase 3
(Flt3) ligand culture system.33,34 Compared with TLR4 (lipopolysac-
charide, LPS) or TLR9 (CpG) stimulation, ISCOMATRIX adjuvant
failed to induce CD40, CD69, CD80 or MHC class II expression
(Figure 5a and data not shown). A modest increase in CD86 was
observed but to a lesser extent than TLR4 or 9 stimulation.
Similar results were obtained with DCs generated with granulocyte-
macrophage CSF and IL-4 (data not shown). Plasmacytoid DCs in
the Flt3L-treated cultures did not respond to ISCOMATRIX
adjuvant (data not shown). Consistent with the lack of phenotypic
activation, ISCOMATRIX adjuvant failed to induce pro-inflammatory
cytokine production by macrophages or DCs, as compared with
lipopolysacaride (LPS) stimulation (Supplementary Figure 5A and
data not shown).

DC activation is considered a key event in T-cell priming.35 Given
our in vitro results, we questioned whether ISCOMATRIX adjuvant
injection caused DC activation in vivo. DCs isolated from the DLN
24 h post-ISCOMATRIX adjuvant administration were evaluated for
activation marker expression (Figure 5b). In contrast to our in vitro
results, CD8+CD205+ DCs (CD8 DCs) showed consistent upregula-
tion of CD40, CD80, CD86 and MHC class II. Activation markers on
CD205�CD8� DCs (double negative, DN DCs) or tissue-derived
migratory CD8�CD205+ DCs (MigDCs) did not significantly change
with treatment. Plasmacytoid DCs in the DLN showed modest
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increases in activation marker expression (data not shown). DC
activation was not evident in the spleen or in the non-DLN (data
not shown). In comparison with LPS administration, ISCOMATRIX
adjuvant induced similar or greater activation marker upregulation by

the DLN CD8 DCs (Figure 5c). Consistent with immune cell activa-
tion, systemic cytokines were detected in the serum of ISCOMATRIX
adjuvant-treated mice; although at much lower levels compared with
LPS-treated mice, with the exception of IL-5 (Figure 5d). In the DLN,
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elevated levels of IL-6 and the IL-6-type cytokine family member
leukemia inhibitory factor,36 along with monocyte chemotactic pro-
tein-1, macrophage-CSF and tumor necrosis factor-a (TNF-a) were
detected (Supplementary Figure 6a).

ISCOMATRIX adjuvant facilitates antigen cross-presentation by
CD8 and non-CD8 DCs
Given the ability of ISCOMATRIX adjuvant to promote DC activation
and provide a pro-inflammatory milieu in vivo, we next assessed its
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Figure 3 The antitumor response mediated by ISCOMATRIX vaccines requires components of innate and adaptive immunity. (a) The CTL response was

evaluated in animals that received the ISCOMATRIX (IMX) vaccine or antigen (OVA) alone on day �7, 0. SIINFEKL-pulsed CFSEhigh-labeled target cells were

injected intravenously on day +7, and specific-lysis was evaluated ex vivo 4 h later by flow cytometry. Specific lysis was calculated relative to a control (non-

pulsed) CFSElow-labeled cell population. The mean specific lysis is shown ±s.e.m. Student’s t-test was used to calculate statistical significance.
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log-rank test) (n¼10 per group). (e) Tumor cells were inoculated into mice 5 days before the indicated vaccination regimens (day 5 (prime) and 12 (boost)).
Kaplan–Meier curves showing survival end-points for each cohort (n¼10 per group; vaccine versus anti-CD40+vaccine¼Po0.002 by the log-rank test). (f)

Mice were administered anti-CD4, anti-CD8 or anti-asialo-GM1 (anti-asialo) on days �8, �5, �2, +1 and +4 during the day �7, 0 vaccine regimen. Mice

were challenged on day +7 with 1.5�105 B16:OVA cells and tumor incidence was monitored. (g) CD8-enriched or CD8-depleted spleen cell fractions from

pre-vaccinated mice were adoptively transferred into naı̈ve recipients. After 1 day of adoptive transfer, mice were challenged with 5�105 B16:OVA melanoma

cells. Tumor incidence was monitored out to day 125 (n¼10–12 per group). All results are representative of two or more independent experiments.
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effects on DC migration into DLN and MHC antigen presentation.
The increase in DLN cellularity (Supplementary Figure 1A) correlated
with a three–four-fold increase in the number of CD11cint-high DCs
at 24 h, as compared with mice that had received antigen alone

(Figure 6a). To evaluate the kinetics of MHC I and II presentation,
DCs were isolated at the indicated time-points from the DLN and co-
cultured with carboxyfluorescein succinimidyl ester (CFSE)-labeled
OVA-specific CD8+ (OT-I) or CD4+ (OT-II) T cells (Figure 6b and
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Supplementary Figure 7A). DCs from mice that were vaccinated or
received OVA antigen alone induced comparable OT-I proliferation at
3 h. By contrast, at 12 h there was a 100-fold difference in T-cell
proliferation by DCs from vaccinated mice. No systemic MHC class I
antigen cross-presentation was detected in the spleen of immunized
mice (Figure 6c), and MHC class II antigen presentation was only
modestly improved by formulating OVA with the ISCOMATRIX
adjuvant (Supplementary Figure 7A).

To identify the DC subset(s) cross-presenting antigen in vivo, we
isolated by flow cytometry CD8, MigDCand DN DC populations at
12, 24 and 48 h after a single vaccine dose (Figure 6d). By 12 h, the
CD8 DC subset dominated MHC class I cross-presentation to OT I
cells; however, by 24 h the MigDC population efficiently cross-
presented antigen. This second wave of cross-presentation coincided
with an influx of CD8�CD205int DCs into the DLN (Figure 6a and
Supplementary Figure 7b).

Given the ability of ISCOMATRIX adjuvant to facilitate the
translocation of antigen from endosomes into the cytosol of human
DCs in vitro,37 we hypothesized that cytosolic translocation of antigens
might enable cross-presentation by non-specialized DC subsets.
To evaluate this, we purified CD8 and CD4 DCs from the spleen of
naı̈ve animals (Figure 6e). Consistent with our earlier study,11 only
CD8 DCs efficiently cross-presented soluble antigen to naı̈ve CD8+ T
cells (Figure 6f). Surprisingly, CD4 DCs were even more efficient than
CD8 DCs at cross-presentating soluble antigen formulated with
ISCOMATRIX adjuvant. Finally, consistent with our in vivo observa-
tion, ISCOMATRIX adjuvant did not significantly improve
soluble antigen delivery into the MHC class II antigen presentation
(Figure 6g).

ISCOMATRIX vaccines are dependent on a myeloid differentiation
primary response gene 88 (MyD88) signaling axis in vivo
Finally, to further understand how ISCOMATRIX vaccines mediate
cellular immunity in vivo, we investigated whether CD8+ T-cell cross-
priming was dependent on adapters of the TLR and IL-1R pathway.16

Strikingly, the CD8+ T-cell response was significantly impaired in
MyD88-deficient mice (Figure 7a). By contrast, mice deficient for
TIR-domain-containing adapter-inducing IFN-b (TRIF) gave a com-
parable CD8+ T-cell response to wild-type controls (Figure 7b).
Interestingly, the increased DLN cellularity following ISCOMATRIX
adjuvant administration was indistinguishable between wild-type,
TRIF or MyD88-deficient mice (data not shown). NK cell IFN-g
production and vaccine antigen-specific antibody responses were also
strongly impaired in MyD88-deficient mice (Supplementary Figure
8A and data not shown). To evaluate if an endogenous TLR4 ligand,
signaling through the MyD88 adapter, may reproduce this phenotype,
we assessed the vaccine-mediated CD8+ T-cell response in TLR4-
deficient mice (Figure 7c).7 Unlike MyD88, TLR4 was dispensable for

ISCOMATRIX vaccine-mediated cellular responses in vivo. Interest-
ingly, MyD88-deficiency had no effect on vaccine antigen cross-
presentation by CD8 or MigDCs, or ISCOMATRIX-induced DC
maturation in the DLN (Figures 7d and e).

DISCUSSION

Therapeutic cancer vaccines are typically comprised of three compo-
nents: an antigen, to give specificity to the cellular response; a delivery
modality, to promote antigen capture and transfer into the MHC class
I pathway; and an immune-modulating agent, to enhance the immu-
nogenicity of the vaccine antigen.38 Therapeutic vaccines are intended
to generate CTLs that can infiltrate tumors and selectively eliminate
malignant cells.3

ISCOMATRIX adjuvant-based vaccines have been shown to gen-
erate robust humoral and cellular immune responses in a range of
pre-clinical models, and have a good safety profile in human subjects.8

How ISCOMATRIX adjuvant facilitates immunity to co-delivered
vaccine antigens remains poorly understood. The particulate nature
of ISCOMATRIX adjuvant likely promotes efficient endocytosis by
DCs; both at the injection site and by DCs in the DLNs (Figure 7f).39

The earliest detectable response to ISCOMATRIX adjuvant adminis-
tration was a rapid influx of innate immune cells into the injection site
and a distinct localized cytokine and chemokine response. The initial
pro-inflammatory response led to innate immune cell accumulation
and activation in the LNs draining the injection site. Coordinated NK
cell and DC functionalities culminated in TH-dependent CD8+ T-cell
cross-priming. We observed that optimal vaccine antigen-specific
CD8+ T-cell responses were achieved when the boost vaccination
was delivered 7 days after the initial prime dose. This observation was
consistent with our earlier observation that DC antigen cross-pre-
sentation is restored 7 days after exposure to potent maturation
stimuli.11,13 Indeed, a boost vaccination delivered earlier than 7 days
was found to negatively impact the magnitude of the CD8+ T-cell
response (data not shown).7 Our results suggest that an accelerated
7-day interval between the prime and boost regimen may enhance
efficacy, and be beneficial in the instance of treating aggressively
growing tumors.

ISCOMATRIX adjuvant contains the ISCOPREP saponin, a
purified fraction of Quillaia saponin, which may alter the biophysical
properties of the endosomal membrane in cells, thereby facilitating
the cytosolic translocation of co-delivered vaccine antigens.37

Consistent with this hypothesis, ISCOMATRIX adjuvant enabled
efficient MHC class I cross-presentation of a vaccine antigen in vitro
by a population of DCs that typically do not cross-present soluble
antigens. The ability of the ISCOMATRIX adjuvant to enable cross-
presentation by non-specialized DC subsets may explain the efficient
MHC class I cross-presentation observed by tissue-derived
DCs trafficking into DLNs from the vaccination site. Conversely,

Figure 5 In vivo DC activation and cytokine responses to ISCOMATRIX adjuvant administration. (a) Flt3L-derived DCs were cultured overnight in the
presence of IMX (5mg ml�1), CpG (1mM) or LPS (1mg ml�1). CD40, CD69, CD80 and CD86 upregulation (black lines) was monitored on conventional

(CD11c+CD45RA�) DCs by flow cytometry, as compared with an isotype control antibody (dashed lines). (b) CD8 and double-negative (DN) lymphoid DCs

were distinguished from ‘tissue-derived’ MigDCs based on the expression of CD8 and CD205 (left dot plot).53 Right histogram; expression of CD40, CD80,

CD86 and MHC class II expression (black lines) on DCs following a single subcutaneous dose of ISCOMATRIX adjuvant, as compared with DCs isolated from

untreated DLN (gray lines). Isotype control antibody staining is shown as dashed lines. Data are representative of 3–5 experiments. (c) Activation marker

expression by CD8 DCs isolated from the DLN of untreated mice, or 24h after a subcutaneous dose of IMX (5mg) or LPS (3mg). The mean linear

fluorescence (MLF) is shown on the y-axis, with isotype controls MLF values subtracted for each sample. (d) Cytokine levels in the serum collected 6 or

24h after subcutaneous IMX or LPS administration: shown are the levels of IL—1b,IL-5,IL-6, IL-10, IL-12/23(p40), granulocyte-CSF, keratinocyte

chemoattractant (KC or CXCL1), monocyte chemotactic protein-1 (MCP-1 or CCL2), macrophage inflammatory protein-1a (MIP-1a or CCL3) and b (MIP-1b
or CCL4), Rantes (or C) and IFN-g. Error bars show the s.e.m. (n¼6 mice per treatment group). Student’s t-test was used to calculate statistical significance

(*Po0.05, **Po0.001, n.s., not significant). All results are representative of two or more independent experiments.
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cross-presentation by the CD205highCD11cintCD8neg DC population
identified in this study may reflect an intrinsic feature of a dermal
or an inflammatory-induced DC subset.14,15,40 Consistent with an
earlier report,30 Langerhans were not sufficient for CD8+ T-cell

cross-priming in vivo. The precise identification of the cross-present-
ing tissue-derived DC population following ISCOMATRIX
vaccine administration requires further phenotypic and functional
characterization.
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Figure 6 ISCOMATRIX adjuvant facilitates antigen entry into the MHC class I cross-presentation pathway in DCs. (a) Time-course showing the number of

CD11c+ DCs isolated from the DLN of mice injected with vaccine or OVA (antigen) alone. (b) MHC class I cross-presentation was quantified in the DLN ex

vivo after a single dose of ISCOMATRIX vaccine or OVA (antigen) alone. The CD11c+ DC fraction (490%) was purified from the DLN at the indicated times.

A total of 5�103 DCs were then co-cultured with 5�104 CFSE-labeled OT-1 CD8+ T cells. Proliferation was quantified 60h later by flow cytometry. Circles

in (a) and (b) represent data points from independent experiments (an average of n¼4–8 DLN per sample), and bars show the pooled average. (c) MHC-I

presentation by CD11c+ DCs purified from the spleen or DLN 24h after a single ISCOMATRIX vaccine dose. OT-I proliferation was determined as in (b). (d)

Highly purified (495%) populations of CD8, DN and MigDC were purified from the DLN 12, 24 and 48h after a single vaccine dose. Cross-presentation was

assessed by co-culturing each DC population with 5�104 CFSE-labeled OT-1 cells and quantifying proliferation 60 h later. (e) CD11c-enriched spleen DCs

were separated into CD8 and CD4 populations by flow cytometry (495% purity). (f) CFSE-labeled OT-I T cells were co-cultured with CD8 or CD4 DCs pulsed

for 30 min with OVA (antigen) alone (open symbols) or antigen+ISCOMATRIX (closed circles). Pulsed DCs were cultured with CFSE-labeled OT-I cells, and

proliferation was determined after 60h as described. (g) The same DCs used in (f) were co-cultured with CFSE-labeled CD4+ OT-II T cells. Proliferation was

quantified as described. Error bars represent the s.d. of triplicate samples. Results are representative of two or more independent experiments.
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Figure 7 ISCOMATRIX vaccines are dependent on a MyD88-signaling axis in vivo (a) CD8+ T-cell responses were compared in wild type (WT) and MyD88-

deficient mice (MyD88 KO) vaccinated with an ISCOMATRIX vaccine on day �7, 0, with the magnitude of the CD8+ T-cell response shown relative to WT

mice. (b, c) Same as in (a) except the CD8+ T-cell response was evaluated in TRIF or TLR4-deficient mice. (d) Purified CD8 and MigDCs from wild type or

MyD88-deficient (KO) mice were isolated from the DLN 24 h after vaccine administration. MHC class I cross-presentation was assessed by co-culturing each

population with 5�104 CFSE-labeled OT-1 cells and quantifying proliferation 60 h later, as described. (e) CD40, CD80 and CD86 expression (black lines)

was assessed for CD8 DCs isolated from the DLN of WT or MyD88 KO mice dosed with ISCOMATRIX adjuvant, compared with CD8 DCs from untreated WT

mice (gray lines). Dashed lines illustrate the median fluorescence for each marker. (f) Schematic illustrating the interaction between DCs, T cells and NK

cells in the DLN following ISCOMATRIX vaccine delivery. ISCOMATRIX vaccines initiate a localized inflammatory response at the subcutaneous injection site,

and efficient DC activation and MHC class I cross-presentation in the DLN (MyD88-independent). Although the precise DC activation signal(s) is currently

unknown, a distinct pro-inflammatory milieu was detected locally and systemically following ISCOMATRIX adjuvant administration. In the DLN, NK cell

activation and CD8+ T-cell cross-priming was dependent on DCs, as well as an intact MyD88 signaling network. Cross-primed CD8+ T cells exhibit potent

antitumor activity in prophylactic tumor challenge models. However, in the case of pre-established tumor burden, the effectiveness of the vaccine is likely to

be blunted by immune suppressive networks, such as myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg) and tumor-derived factors that

prevent complete tumor eradication.
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Many therapeutic cancer vaccines have failed to achieve primary
endpoints in clinical studies.41 A likely caveat is that pre-clinical
models used to assess efficacy do not adequately reproduce the
immunosuppressive mechanisms that pre-exist in cancer patients
such as; regulatory T-cell networks, immature myeloid cells and
tumor cell-derived immune suppressive factors (Figure 7f).3,18 In
addition, most current standard of care options for controlling cancer
involves chemotherapies that may impair effective cellular immune
responses.42,43 Despite this, several emerging Phase III studies indicate
that immune-modulatory strategies may have clinical activity in
certain cancer indications.44,45 Encouragingly, we have demonstrated
that the therapeutic effect of ISCOMATRIX adjuvant-based vaccines
can be enhanced through combination with clinically relevant
immune modifiers: melanoma (anti-CD40 agonist antibody); and in
pancreatic cancer (CpG oligodeoxynucleotide).46 A clear mechanistic
understanding of the cooperativity between these agents and ISCO-
MATRIX vaccines remains to be elucidated. For example, CD40
signaling can modulate many facets of the immune response, includ-
ing DC, macrophage and T-cell functions.25,47–49 Therefore, it is
feasible that ISCOMATRIX vaccines and CD40 agonists function
independently to activate distinct immune-signaling nodes, which
combine effectively to enhance therapeutic efficacy. Importantly, our
findings suggest that the single agent activity of immunotherapeutics
may benefit through combination with an ISCOMATRIX adjuvant-
based cancer vaccine.

In comparison to TLR4 agonists, ISCOMATRIX adjuvant admin-
istration produced a unique systemic and localized cytokine and
chemokine signature. This pro-inflammatory response was transient
and coincided with NK cell and DC activation in LNs draining the
injection site. Inconsistent with direct pattern recognition receptor
stimulation, ISCOMATRIX adjuvant failed to activate macrophages or
DCs in vitro, in contrast to TLR4 or 9 stimulation. These results
support a mechanism of indirect immune cell activation in vivo, most
likely via specific cytokine cascades. To address the possibility that an
endogenous TLR ligand may indirectly facilitate immune activation,
we vaccinated mice deficient for the TLR-signaling adapters MyD88 or
TRIF. Strikingly, innate and adaptive immune responses to ISCOMA-
TRIX vaccines were severely compromised in MyD88-deficient mice.
We reasoned that an endogenous TLR ligand ‘danger signal’ released
upon ISCOMATRIX adjuvant administration might account for the
impaired vaccine response in MyD88-deficient mice;43,50 however,
TLR4 was found to be dispensable for cellular immunity, as was IL-
1R signaling (data not shown). Instead we propose that innate
immune cells responding to ISCOMATRIX adjuvant at the injection
site initiate a cascade-localized inflammatory events, which culminate
in CTL cross-priming in DLNs. The exact mechanisms underlying
these events remain to be elucidated, and are the focus of continuing
research efforts. Interestingly, DC activation and cross-presentation
were MyD88-independent, lending to the possibility that MyD88-
dependence is downstream of apical inflammatory events but required
for DC-dependent NK cell activation and adaptive immune responses
(Figure 7f).

In conclusion, our study has characterized the immune responses to
ISCOMATRIX adjuvant in vivo. We show that ISCOMATRIX vaccines
promote significant cross talk between the innate and adaptive
compartments, which culminate in tumorcidal CD8+ T-cell cross-
priming. These findings have clear implications for therapeutic cancer
vaccine design; however, they also implicate a novel pattern recogni-
tion receptor-independent pro-inflammatory pathway that may be
linked to the biophysical properties of the ISCOMATRIX adjuvant.
Taken together, our results support the clinical evaluation of combi-

nation approaches that incorporate ISCOMATRIX adjuvant-based
vaccines with immune modifiers to treat cancer.

METHODS

Mice
Unless otherwise stated, all C57BL/6 experimental mice were 6–8-weeks old.

Wild-type, MHC class II-deficient,23 MyD88-deficient,51 TRIF-deficient,52

C57Bl6.TLR4(Lps-d)-deficient (C3H/HEJ backcrossed n¼8 generations to

C57Bl6 background) and CD11c-DTR transgenic mice29 were maintained

under specific pathogen-free conditions. All experiments were subject to

approval by the institutional Ethics Committee according at Genentech Inc.

(South San Francisco, CA, USA), CSL Limited (Parkville, Victoria, Australia) or

the Walter and Eliza Hall Institute (WEHI, Melbourne, Victoria, Australia). All

animal work was undertaken in accordance with institutional and national

guidelines and conformed to the provisions of the Declaration of Helsinki (as

revised in Edinburgh 2000).

Air-pouch method
The air-pouch model was adapted from the method previously described.20

Briefly, anesthetized mice were injected subcutaneously with 5 ml of sterile air

into the intravascular area. On day 3, 2–3 ml of sterile air was injected to

maintain the integrity of the air-pouch. On day 7, 5mg ISCOMATRIX adjuvant

in 100ml of PBS or PBS alone was injected into the air-pouch. At the indicated

time, animals were euthanized by CO2 inhalation and 1 ml of PBS was injected

into the air-pouch. Exudates, typically 500–800ml, were collected and analyzed

for infiltrating immune cells. For cytokine and chemokine determinations,

infiltrating cells were isolated 4 h after the indicated treatment, and cultured

overnight in serum-free media (Invitrogen, Carslbad, CA, USA). Supernatants

were concentrated using Amicon Ultra centrifugal filters (3 kDa) (Millipore,

Billerica, MA, USA) before chemokine and cytokine analysis.

Cytokine determinations
Cytokines and chemokines were measured with the Bio-Plex cytokine assay (Bio-

Rad, Hercules, CA, USA) and analyzed with the Luminex 100 system (Luminex,

Austin, TX, USA). The full list of chemokines and cytokines included in the 32-

plex assay were: IL-1a, IL-1b, IL2, IL4, IL-5, IL-6, IL-9, IL-10, IL-12p40, IL-

12p70, IL-13, IL-15, IL-17, IL-18, Eotaxin, granulocyte-CSF, macrophage-CSF,

granulocyte-macrophage-CSF, IFNg, KC, monocyte chemotactic protein-1,

macrophage inflammatory protein-1a, macrophage inflammatory protein-1b,

CCL5, tumor necrosis factora, basic fibroblast growth factor, leukemia inhibitory

factor, chemokine (C–X–C motif) ligand 9 (CXCL9), macrophage inflammatory

protein-2, platelet-derived growth factor and vascular endothelial growth factor.

Dendrtic cell preparations
DCs were isolated from the spleen and LNs, as previously described.53 Enriched

DC fractions (typically 495%) were stained with a combination of anti-

CD11c (clone N418), anti-CD205 (clone NLDC145) and anti-CD8 (clone

YTS16.4) to identify resident and migratory subsets. Bone marrow-derived DCs

were generated as previously described using FMS-like tyrosine kinase 3

ligand.33 Anti-CD11c and anti-CD45RA (clone 14.8) were used in combi-

nation to identify conventional (CD11c+CD45RA�) and plasmacytoid

(CD11c+CD45RA+) DC populations. Anti-CD40 (clone FGK-45), anti-CD69

(clone H1.2F3), anti-CD80 (clone 16–10A1), anti-CD86 (clone GL1) and anti-

MHC class II (clone M5/114) expression was determined relative to isotype

control antibodies. ISCOMATRIX adjuvant (5mg ml�1), CpG1668 (1mM)

(GeneWorks, Hindmarsh, SA, Australia or Invivogen, San Diego, CA, USA)

or LPS and Escherichia coli serotype 0111:B4 (LPS) (1mg ml�1) (Invivogen)

were used to stimulate DCs or macrophages in vitro. For in vivo DC activation

marker evaluation or cytokine determinations, mice were injected subcuta-

neously with 3mg of LPS or 5mg of ISCOMATRIX adjuvant in 100ml of PBS.

Immunization protocol OVA-specific CD8+ T-cell and antibody
response
ISCOMATRIX adjuvant was prepared as described previously.54 The vaccine

xantigens were soluble, endotoxin low preparations of chicken OVA

(o0.1 EUmg�1) (Worthington Biochemical Corporation, Lakewood, NJ,
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USA) or HSV-1gB:HSV-2gD fusion protein (gB:gD o0.1 EUmg�1). The gB:gD

fusion protein was generated by adding the HSV-1 gB CTL epitope SSIEFARL to

the N-terminal of HSV-2 gD glycoprotein (CSL Limited). Alternatively, endotox-

in-low OVA (0.007 EUmg�1) was generated at Genentech Inc. from chicken egg-

white (specific pathogen-free eggs, Charles River, Willmington, MA, USA), as

previously described.55 All prime or boost immunizations were administered

subcutaneously into the scruff of the neck in 100ml of PBS. Each vaccine dose

contained 5mg of ISCOMATRIX adjuvant (equivalent to 3.75 ISCOUNITS) and

30mg of antigen. Mice were terminally bled via cardiac puncture at the time

points indicated. Sera was assayed for reactivity to OVA, as previously described.56

B16 melanoma challenge and adoptive CD8 and non-CD8 cell
transfer
Mice were vaccinated on days �7 and 0 with OVA+ISCOMATRIX adjuvant and

then challenged 7 days after the boost dose with 1�105 B16.F10 melanoma cells

expressing full-length chicken egg OVA (B16-OVA). Tumor-incidence was mon-

itored out to day 125. Tumor-free animals were re-challenged on day 150 with

1�105 parental B16 melanoma (B16-F10) or B16-OVA cells (data not shown).

For adoptive CD8 and non-CD8 cell transfer experiments into naı̈ve recipients:

the spleens were harvested from donor mice 21 days after the prime-boost vaccine

regimen, and CD8 expressing cells were positively selected using magnetic beads

(Miltenyi Biotec, Auburn, CA, USA). Purified CD8 (485% purity) and CD8-

depleted cell fractions were adoptively transferred intravenously (10�106) into

naı̈ve C57Bl6 recipients. After 1 day of the transfer, mice were challenged with

5�105 B16 cells and tumor incidence was monitored. For the therapeutic

melanoma cancer model, all mice were inoculated with 1�105 B16-OVA tumor

cells on day 0. After 5 days of tumor cell inoculation the mice were either

untreated or dosed with ISCOMATRIX, OVA or the ISCOMATRIX vaccine

(adjuvant+antigen), followed by a boost dose on day 12. Tumor volumes were

monitored until the first tumor reached 3000 mm3, which was nominated as the

survival end-point. 10 mg kg�1 of anti-CD40 (clone FKG45, BioXcell, West

Lebanon, NH, USA, o0.14 EUmg�1) or control rat IgG2a isotype antibody

(o0.07 EUmg�1) were co-administered by intraperitoneal injection on day 5 and

12. For T cell and NK cell depletion experiments; 10 mg kg�1 of anti-CD8 (clone

2.43), anti-CD4 (clone GK1.5), anti-asialo-GM1 or anti-NK1.1. (clone PK136,

data not shown) were delivered by intraperitoneal injection on days �7, �4, �1,

+2 and +5 during the day 0, 7 prime-boost vaccine regimen. After 7 days of the

boost dose, all mice were challenged with B16:OVA melanoma cells, as described.

Innate immune cell recruitment and intracellular IFN-c cytokine
staining
To measure the vaccine antigen-specific CD8+ T-cell response, splenocytes were

cultured ex vivo for 4 h in the presence of brefeldin A (5mg ml�1) with

SIINFEKL (OVA), SSIEFARL (gB) or an irrelevant peptide (1mg ml�1). Briefly,

splenocytes were stained with anti-CD3 (clone 17A2) and anti-CD8 (clone

2.43), washed, fixed and permeabilized (BD Biosciences, Franklin, NJ, USA as

per manufacturer’s instructions) followed by staining with anti-IFN-g (clone

XMG1.2). CD8+ T cells were analyzed by flow cytometry for the expression of

IFN-g.21 To evaluate the recall CD8+ T-cell response, splenocytes were co-

cultured with EG7-OVA cells (a mouse thymoma EL4 cells stably transfected

with OVA) for 5 days. Cells were cultured for a further 4 h with brefeldin A,

then stained as described above. Similar results were obtained using the 4-h

ex vivo re-stimulation protocol, although the magnitude of the response was

reduced (data not shown). H2-Kb/Ova-specific tetramer staining was per-

formed as previously described.57 OVA-tetramer+ CD8+ T cells were also co-

stained for CD44 expression (clone IM7). NK cell IFN-g production was

evaluated in the draining and non-DLNs at the indicated time-points after a

single dose of ISCOMATRIX adjuvant. Briefly, lymphocytes were cultured for

4 h in the presence of brefeldin A, before staining with anti-NK1.1 (clone

PK136) and anti-CD49b (clone DX5), and then fixed and intracellular stained

with anti-IFN-g, as described above. CD69 expression was determined on

freshly isolated NK cells, using 7-aminoactinomycin to exclude dead cells.

In vivo CTL assays
Mice were immunized with the ISCOMATRIX vaccine or antigen (OVA) alone

on day �7 and 0. On day 7 mice were injected intravenously with 2�107

CFSEhigh-labeled SIINFEKL peptide-pulsed cells and CFSElow-labeled, control-

unpulsed cells in equal ratios. After 4 h spleens were analyzed by flow cytometry

and specific-lysis was calculated as previously described.13

CD11c-DTR bone marrow chimeras
Recipient C57BL/6 mice were irradiated with two doses of 550 cGy 3 h apart,

and were reconstituted with 3–5�106 T cell-depleted bone marrow cells

extracted from the femurs and tibias of CD11c-DTR transgenic mice, as

described.29,58 Briefly, mature T cells were depleted from the donor bone

marrow with anti-CD4 (clone RL172), anti-CD8 (clone 3.168) and anti-Thy1

(clone J1) antibodies, followed by treatment with rabbit complement. After 1

day of reconstitution, mice were injected intraperitoneally with 100mg anti-

Thy1 (clone T24) to deplete radio-resistant T cells. All antibodies were kindly

provided by Ken Shortman, Walter and Eliza Hall Institute (WEHI). Mice were

rested for 5–7 weeks before use. For systemic DC depletion, chimeras were

injected intraperitoneally with 4 ng g body weight diphtheria toxoid (DT) (in

PBS) every 2 days for the duration of the experiment. MHC class II-depleted

splenocytes from Ly5.1 congenic donors were adoptively transferred 24 h before

the first vaccine dose. The CD8+ T-cell response was comparable when gating

on either transferred Ly5.1 or host Ly5.2 cells (data not shown).

Preparation of CFSE-labeled T cells
OT-I T cells (H-2 Kb-restricted anti-OVA257–264) or OT-II T cells (I-Ab-

restricted anti-OVA323–339) were purified from pooled LNs (inguinal, axillary,

sacral, cervical and mesenteric) of transgenic mice by depletion of non-CD8 T

cells (OT-I) or non-CD4 T cells (OT-II) and were labeled with CFSE as

described.13 The T-cell preparations were routinely 85–95% pure, as deter-

mined by flow cytometry.

Co-culture assays—DCs and OVA-specific CD8 or CD4 T cells
DC co-culture experiments with transgenic OVA-specific OT-I (CD8) or OT-II

(CD4) T cells were performed as previously described.13,59 Briefly, enriched

CD11c-expressing DCs were isolated from DLNs following ISCOMATRIX

vaccine or antigen alone (OVA) administration. A total of 5�103 DCs were

co-cultured in Roswell Park Memorial Institute+10% heat-inactivated fetal

bovine serum with 5�104 CFSE-labeled naı̈ve OT-I or OT-II T cells. Prolifera-

tion was quantified by flow cytometry after 60 h using blank calibration

beads, as described.13 A total of 5�103 highly purified (by flow cytometry

sorting) (495%) CD8 (CD8+CD205+) MigDC (CD8�CD205+) and DN

(CD8�CD205�) DCs were co-cultured directly ex vivo with CFSE-labeled

OT-I or OT-II cells. Highly purified (by flow cytometry sorting) (495%)

splenic CD8 or CD4 expressing DCs were pulsed with soluble OVA

(100mg ml�1) or OVA+ISCOMATRIX (5mg ml�1) for 30 min and washed in

media. The indicated number of each DC population was then co-cultured

with CFSE-labeled OT-I or OT-II T cells and proliferation quantified, as

described above.

Thioglycollate-induced macrophages
Thioglycollate-induced macrophages were generated as previously described.60

Briefly, 1 ml of thioglycollate broth was injected into the peritoneal cavity.

Peritoneal cells, (480%) F4/80+ macrophages were isolated in 10 ml of

macrophage-serum-free media (Invitrogen).
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