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ABSTRACT
The heterogeneity of sarcomas with regard to molecular genesis, histology, 

clinical characteristics, and response to treatment makes management of these rare 
yet diverse neoplasms particularly challenging. This review encompasses recent 
developments in sarcoma diagnostics and treatment, including cytotoxic, targeted, 
epigenetic, and immune therapy agents. In the past year, groups internationally 
explored the impact of adding mandatory molecular testing to histological 
diagnosis, reporting some changes in diagnosis and/or management; however, the 
impact on outcomes could not be adequately assessed.  Transcriptome sequencing 
techniques have brought forward new diagnostic tools for identifying fusions and/
or characterizing unclassified entities. Next-generation sequencing and advanced 
molecular techniques were also applied to identify potential targets for directed 
and epigenetic therapy, where preclinical studies reported results for agents active 
within the receptor tyrosine kinase, mTOR, Notch, Wnt, Hedgehog, Hsp90, and MDM2 
signaling networks. At the level of clinical practice, modest developments were seen 
for some sarcoma subtypes in conventional chemotherapy and in therapies targeting 
the pathways activated by various receptor tyrosine kinases. In the burgeoning field 
of immune therapy, sarcoma work is in its infancy; however, elaborate protocols for 
immune stimulation are being explored, and checkpoint blockade agents advance 
from preclinical models to clinical studies.

BACKGROUND

Sarcomas are a broad family of cancers that arise 
from cells of mesenchymal origin in virtually every tissue 
of the body, and they can differentiate along a number of 
tissue lineages, such as adipose, muscle, fibrous, cartilage, 
or bone. As such, the pathology of these neoplasms is 
extremely diverse, with over seventy described subtypes 
[1]. Historically categorized as either bone or soft tissue, 
sarcomas are now molecularly classified into two groups: 
genetically complex, with a high mutational burden and a 
complex karyotype, or genetically simple, bearing a single 
disease-specific translocation, mutation, or amplification 
within a comparatively quiescent genomic background [2]. 

This histological and molecular heterogeneity 
makes sarcomas particularly difficult to diagnose, leading 
to debate surrounding the sufficiency of histological 
diagnosis versus the need for ancillary molecular 
diagnostics. Treatment has proven equally challenging, and 

research findings in one subtype often do not translate to 
others. These limitations are magnified within the context 
that sarcomas are among the rarest of cancer diagnoses, 
making research and trials more difficult. In the US, 
sarcomas represent 1% of new cancer diagnoses and of 
cancer-related deaths [3], though they are more prevalent 
in childhood and adolescence, where they account for 19-
21% of cancer-related deaths [4]. Therefore, though the 
complexity of sarcomas is comparable to that of any of 
the more common and heavily researched malignancies, 
there are comparatively few novel therapeutic approaches 
in advanced development. 

Sarcomas, as a group, are resistant to conventional 
cytotoxic chemotherapy, save for some successes with 
anthracycline-based therapy for rhabdomyosarcoma, 
Ewing sarcoma, and osteosarcoma [5]. Late recurrence 
and metastasis still occur in some subtypes, so when 
surgery and radiation fail, there are few - if any - effective 
systemic options available. Clinical trials that include 
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sarcomas are rare and frequently confounded by lumping 
together results from biologically disparate subtypes, 
as continues to occur with molecularly divergent 
subcategories of liposarcoma. Given these accrual and 
design challenges, it can be difficult to gather convincing 
high-level evidence to guide the management of sarcomas.

Nonetheless, the past year has seen advances in 
genomics-based sarcoma science and the publication 
in major journals of significant positive results from 
clinical trials. In this review, we aim to summarize recent 
developments in both diagnostics and treatment, including 
translational science and clinical trials in chemotherapy, 
targeted therapy, epigenetic therapy, and the burgeoning 
field of immune therapy. The scope of this review includes 
works published from late 2014 to early 2016.

SARCOMA DIAGNOSTICS

Genomic landscapes in sarcoma

Multi-platform “omics” approaches were 
undertaken to elucidate comprehensive mutational 
landscapes for liposarcomas, epithelioid sarcoma, and 
rhabdomyosarcomas. 

Kanojia et al [6] used a combination of single 
nucleotide polymorphism (SNP) arrays and whole- and 
targeted-exome sequencing to characterize the genomic 
landscape of 86 liposarcomas of all major subtypes. In 
addition to the expected amplifications in MDM2 and 
other known 12q amplicon genes CDK4 and HMGA2, 
they identified a number of novel gene amplifications: 
UAP1, MIR557, LAMA4, CPM, IGF2, ERBB3, and 
IGF1R. Of particular interest, CPM (carboxypeptidase 
M) - located at the edge of the 12q amplicon, outside of 
what was thought to be the key region defined by CDK4 
and MDM2 - was amplified in 39 of 50 well- and de-
differentiated liposarcomas. Knockdown of CPM reduced 
cell line and xenograft growth, migration, and invasion, 
and reduced expression of phosphorylated EGFR, Akt, 
and ERK, suggesting that CPM is involved in epidermal 
growth factor signalling, a targetable pathway that might 
play an unanticipated role in liposarcomagenesis. This 
genomic survey also found recurrent mutations in genes 
associated with cell adhesion, cytoskeletal organization, 
base excision repair, homologous recombination repair, 
nucleotide excision repair, and DNA replication: PLEC, 
MXRA5, FAT3, NF1, MDC1, TP53, and CHEK2. The NF1 
(neurofibromin-1) gene was of particular interest, altered 
in 13 of 50 well- and de-differentiated liposarcomas. 
Knockdown of NF1 increased cell line proliferation and 
xenograft growth, suggesting a potential tumor suppressor 
role for this gene in keeping with its function as a regulator 
of Ras signalling.

Jamshidi et al [7] published the first next-generation 

sequencing study of epithelioid sarcoma, a rare but 
clinically-devastating sarcoma that typically presents 
in the distal extremities of young adults and does not 
respond to available systemic therapy. Whole genome 
and transcriptome sequencing on seven tumor specimens 
and three cell lines confirmed SMARCB1 loss by variable 
mechanisms, but revealed a complex genome with an 
unexpectedly high mutational rate for a tumor of younger 
patients. This high mutational burden is in direct contrast 
with the genomic profile of rhabdoid tumor, a pediatric 
neoplasm also driven by the loss of SMARCB1; the 
mutation rate of epithelioid sarcoma is three orders of 
magnitude greater than that of rhabdoid tumor. 

Shern et al [8] characterized 147 tumor-normal 
pairs in rhabdomyosarcomas using a combination of 
whole- genome, exome, and transcriptome sequencing. 
The overall burden of somatic mutations was relatively 
low, but several genes were recurrently altered, including 
previously reported mutations in NRAS, KRAS, HRAS, 
FGFR4, PIK3CA, and CTNNB1, and novel mutations 
in FBXW7 and BCOR. Importantly, authors noted that 
the receptor tyrosine kinase/RAS/PIK3CA-associated 
networks were altered in 93% of cases, giving therapeutic 
implications for this disease. Tumors segregated 
predictably into subtypes with and without a PAX3/PAX7 
gene fusion with FOXO1 or alternative partners, including 
a novel fusion of PAX3 with the C-terminus of INO80D. 
They asserted that the presence or absence of a PAX fusion 
more accurately describes the genomic landscape and 
biology of rhabdomyosarcoma than the traditional alveolar 
versus embryonal histology-based subtyping, and that it is 
a better predictor of clinical behaviour [9] and prognosis 
[10,11]. This brings up the familiar question as to whether 
the traditional morphologic diagnosis of sarcomas is 
adequate, or whether molecular techniques ought to be 
mandatory for sarcoma diagnoses. 

Molecular diagnostics

To interrogate the need for and value of ancillary 
molecular diagnostics for sarcomas, Italiano et al 
[12] designed GENSARC, a prospective study across 
32 centres in France, that compared the diagnostic 
accuracy of histological assessment by a sarcoma 
subspecialty pathologist with and without molecular 
genetic testing. Sarcomas were accrued whenever 
one of six subtypes presented, based on histological 
diagnosis (categorized as certain, probable, or possible 
diagnosis): dermatofibrosarcoma protuberans (COL1A1-
PDGFB translocation, leading to PDGβ overexpression), 
dedifferentiated liposarcoma (MDM2 amplifications), 
Ewing sarcoma (EWSR1 translocations), synovial sarcoma 
(SS18 translocations), alveolar rhabdomyosarcoma 
(PAX3/7 translocations), and myxoid liposarcoma (FUS-
DDIT3 translocations). Expert pathologists committed 
to a diagnosis, level of certainty, and differential 
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diagnosis prior to completion of molecular tests. 
Comparative molecular testing included fluorescence in-
situ hybridisation (FISH) and/or quantitative or reverse 
transcriptase polymerase chain reaction. Of 384 cases, 
molecular testing resulted in a change in diagnosis in 
53 (14%) cases, leading to a change in management or 
prognosis in 45 (12%) cases. Based on these findings, the 
authors recommend mandatory molecular testing - even 
when the histological diagnosis was made by a sarcoma 
subspecialty pathologist - for accurate diagnosis and 
appropriate clinical management of sarcoma. However, 
it is important to note that almost no cases where the 
pathologist was “certain” had their diagnosis change as 
a result of molecular testing. Cases that were “probable” 
or “possible” had frequent diagnostic changes, but these 
are cases where pathologist will almost always order 
molecular ancillary testing if available, or refer out for 
testing if not.

Regardless of the necessity for molecular testing 
to support certain diagnoses, detailed genetic analysis of 
a patient’s tumor tissue can have important implications 
for targeted therapy. Studies at many institutions are 
applying next-generation sequencing strategies in an 
attempt to identify “actionable” mutations with some 
clinical significance to cancer, sarcoma centres included. 
Peds-MiOncoSeq [13] employed exome and transcriptome 
sequencing in 91 pediatric and young adult cancers, 
including 25 sarcomas. “Potentially actionable findings” 
were identified in 42 (46%) cases, leading to an actual 
change in treatment for 14 (15%) patients. This included 
one rhabdomyosarcoma patient, whose diagnosis and 
treatment plan changed following sequencing results, and 
who remained in remission 6 months after the change in 
management. This study lacked any control group, so 
it is not possible to assess whether outcomes improved 
compared to standard care. A similar study, iCat [14], was 
an “individualized Cancer therapy” effort in advanced 
pediatric solid tumors. Profiling included targeted DNA 
sequencing and copy number assessment. Of the 89 
patient tumors profiled - including 12 Ewing sarcomas, 
11 osteosarcomas, 11 rhabdomyosarcomas, and 27 other 
soft tissue sarcomas - 43% had clinical implications: 
an actionable mutation leading to an FDA-cleared or 
open clinical trial targeted therapy, a translocation that 
changed diagnosis, or the identification of an underlying 
cancer predisposition syndrome. Three patients received 
matched therapy. Chang et al [15] combined whole exome 
and transcriptome sequencing with SNP arrays in 59 
relapsed and refractory pediatric and young adult patients, 
including 29 sarcomas. Thirty (51%) had clinically 
actionable alterations. Actionability included somatic 
mutations targetable by available therapies (41%), change 
in diagnosis (12%), or reportable germline mutation for 
which patients received family genetic counselling (12%). 

Outside of the clinic, several more studies searched 
for actionable/targetable and recurrent/driver mutations 

across sarcomas. Andersson et al [16] conducted a next-
generation sequencing panel of 207 hotspots in 50 cancer-
associated genes, in Ewing sarcomas (n = 22), synovial 
sarcomas (n = 14), gastrointestinal stromal tumors (GIST; 
n = 9), myxoid liposarcomas (n = 7), and Ewing-like small 
round cell tumors (n = 3). They identified mutations in 
8 driver genes in Ewing sarcoma (NRAS, MET, HRAS), 
Ewing-like small round cell tumors (BRAF, SMARCB1), 
GIST (KIT, PDGFRA), and synovial sarcoma (CTNNB1). 
The BASIC3 study by Parsons et al [17] explored the 
diagnostic yield of whole-exome sequencing in 121 
pediatric solid tumors, including 9 rhabdomyosarcomas, 6 
Ewing sarcomas, 4 osteosarcomas, and 7 other soft tissue 
sarcomas. Nearly 40% yielded actionable mutations, in the 
form of somatic mutations of established clinical utility 
(3%) or potential clinical utility (24%), or in diagnostic 
germline findings related to patient phenotype (10%). 
CTNNB1 was the most frequently mutated somatic gene, 
plus KIT, TSC2, and MAPK pathway genes (BRAF, 
KRAS, NRAS). Movva et al [18] had access to 2539 
sarcoma specimens, encompassing 61 bone and soft tissue 
sarcoma subtypes. Up to 2434 samples were profiled by 
immunohistochemistry, 1048 by FISH, 591 by next-
generation sequencing, and 1250 by Sanger sequencing. 
By immunohistochemistry, they noted overexpression 
of TOPO2A in 52.8% of cases, SPARC in 35.9%, and 
PDGFRA in 22.1%. Low expression of MGMT was noted 
in 65.3% of cases, and loss of PTEN was seen in 38.6%. 
By DNA sequencing, the most commonly mutated genes 
were TP53 (26.3%) and BRCA2 (17.6%). Dual TOPO2A 
overexpression by immunohistochemistry and TP53 DNA 
mutation was observed in 85.8% of samples. As study 
cohorts were not consistently defined, and methodologies 
were not consistently applied, the results from this study 
are best considered hypothesis-generating, in need of 
further validation. 

Returning to the question of the necessity of 
comprehensive molecular analysis for the diagnosis and 
management of sarcomas, we conclude that the evidence at 
this point is not strong enough to support mandatory use of 
these expensive and work-intensive diagnostic tools. As of 
yet, there has been no significant clinical impact reported 
in terms of treatment response or patient survival. While 
comprehensive genomics may certainly prove useful 
in complex cases, it may be most practical for the use 
of these tools to remain at the discretion of the sarcoma 
subspecialty pathologist. In the setting of routine clinical 
practice, traditional morphological assessment (based on 
H&E slides, supplemented by immunohistochemistry) is 
likely sufficient for most sarcoma diagnoses. 

Fusion identification

Next-generation sequencing of RNA opens the 
door to identify both known and novel fusion transcripts. 
Hofvander et al [19] applied massively parallel paired-
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end mRNA sequencing to 8 sarcomas, including 2 
osteosarcomas, 2 myxofibrosarcomas, 1 low-grade 
fibromyxoid sarcoma, 1 fibrosarcoma, 1 undifferentiated 
pleomorphic sarcoma, 1 glomus tumor, and 1 myxoid 
liposarcoma. By this method, they identified two known 
fusions (FUS-CREB3L2 and HAS2-PLAG1) and three 
novel fusions (KIAA2026-NUDT11, CCBL1-ARL1, and 
AFF3-PHF1), highlighting this technique as an effective 
strategy for fusion detection. The myxoid liposarcoma 
was reclassified as a lipoblastoma due to absence of the 
pathognomonic myxoid liposarcoma FUS-DDIT3 fusion 
and presence of a HAS2-PLAG1 fusion. Authors note 
that sequencing data was analysed by three different 
algorithms, but only two of the fusions were reported 
by more than one software program. They therefore 
recommend use of more than one algorithm to analyze 
sequencing output. 

This type of approach may be useful to assist in 
identifying molecular events that can be useful for the 
differential diagnosis of some challenging sarcoma 
categories, such as vascular tumors of bone. Epithelioid 
hemangioma of bone can be difficult to differentiate 
from other vascular neoplasms due to its highly variable 
histological presentation. Ijzendoorn et al [20] identified 
a balanced t(3;14) translocation in an index case, and 
transcriptome sequencing revealed that the translocation 
involved a break in exon 4 of the FOS proto-oncogene, 
leading to introduction of a stop codon and loss of 
its transactivation domain. Fusions generating FOS 
truncations were observed in 5 of 7 samples of epithelioid 
hemangioma (with variable fusion partners). This finding 
proffers a new mechanism of tumorigenesis and a 
potentially useful diagnostic tool and treatment target for 
epithelioid hemangioma of bone. 

New sarcoma classification

RNA sequencing has also proven useful in defining 
new entities among otherwise unclassifiable sarcomas. 
Le Loarer et al [21] conducted RNA sequencing on 32 
round-cell sarcomas which did not fit into known specific 
diagnostic categories, and they identified 4 index cases 
bearing mutations in SMARCA4. Postulating that the 
partially rhabdoid morphology seen in these cases reflects 
underlying BAF complex inactivation, they performed a 
targeted sequencing screen on 18 unclassified sarcomas 
with partial rhabdoid phenotypes, noting SMARCA4 
mutations exclusively in the 6 thoracic tumors of the 
cohort. After finding 9 additional cases (based on inferred 
characteristics of the initial cohort), they identified a 
total of 19 samples with SMARCA4 mutations. By whole 
transcriptome sequencing, these samples clustered apart 
from the other unclassified sarcoma samples, defining a 
new entity of aggressive, poor prognosis thoracic primary 
sarcomas of young adults: “SMARCA4-deficient thoracic 
sarcomas.” Comparison to the profiles other SMARCA4-

deficient malignancies showed that these are distinct from 
lung carcinomas but related to malignant rhabdoid tumors 
and to small-cell carcinoma of the ovary, hypercalcemic 
type. 

CHEMOTHERAPY

The treatment paradigm of soft tissue sarcoma 
with chemotherapy

While basic and translational research delve 
deeper into tumor biology to identify new strategies to 
target these multifaceted malignancies, conventional 
chemotherapy remains a mainstay in the treatment of a 
number of sarcomas. Indeed, this was the subject of many 
major findings over the past year. 

For patients with primary soft tissue sarcomas, 
surgery with or without radiotherapy can offer a cure, but 
nearly half of patients recur and eventually die, with an 
estimated median survival of 12 to 15 months [22]. As 
a result, treatment of metastatic or unresectable disease 
with cytotoxic agents is often given for palliative rather 
than curative purposes [23]. These cytotoxic agents 
often incorporate anthracycline- or gemcitabine-based 
regimens as a first line treatment [24-27]. Other agents 
such as dacarbazine and ifosfamide, only show clinical 
improvement in overall response rate and progression 
free survival (PFS), without significant benefit in overall 
survival [22,28-31]. Moreover, despite superior PFS 
observed with these conventional cytotoxic therapies, 
they are fraught with severe toxicities and attendant high 
costs, a burden for both patients and health care systems. 
Currently, there is no consensus standard of care for 
chemotherapy regimens in metastatic sarcoma patients, 
in part due to treatment strategies that were developed 
somewhat empirically, rather than through specific, 
rational targeting of molecular subtype and/or pathogenic 
mechanism. Consequently, research efforts are underway 
to address the value of chemotherapy in sarcoma subtypes, 
as well as to investigate different and newer systemic 
therapies. Recently published trials have demonstrated 
promising positive results using newer cytotoxic agents, 
including eribulin, trabectedin, and aldoxorubicin. Table 1 
summarizes the clinical trials in cytotoxic chemotherapy 
described below.

Clinical trials

Eribulin

Eribulin is an analogue of the marine-derived 
compound halichondrin B that acts as an inhibitor of 
microtubule dynamics through binding to a single site on 
tubulin, thereby suppressing the stability and growth of 
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microtubules [32,33]. Eribulin has been shown to promote 
apoptosis, to suppress migration and invasion of cancer 
cells, and to induce vascular remodeling [33-35].

The role of eribulin was evaluated in a phase III trial 
that randomized patients with advanced leiomyosarcomas 
or liposarcomas to receive either eribulin or dacarbazine 
[36]. Eligible patients had received at least two previous 
systemic regimens for advanced disease, including 
anthracyclines. In this trial, patients treated with eribulin 
demonstrated a significant improvement of two months 
for the study’s primary endpoint of overall survival 
(OS), compared to the dacarbazine standard-of-care arm. 
However, no significant differences were observed in 
the secondary endpoint of PFS, and patients experienced 
a higher toxicity rate of 67% grade 3+ adverse events 
when treated with eribulin, versus 56% in the dacarbazine 
arm. Importantly, a pre-planned exploratory subgroup 
analysis showed that the treatment effects of eribulin were 
limited to patients with liposarcoma (who had a 7-month 
improvement in OS), whereas no evidence for eribulin 
efficacy was observed in the leiomyosarcoma subgroup. 
Based on this analysis, eribulin was approved in early 
2016 by the US Food and Drug Administration (FDA) 

for metastatic liposarcoma patients. It should be noted 
that the results of the survival analysis in liposarcomas 
were not broken down into their three molecularly-distinct 
subtypes (i.e., dedifferentiated, myxoid, and pleomorphic 
liposarcoma) due to power concerns [36]. 
Trabectedin

Trabectedin is a marine-derived drug that has several 
anti-cancer mechanisms of action [37]. It acts mainly 
through binding to the minor groove of DNA, inhibiting 
DNA binding proteins - including transcription and DNA 
repair complexes - ultimately leading to disruption in cell 
cycle and induction of apoptosis [37,38].

A phase III trial assessed the role of trabectedin 
versus dacarbazine in a similar cohort to that included 
in the aforementioned eribulin trial, again including 
metastatic leiomyosarcoma or liposarcoma patients 
who had received at least one prior systemic therapy 
in addition to anthracyclines [39]. This trial showed a 
significant improvement of 3.7 months in the secondary 
endpoint of PFS, favoring trabectedin over dacarbazine, 
while no statistically significant results were observed 
for the primary endpoint of OS. Trabectedin PFS benefit 

Table 1: A survey of recently published chemotherapy clinical trials in sarcoma

Regimen Trial Analyzed Design Stage Subtype N
Median 
PFS 
(months)

Median OS 
(months)

Eribulin vs. 
Dacarbazine

Schoffski et al. 
Lancet. 2016 Phase III Advanced Liposarcoma

LMS 452 2.6 in both 
arms (NS) 13.5 vs. 11.5

Trabectedin vs. 
Dacarbazine

Demetri et al. 
JCO. 2016 Phase III Advanced Liposarcoma

LMS 518 4.2 vs. 1.5 12.4 vs. 12.9 
(NS)

Trabectedin vs. BSC
Kawai et al. 
Lancet Oncol. 
2015

Phase II Advanced Translocation-
associated sarcoma 76 5.6 vs. 0.9 not reached vs. 

8 months

Trabectedin with 
doxorubicin

Pavtier et al. 
Lancet Oncol. 
2015

Phase II Advanced Uterine and soft 
tissue LMS 109

8.2 in 
uterine 
LMS
vs. 12.9 in 
soft tissue
LMS

20.2 uterine 
LMS
vs. 34.5 in soft 
tissue
LMS

Aldoxorubicin vs. 
Doxorubicin

Chawla et al. 
JAMA Oncol. 
2015 

Phase IIb Advanced STS 123 5.6 vs. 2.7 15.8 vs. 14.3

Gemcitabine-
docetaxel

Seddon et al. Clin 
Sarcoma Res. 
2015

Phase II Advanced LMS 44 7.1 17.9

Gemcitabine-
docetaxel-
bevacizumab

Dickson et al. 
Sarcoma. 2015 Phase II Advanced

LMS
UPS
Pleomorphic 
liposarcoma 
Angiosarcoma

35
Not reached 
(3 months 
PFS=76%)

Not reached

Doxorubicin-
ifosfamide vs. 
Gemcitabine-
docetaxel 

Davis et al. Eur J 
Cancer. 2015 Phase II Early stage STS 80

37 vs. Not 
reached 
(NS)

Not reached

Abbreviations: PFS = progression-free survival, OS = overall survival, LMS = leiomyosarcoma, STS = soft tissue sarcoma, 
UPS = undifferentiated pleomorphic sarcoma, NS = not significant
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was observed across all pre-planned subgroup analyses 
including different histology subtypes. This data led to 
trabectedin’s approval by the FDA in October 2015 for 
use in metastatic liposarcoma and leiomyosarcoma, 
indications that had already been approved in Europe. 
Interestingly, the clinical outcomes reported in this study 
contrast somewhat with those observed in the eribulin trial 
- which accrued patients with similar inclusion criteria and 
characteristics - again reporting higher rates of toxicity 
in the trabectedin arm than with the standard therapy of 
dacarbazine. Overall, the results reported in these clinical 
trials do not explicitly support a preferred regimen of 
either eribulin or trabectedin in the metastatic setting 
of liposarcoma, but the differences observed in clinical 
outcomes might reflect differences in the mechanisms-of-
action of trabectedin versus eribulin that should be further 
investigated.

The role of trabectedin as a modulator of 
the transcription of oncogenic fusion proteins was 
demonstrated in a phase II trial assessing the efficacy and 
safety of trabectedin as a second line (or later) therapy for 
patients with advanced translocation-associated sarcomas 
[40]. Patients included in this trial had mainly myxoid 
liposarcoma and synovial sarcoma and were randomized to 
receive either trabectedin or best supportive care. This trial 
showed a statistically significant 5-month advantage in the 
primary endpoint of PFS with trabectedin administration 
[40]. Importantly, in a subsequent evaluation of 30 patients 
who crossed over to trabectedin after disease progression 
on best supportive care, trabectedin was still effective in 
improving PFS [41]. 

Beyond the established activity of trabectedin as 
second-line therapy for sarcomas, its role in the first-line 
setting was examined in a phase II single-arm clinical trial 
using a combination of trabectedin and doxorubicin [42]. 
Among 108 assessable patients with leiomyosarcoma of 
the uterus or soft tissue, nearly 90% achieved disease 
control [42]. While this trial showed promising results 
regarding the combination of trabectedin and doxorubicin 
in the first-line setting of leiomyosarcoma, a previous 
study by the European Organization for Research and 
Treatment of Cancer (EORTC) and Sarcoma Alliance 
for Research through Collaboration (SARC) groups, 
comparing trabectedin versus doxorubicin as a first-
line therapy in advanced soft tissue sarcoma, did not 
show any superiority for trabectedin over doxorubicin 
[43]. Accordingly, the combination of trabectedin and 
doxorubicin needs to be assessed head-to-head against 
the effective standard-of-care control arm of doxorubicin 
monotherapy or doxorubicin-ifosphamide.
Aldoxorubicin

Aldoxorubicin is a novel pro-drug of doxorubicin, 
where a pH-sensitive linker conjugates doxorubicin to 
albumin. The exposure of the albumin-drug conjugate to 
the acidic tumor microenvironment releases doxorubicin, 

which preferentially localizes in tumor cells that are 
pinocytotically-active [44,45]. Drug uptake within tumor 
tissues is further enhanced through defective lymphatic 
drainage and high permeability, promoting macromolecule 
retention in tumor tissues [46]. The net result is a capacity 
to deliver a higher dose of doxorubicin into tumor cells 
than is received by normal cells (e.g., myocardium), 
improving the therapeutic index. 

Superior clinical activity of aldoxorubicin was 
recently demonstrated in a phase IIb study that showed 
a significantly greater PFS (the primary endpoint), in 
patients with advanced soft tissue sarcoma randomized 
to receive aldoxorubicin or doxorubicin [47]. However, 
no significant differences were observed in OS. Currently, 
the safety and efficacy of aldoxorubicin is being 
assessed in combination with ifosfamide (phase I/II trial, 
NCT02235701) or in combination with gemcitabine 
(phase I trial, NCT02235688) in metastatic soft tissue 
sarcoma patients. In addition, aldoxorubicin is being 
investigated in a phase III trial versus investigator’s 
choice of treatment in metastatic soft tissue sarcomas 
(NCT02049905). 
Gemcitabine and docetaxel

Gemcitabine and docetaxel combinations have 
previously displayed a proven activity, particularly in 
advanced leiomyosarcoma [48]. These results have 
recently led to the design of a phase III trial comparing 
gemcitabine-docetaxel versus the conventional therapy 
of doxorubicin in the first-line setting of metastatic soft 
tissue sarcoma (GeDDis) [48]. This trial did not report 
significant differences in OS or PFS between the two 
treatment arms (data not yet published). Furthermore, the 
gemcitabine-docetaxel combination was stopped early 
due to toxicity, and thus, doxorubicin was recommended 
to remain as the standard first-line treatment for metastatic 
soft tissue sarcoma [48].

Beyond its role in the metastatic setting, the 
gemcitabine-docetaxel combination was recently 
assessed in early-stage soft tissue sarcomas. A phase II 
trial compared the combination of gemcitabine-docetaxel 
against conventional therapy with doxorubicin-ifosfamide 
in patients with localized, resectable, high-risk sarcoma. 
While this trial showed that the gemcitabine-docetaxel 
combination was tolerable, it did not show a significant 
superiority of gemcitabine-docetaxel over doxorubicin-
ifosfamide in hospitalization rate, which was (somewhat 
unusually) defined as the primary endpoint of this study 
[49].

Further phase II trials have also investigated 
whether the activity of gemcitabine and docetaxel is 
enhanced by the addition of anti-angiogenic agents such 
as bevacizumab [50], particularly as targeted therapy 
for vascular sarcomas [51]. While these studies reported 
only modest response rates, more than half of the patients 
achieved stable disease. In an attempt to appropriately 

http://meeting.ascopubs.org/cgi/content/abstract/33/15_suppl/10500
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evaluate these findings in a phase III trial, a double-blind, 
placebo-controlled, randomized trial of gemcitabine and 
docetaxel with or without bevacizumab was designed 
[26]. Eligible patients had a diagnosis of leiomyosarcoma, 
undifferentiated pleomorphic sarcoma, pleomorphic 
liposarcoma, or angiosarcoma. However, due to a slow 
recruitment rate, the trial was changed to a single-arm 
study evaluating only the addition of bevacizumab to 
gemcitabine and docetaxel, reporting a PFS of 76% at 3 
months [26]. While this PFS rate is impressive and higher 
than expected from similar regimens without bevacizumab 
[52], the absence of a control arm - a common problem in 
sarcoma trials - makes it hard to achieve a high level of 
evidence supporting the role of bevacizumab in advanced 
soft tissue sarcomas. These findings highlight the overall 
need for more collaborative, randomized phase III clinical 
trials that could confirm benefits suggested by single-arm 
phase II studies.

TARGETED THERAPY

Translational science

Basic science studies have identified a number 
of targetable oncogenic pathways activated in specific 
sarcomas. Figure 1 depicts the agents and targeted 
molecules discussed below, including regulators and cross 
talk between the pathways.
Receptor tyrosine kinases

Evidence behind receptor tyrosine kinase inhibitors 
in sarcomas is comparatively advanced, with a number 
of agents in clinical trials. Aside from gastrointestinal 
stromal tumors, there is little known about biomarkers 
predictive for response. A phase II study of imatinib in 33 
progressive, unresectable desmoid tumors [53] assessed 
the correlation between CTNNB1 (β-catenin) mutation 
status and “progression arrest rate” - the proportion 
of patients showing complete or partial response, or 
stable disease by Response Evaluation Criteria in Solid 

Figure 1: Signaling pathways currently targeted in sarcoma translational research. Details of Wnt, Notch, Receptor Tyrosine 
Kinase, Hedgehog, MDM2, and mTOR signaling pathways, including common regulators and pathway interactions. Hsp90 protein clients 
also depicted. Boxes indicate the specific agents described in this review that have seen progress in the past year.



Oncotarget7075www.impactjournals.com/oncotarget

Tumors (RECIST) version 1.0 - 6 months after initiation 
of imatinib treatment. CTNNB1 mutations are found in 
80% of desmoid tumors, either at threonine 41 (T41) or 
serine 45 (S45), the latter correlating with increased risk 
of recurrence [54-56]. Progression arrest rate was highest 
in patients bearing the S45 mutation, at 85%. The next 
best response was seen in patients with the T41 mutation 
(70%), followed by those with wild-type CTNNB1 (43%). 
According to this study, CTNNB1 mutation status may be 
predictive of response to imatinib; however, given that 
wild-type CTNNB1 is generally associated with better 
prognosis [54-56], this study design may have selected for 
a subpopulation of more clinically aggressive wild-type 
desmoid tumors. Furthermore, desmoid tumors frequently 
undergo spontaneous progression arrest, and clinical 
studies of this vexatious neoplasm really require control 
arms if improved progression arrest is to be attributed to 
kinase inhibitors or other systemic interventions [57].

In pre-clinical studies of osteosarcoma, Liu et al 
[58] show synergy between kinase inhibitor ZD6474 
and non-steroidal anti-inflammatory agent celecoxib 
in cell lines and mouse xenografts. ZD6474, a small-
molecule inhibitor of VEGFR-2 and EGFR, inhibited the 
proliferation of three osteosarcoma cell lines, promoting 
cell cycle arrest and apoptosis. Based on high COX-
2 expression in osteosarcoma cell lines, authors also 
tested the COX-2 inhibitor celecoxib in vitro and saw a 
similar anti-proliferative effect. Combination treatment of 
ZD6474 and celecoxib demonstrated synergistic effects in 
one cell line and additive effects in the other two. Synergy 
between the two agents was also observed in cell line 
xenografts.
mTOR

Malignant peripheral nerve sheath tumors 
(MPNSTs) have been shown to have receptor tyrosine 
kinase gene amplifications of PDGFR and cKIT [59]; 
however, imatinib did not show promise in a phase II trial 
[60]. mTOR is a key member of the PI3K/AKT axis of 
RTK signalling, so combining mTOR and RTK inhibition 
may reduce opportunities for tumor escape and therapeutic 
resistance. In a study comparing two kinase inhibitors plus 
or minus mTOR inhibitor rapamycin [61], combination 
treatment enhanced the anti-proliferative effects against 
an MPNST cell line from 40-45% per single agent to 
70% inhibition of cell proliferation. In a mouse xenograft, 
addition of rapamycin to kinase inhibitors resulted in 
enhanced tumor suppression, and following cessation of 
treatment, reduced tumor regrowth. 
Notch

Shang et al [62] observed that nuclear Hes1, a 
downstream effector of Notch, is highly expressed in 
desmoid tumor cell lines compared to dermal scar tissue. 
Gamma-secretase inhibitors inhibit Notch signalling 
by blocking cleavage of Notch’s intracellular domain, 
NICD. A recent phase I trial of γ-secretase inhibitor PF-

03084014 in desmoid tumors [63] showed promising 
results, leading to the initiation of an ongoing phase II 
trial (NCT01981551) [64]. To further evaluate this agent’s 
activity in desmoid tumors, Shang et al [62] exposed 
a panel of desmoid tumor cell lines to PF-03084014. 
Treatment inhibited cell growth and decreased migration 
and invasion. There was also a drop in NCID and 
expression of Hes1 in exposed cell lines. Taken together, 
these studies suggest that Notch signalling is important 
for desmoid tumor survival and that PF-03084014 is a 
worthwhile strategy to investigate for the treatment of 
desmoid tumors.
Wnt

In a rhabdomyosarcoma study aiming to 
identify targetable proteins associated with alveolar 
rhabdomyosarcoma fusion oncoprotein [65], microarray 
expression profiling was performed on PAX3-
FOXO1-expressing human skeletal muscle myoblasts. 
Transcriptome analysis revealed alteration of Wnt pathway 
gene members, including SFRP3 (secreted frizzled 
related protein 3). Knockdown of SFRP3 in an alveolar 
rhabdomyosarcoma cell line led to reduced cell growth 
and proliferation, cell cycle arrest, and apoptosis. In a 
conditional alveolar rhabdomyosarcoma murine xenograft 
system, suppression of SFRP3 reduced tumor growth and 
increased myogenic differentiation. Combining SFRP3 
suppression with chemotherapy agent vincristine was more 
effective at reducing alveolar rhabdomyosarcoma cell line 
growth than either treatment alone, and the addition of 
vincristine ablated tumorigenesis in the conditional murine 
xenograft.
Hedgehog

Hedgehog pathway inhibitors show promise in 
osteosarcoma, through targeting of SMO [66] or GLI 
family [67,68] hedgehog transcription factors. Saitoh et 
al [69] examined hedgehog inhibitors arsenic trioxide 
and vismodegib in combination with conventional 
chemotherapy agents cisplatin, ifosfamide, or doxorubicin 
in cell-line and xenografts. In vitro and in vivo, 
osteosarcoma cell proliferation and tumor growth were 
inhibited by any pairing of a Hedgehog pathway inhibitor 
with a standard chemotherapy agent. Combinations were 
designated as synergistic by combination-index analyses. 
Hsp90

Hsp90 is a chaperone protein that assists in the 
folding of many of the signalling molecules mentioned 
above. In a study of undifferentiated pleomorphic sarcoma 
[70], Hsp90 was found to be highly expressed in 56.4% of 
cases and was associated with poor prognosis. Expression 
correlated with p-Akt, p-mTOR and p-S6RP, potentially 
implicating Hsp90 in the activation of the mTOR pathway. 
In vitro, inhibition of Hsp90 decreased cell viability and 
inactivated the mTOR pathway. In a study by Ernst et 
al [71] expression of HSP90 was found to be associated 
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with radioresistance by comparing transcriptomes of 
sarcoma cell lines with radioresistance scores (generated 
by principal component analysis). Expression of HSP90 
strongly correlated with high radioresistance scores, and 
subsequent HSP90 inhibition sensitized radioresistant 
sarcoma cell lines to radiation therapy. Hsp90 inhibition 
was also shown to help overcome kinase inhibitor 
resistance in myxoid liposarcoma [72], contributing 
to rapid cell death in cell lines and necrosis in cell line 
xenografts. 
MDM2

MDM2 is a suppressor of genome guardian p53, 
and its genetic amplification is a hallmark of well- and 
de-differentiated liposarcoma. Bill et al [73] compared 
the effectiveness of MDM2 inhibitors Nutlin-3a, MI-219, 
and novel agent SAR405838. In vitro, all three agents 
effectively reactivated the p53 pathway, impeding cell 
proliferation and inducing cell-cycle arrest and apoptosis. 
The highest potency was seen with SAR405838, and this 
antitumor effect persisted in treatment of dedifferentiated 
liposarcoma mouse xenografts. Another study on MDM2 
inhibitor Nutlin-3 in DDLPS [74] found that this agent was 
only effective in cell lines with wild-type p53. Nutlin-3 
had little effect on p53-deficient cell lines, presenting p53 
mutation as a mechanism of MDM2 inhibitor resistance. 
In these cell lines, addition of histone deacetylase (HDAC) 
inhibitor treatment overcame Nutlin-3 resistance, and 
was associated with PTEN and p21 up-regulation and 
inactivation of AKT. 
RNA helicase

FLI1, the most common translocation partner of 
EWSR1 in the oncogenic fusion protein driving Ewing 
sarcoma, requires binding to transcriptional cofactor RNA 
Helicase A for full activity. YK-4-279, a small molecule 
that blocks the interaction between FLI1 and RNA helicase 
A, was tested in a Ewing sarcoma cell line xenograft [75] 
and induced tumor regression with daily dosing. A related 
RNA helicase, DDX3, was found to be highly expressed 
in a number of sarcoma subtypes [76]. Suppression of 
DDX3 by knockdown or by its small-molecule inhibitor 
RK-33 was cytotoxic to Ewing sarcoma cell lines, and 
in a patient-derived Ewing sarcoma xenograft, RK-33 
inhibited tumor growth without evident toxicity. Taken 
together, these studies support the development of RNA 
helicase inhibition as a new targeted strategy for Ewing 
sarcoma.
FOXM1

FOXM1 is a transcription factor - sometimes 
activated as part of the Wnt or Hedgehog pathways - that 
contributes to proliferation and cell cycle progression. 
It has been shown to be overexpressed in numerous 
sarcomas [77,78], which Eisinger-Mathason et al. 
[77] claim is attributable to deregulation of the Hippo 

pathway, based on copy number variation analysis of 
The Cancer Genome Atlas sarcoma database (mostly 
leiomyosarcoma, dedifferentiated liposarcoma, 
myxofibrosarcoma, and UPS). In fact, they postulate that 
overexpression of FOXM1 by Hippo effector protein YAP 
is necessary for tumorigenesis in some sarcomas, based 
on reduced proliferation seen in a mouse model of UPS 
after YAP knockdown. Knockdown or pharmacological 
(thiostrepton) inhibition of FOXM1 itself also impaired 
proliferation and reduced tumor size in the UPS mouse 
model, a finding which was also shown in synovial 
sarcoma cell lines by Maekawa et al [78]. Together, these 
findings highlight FOXM1 as a potential therapeutic target 
for some sarcomas.

Clinical trials

While significant advancements have been reported 
in clinical trials of cytotoxic chemotherapeutic agents, 
metastatic soft tissue sarcomas still have poor outcomes 
and few effective therapeutic options. Table 2 summarizes 
the clinical trials in targeted therapy described below.
Imatinib

Imatinib is a tyrosine kinase inhibitor that inhibits 
several oncogenic pathways. Its impressive activity 
in sarcomas has been primarily shown in GIST, by 
interrupting the constitutive activation of KIT-mediated 
signal transduction characteristic of that sarcoma [79-
81]. Imatinib has also demonstrated clinical benefit in the 
metastatic setting for dermatofibrosarcoma protuberans 
(DFSP) through inhibiting the activation of platelet 
derived growth factor receptor beta (PDGFR-β) [82,83]. 
DFSP tumors are characterized by PDGFB rearrangements 
(resulting in overexpression of PDGFβ), and 10-20% 
progress to a more aggressive, higher-grade subtype, 
designated as fibrosarcomatous transformation (FS-
DFSP) [84-86]. Scarce data exists on the role of imatinib 
specifically in these metastatic FS-DFSP tumors. A recent 
retrospective study evaluating 10 metastatic FS-DFSP 
patients treated with imatinib showed that 90% of patients 
achieved clinical benefit (8 partial responses and 1 stable 
disease) with a median of 11 months PFS [87]. However, 
the duration of response observed in this study was lower 
than that reported ina  previous series containing a mix of 
cases with both low-grade and FS-DFSP [88]. Moreover, 
this study showed that imatinib failed to eradicate the 
metastatic disease, as all five patients who had a complete 
resection of the residual tumor after imatinib still 
experienced a relapse. These findings suggest that despite 
a high expression of PDGFβ in DFSP, there might be other 
putative targets that contribute to disease progression 
and the development of imatinib resistance in metastatic 
patients. Interestingly, RNA transcriptional profiling of the 
study cohort revealed a simultaneous down-regulation of 
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kinase signaling pathways and up-regulation of pathways 
involved in antigen processing and presentation [87]. 
These findings support the potential role for incorporating 
immune system enhancement strategies to achieve higher 
durable responses in the setting of imatinib-refractory FS-
DFSP. Recently, CDK4/CDK6 inhibitors demonstrated 
pre-clinical activity against imatinib-resistant FS-DFSP 
[83].

The role of imatinib as a PDGFR-β inhibitor 
was also tested among metastatic chordoma patients, a 
disease displaying PDGFR-β protein expression but not 
amplification or other activating mutation. In a recent 
retrospective analysis that included 46 PDGFR-β-positive 
metastatic chordoma cases, median PFS was 9.9 months. 
Within a median follow up of 24.5 months, 34 of 46 of 
patients had stable disease by RECIST 1.0, with no partial 
or complete responses observed [89]. These results are 
consistent with previous findings reported in a phase II 
trial in 50 patients with advanced chordoma treated with 
imatinib (median PFS = 9 months and 70% of patients 
achieved stable disease) [90]. The very limited response 
rates observed in these trials, despite reportedly high 
expression of PDGFR-β, suggest a potential role for 
targeting related pathways other than PDGFR-β using 
other therapies. As such, the combination of imatinib 

and histone deacetylase inhibitor in recurrent chordoma 
patients is currently under evaluation (NCT01175109).
Sorafenib

Sorafenib, a multi-kinase inhibitor, has been shown 
to act through different signal transduction pathways, 
including via inhibition of pro-angiogenic vascular 
endothelial growth factor receptors (VEGFR and 
PDGFR-β). In phase II clinical trials, sorafenib has been 
shown to have activity in metastatic soft tissue sarcoma 
[91], specifically in leiomyosarcoma [92]. Furthermore, a 
pre-planned exploratory analysis of a phase II clinical trial 
indicated that this agent has activity in angiosarcoma [93]. 

A recently published phase II trial evaluated the role 
of sorafenib as a PDGFR-β inhibitor in locally advanced 
and metastatic chordoma patients (n = 27) [94]. In this 
trial, the 9-month PFS was 73% and the 12-month OS 
was 86.5%. Compared to previous studies evaluating the 
role of imatinib in metastatic chordoma, 92% (12/13) of 
the assessable patients in this trial, who were not pre-
selected based on PDGFR-β status, had a stable disease 
by RECIST criteria. 
Dasatinib

Dasatinib is a multi-kinase inhibitor that targets 
several oncogenes. Its main activity in sarcoma is thought 

Table 2: A survey of recently published targeted therapy studies in sarcoma

Targeted 
Therapy Study Analyzed Design Stage Subtype N

Median 
PFS 
(months)

Median OS 
(months)

Imatinib
Stacchiotti et al. 
Clin Cancer Res. 
2016

retrospective Advanced DFSP 10 11 Not reached

Imatinib Hindi et al. Eur J 
Cancer. 2015 retrospective Advanced Chordoma 46 9.9 30

Sorafenib
Bompas et 
al. Annals of 
oncology. 2015

Phase II Advanced Chordoma 27
Not 
reached
(9 months 
PFS=73%)

Not reached
(9 months
 OS=87%)

Dasatinib Scheutze et al. 
Cancer. 2016 Phase II Advanced

Ewing 
LMS 
Liposarcoma 
MPNST 
OSa 
RMS
 UPS 

200 1.9 8.6

Pazopanib vs. 
Placebo

Kawai et al.
Jpn J Clin
Oncol. 2016

Phase III Advanced STS 47 1.6 vs. 5.7 15.4 vs. 14.9 
(NS)

Pazopanib plus 
radiotherapy

Haas et al. Acta 
Oncol. 2015 Phase I

Preoperative 
for locally 
advanced

STS 10 NA NA

Pazopanib 
Ronellenfitsch 
et al. BMJ 
Open. 2016

Phase II
Preoperative 
for high risk 
early stage

STS recruiting TBD TBD

Abbreviations: DFSP = dermatofibrosarcoma protuberans, LMS = leiomyosarcoma, MPNST = malignant peripheral nerve 
sheath tumor, OSa = osteosarcoma, RMS = rhabdomyosarcoma, UPS = undifferentiated pleomorphic sarcoma, STS = soft 
tissue sarcoma, NA = not available, TBD = to be determined, NS = not significant

http://www.ncbi.nlm.nih.gov/pubmed/?term=26283036
http://www.ncbi.nlm.nih.gov/pubmed/?term=26283036
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to be through inhibiting the c-SRC kinase pathway. 
Gene expression profiling has reported the c-SRC 
pathway to be highly expressed in leiomyosarcoma 
[95] and chondrosarcoma [96]. Pre-clinical activity 
has been demonstrated in different cell lines, including 
rhabdomyosarcoma, osteosarcoma [97], Ewing sarcoma 
[97,98], and synovial sarcoma [99]. Despite this pre-
clinical evidence, a large phase II clinical trial conducted 
by the SARC group, which included 200 patients from 
seven different cohorts of advanced sarcoma, showed 
low clinical benefit from dasatinib [100]. The study 
was terminated early for futility in five cohorts; only 
the cohorts of leiomyosarcoma and undifferentiated 
pleomorphic sarcoma fully accrued. However, dasatinib 
still did not show clinically-significant activity in these 
two cohorts, with only two objective responses observed 
in undifferentiated pleomorphic sarcoma patients [100]. 
Currently, the activity of dasatinib in combination with the 
CTLA4 inhibitor ipilimumab is being assessed in a phase 
I trial in unresectable or advanced soft tissue sarcoma 
(NCT01643278).
Pazopanib

Pazopanib is a multi-kinase inhibitor that has been 
shown to have activity in metastatic soft tissue sarcoma, 
primarily through the phase III PALETTE trial published 
in 2012, which randomized metastatic soft tissue sarcoma 
patients to receive either pazopanib or placebo. This trial 
demonstrated a significantly prolonged PFS by 3 months 
in pazopanib arm, although no significant differences were 
observed in OS [101]. In a recent analysis on the Japanese 
subpopulation in PALETTE, pazopanib demonstrated 
results consistent with that observed in the PALETTE 
trial global population [102]. It should be noted that a pre-
planned analysis on the original PALETTE trial did not 
reveal a superior benefit of pazopanib in specific sarcoma 
subtypes [101]. Moreover, a retrospective analysis limited 
to the uterine sarcoma cases from the PALETTE trial did 
not show significant activity of pazopanib against uterine 
sarcoma when compared to other subtypes [103]. 

Pazopanib has also been reported to be active 
against desmoid-type fibromatosis [104], which is being 
compared to chemotherapy in a phase II clinical trial 
(NCT01876082).

The role of pazopanib in the neoadjuvant setting 
was also investigated in several studies, based on recent 
evidence suggesting a synergistic effect when combining 
radiotherapy with angiogenesis-targeted therapies that act 
through inhibiting the supplying vasculature for sarcoma 
cells [105]. A recent phase I trial assessed the neoadjuvant 
combination of pazopanib and radiotherapy in locally 
advanced soft tissue sarcoma [106]. While none of the ten 
patients showed a volume reduction after radiotherapy, 
a high pathologic complete response rate (>95%) was 
observed in four patients. The overall findings of this 
trial showed that pazopanib and radiotherapy is tolerable 

in the neoadjuvant setting. Currently, a phase II/III trial 
(PAZNTIS) is assessing pre-operative chemoradiation 
or radiation with or without pazopanib for non-
rhabdomyosarcoma soft tissue sarcomas (NCT02180867). 
Moreover, a study protocol recently published by the 
German Interdisciplinary Sarcoma Group described an 
ongoing phase II clinical trial (GISG-04/NOPASS) that is 
assessing the role of pazopanib in high-risk, resectable soft 
tissue sarcoma patients treated with radiotherapy [107]. 
Interestingly, in this trial, the primary endpoint is defined 
as metabolic response rate, measured as a reduction in the 
uptake value in post- versus pre-treatment using positron 
emission tomography (PET-CT) (NCT01543802).
RANKL inhibitor (denosumab)

Denosumab is a monoclonal antibody that targets 
the receptor activator of nuclear factor-kappa b ligand 
(RANKL), which is normally expressed on osteoblasts 
and functions to activate osteoclasts to control bone 
regeneration and remodeling. This agent has exhibited 
a particularly significant clinical benefit in giant cell 
tumors, which highly express RANKL [108-111]. While 
the current treatment options available for this benign 
but locally aggressive bone tumor are mainly surgical, 
depending on site, this can be associated with severe 
morbidity [108,112]. However, a recent phase II trial 
conducted on 222 patients with technically-resectable 
giant cell tumors treated with neoadjuvant denosumab 
for a median duration of 15.3 months not only exhibited 
down-staging of the tumor, but also showed activity in 
restoring the bone with increased cortical thickness [113]. 
Moreover, 48% (106/222) of the patients in this trial 
either delayed their need for surgery or underwent less 
morbid interventions than had appeared necessary prior 
to denosumab treatment [113]. These promising results 
support the role of denosumab in achieving disease control 
and favorable clinical outcomes without exposing patients 
to potentially high-morbidity surgical interventions.

EPIGENETIC THERAPY

Epigenomics

Epigenetic and epigenomic modifications are 
emerging as key mechanisms in the pathogenesis of 
many sarcomas. Some subtypes could be described as 
exhibiting an “epigenomic mutator phenotype,” wherein 
a single missense mutation at an epigenetic modification 
target site, generates an “oncohistone,” resulting in 
aberrant repression and de-repression of genes at the 
global transcriptome level. An example of one such 
mutation, investigated by Lu et al [114], is seen in ~95% 
of chondroblastomas, in which a lysine-to-methionine 
mutation in histone 3.3 (H3.3K36M) has a dominant 
negative effect over the thirty other H3 histone alleles, 
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inhibiting the normal methylation of wild-type H3K36. 
This results in aberrant expression of genes associated with 
mesenchymal differentiation, leading to the development 
not only of chondroblastoma, but also of some cases 
of undifferentiated sarcoma. These oncohistones not 
only reduced (activating) H3K36 methylation, but also 
increased (repressive) H3K27 methylation. Although 
the H3.3K36M mutation is specific to chondroblastomas 
[115], this study identified an H3.1K36M mutation in a 
pediatric undifferentiated soft tissue sarcoma, suggesting 
that K36M mutations in other H3 histones might play 
a role in poorly differentiated sarcomas. In follow-up 
papers investigating the mechanism by which K-to-M 
oncohistones inhibit global histone lysine methylation 
[116,117], it was found that the mutant histones occupy 
the active sites of histone methyltransferases, inhibiting 
their function and sequestering them from wild-type H3 
histones. 

In 2014, MPNST saw major breakthroughs in 
understanding the epigenetic mechanisms by which 
somatic mutations bring about malignant transformation, 
which have since led to practical diagnostic advances. 
Lee et al [118] identified loss-of-function mutations in 
EED and SUZ12, key components of the PRC2 polycomb 
repressive complex, in 12 of 15 (80%) cases of MPNST. 
Similarly, Zhang et al [119] conducted whole-genome 
sequencing on MPNSTs and found mutations critical to 
PRC2 functioning (SUZ12, EED, EZH2) in nearly half 
(24/50) of samples (alterations not seen in 11 sequenced 
neurofibroma samples). Given that the primary function 
of PRC2 is methylation of H3K27, these studies also 
identified complete loss of trimethylated H3K27 
(H3K27me3) in samples with PRC2-related mutations. 
Lee et al [118] further showed that H3K27 trimethylation 
could be recovered in vitro by re-introducing the lost 
PRC2 component, which concomitantly decreased cell 
growth. This loss of H3K27 methylation was subsequently 
confirmed in three independent studies. Schaefer et al 
[120] evaluated immunohistochemistry for H3K27me3 
in 100 MPNSTs and found that 51 (51%) were negative, 
correlating with higher grade. Among 200 MPNST 
mimics also evaluated, only 4 (2%) were negative 
for H3K27me3. Cleven et al [121] also performed 
H3K27me3 immunohistochemistry, and observed loss 
of H3K27me3 in 34% (55/162) of MPNSTs, while 
expression was retained in neurofibromas (n = 32). Within 
other tumors, H3K27me3 loss was seen in 24 of 341 (7%) 
cases, notably 9 of 15 (60%) synovial sarcomas and 3 
of 8 (38%) fibrosarcomatous-DFSP. In this sample set, 
H3K27me3 loss correlated with inferior survival. Rorich 
et al [122] used DNA methylation arrays to characterize 
171 peripheral nerve sheath tumors, and found that 21 of 
41 (51%) MPNSTs had loss of H3K27 trimethylation. This 
study also confirmed PRC2 loss-of-function mutations 
among H3K27me3-deficient MPNSTs, identifying 15 
(71%) and 4 (19%) cases with SUZ12 and EED mutations, 

respectively. Taken together, these studies show that loss 
of H3K27me3 is highly specific for MPNST and may be a 
useful diagnostic marker, particularly for its histologically-
difficult distinction from neurofibroma, but not for 
distinction from malignant mimics synovial sarcoma and 
FS-DFSP. Further, loss of H3K27me3 was associated with 
higher grade and poorer survival in MPNST, so loss of 
PRC2 function may be contributing to increased tumor 
aggressiveness.

In rhabdomyosarcoma, the DNA methylome was 
characterized for 37 tumors and 10 cell lines [123], and 
PAX3-FOXO1 fusion-positive tumors showed distinctly 
lower global methylation than in fusion-negative 
tumors. Fusion-negative rhabdomyosarcoma bore more 
resemblance to normal skeletal muscle, suggesting 
that fusion-positive rhabdomyosarcoma has aberrant 
DNA methylation. Sites of abnormal methylation were 
associated with changes in mRNA expression patterns, 
and these sites included an augmented number of PAX3-
FOXO1 target gene binding sites. This finding suggests 
that the rhabdomyosarcoma fusion protein modifies DNA 
methylation to regulate target gene expression. 

Translational science

Bromodomain

Bromodomain and extra terminal domain (BET) 
proteins are “readers” of histone acetylation marks, 
facilitating the transcription of genes in marked areas. 
In cancer, BET proteins are key translators of aberrant 
acetylomes, and as such, BET inhibitors are emerging as 
promising treatments for some cancers, including bone 
sarcomas.

In osteosarcoma, Lee et al [124] and Baker et 
al [125] investigated the use of BET protein BRD4 
inhibitor JQ1. In vitro, JQ1 treatment inhibited cell line 
proliferation and survival; however, in vivo, JQ1 alone 
was ineffective against mouse cell line xenografts [124]. 
Combination with the mTOR inhibitor rapamycin was able 
to overcome resistance to JQ1 treatment in both models. 
Because BET inhibitors like JQ1 function by decreasing 
transcription of genes with aberrantly acetylated histones, 
the authors also explored changes in transcription induced 
by treatment. They identified RUNX2 [124] - an osteoblast 
differentiation transcription factor - and FOSL1 [125] - 
part of the AP-1 differentiation/proliferation/apoptosis 
transcription factor complex - as abnormally expressed 
genes that are directly modified by JQ1 treatment. 

In Ewing sarcoma, BET inhibition was shown to 
directly block transcription of the fusion oncoprotein 
in two independent studies [126,127], which 
observed a strong down-regulation of EWS-FLI1 in 
cell lines following treatment with JQ1. Chromatin 
immunoprecipitation demonstrated that BRD4 becomes 
depleted in the fusion oncogene’s promoter [127], and 
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RNA microarray analysis revealed down-regulation of 
Ewing sarcoma-associated expression programs [126]. 
Cell line proliferation and migration were inhibited with 
JQ1 treatment, which induced both cell cycle arrest and 
apoptosis. In mouse xenografts, treatment suppressed 
tumor development. Taken together, these studies suggest 
that BET inhibition interferes with EWS-FLI1 activity and 
may prove a promising targeted strategy for treatment of 
Ewing sarcoma.
EZH2

EZH2 is the catalytic subunit of the PRC2 
transcriptionally repressive chromatin remodeling 
complex. Lv et al [128] found that EZH2 is overexpressed 
in osteosarcoma and correlates with poor prognosis. RNA 
silencing of EZH2 inhibited tumor growth in cell lines, 
induced apoptosis, and enhanced sensitivity to cisplatin. 
In vivo, EZH2 knockdown impaired xenograft growth and 
metastasis. These results suggest that EZH2 is important 
for tumor growth and metastasis in osteosarcoma, 
implying that EZH2 inhibition may prove a worthwhile 
treatment strategy as such drugs become available [129-
133].
Synovial sarcoma

Laporte et al [134] employed proximity ligation 
assay to validate the previously proposed [135] association 
of synovial sarcoma fusion oncoprotein SS18-SSX 
with TLE1 cofactor. TLE1 co-localized in the nucleus 
with SS18-SSX (but not with wild-type SS18) in cell 
lines and in human tumor tissue, and these interactions 
were disruptable by treatment with histone deacetlyase 
inhibitors. This technique could be useful for identifying 
agents that disrupt the oncoprotein complex in high-
throughput drug screens for this disease. EZH2 inhibitors 
may also have activity in this disease [136,137].

Clinical trials

HDAC Inhibitors

In pre-clinical studies, histone deacetylase (HDAC) 
inhibitors have been shown to be particularly active 
in translocation-associated sarcomas such as synovial 
sarcoma and Ewing sarcoma, through reversing aberrant 
transcriptional repression induced by the underlying fusion 
proteins in these sarcomas [135,138,139]. Clinical studies 
in other types of cancer have demonstrated an enhanced 
efficacy of HDAC inhibitors when combined with 
topoisomerase II inhibitors, such as anthracyclines, leading 
to more transcriptionally-active chromatin that is primarily 
observed with the administration of HDAC inhibitors prior 
to anthracyclines [140,141]. This observation was the 
basis for the design of a phase I trial assessing the HDAC 
inhibitor panobinostat followed by the topoisomerase II 
inhibitor of epirubicin in patients with advanced soft tissue 

sarcoma [142]. Among 20 patients included in this trial, 
60% (n = 12) achieved a clinical benefit, suggesting that 
the combination of panobinostat and epirubicin might have 
value in overcoming anthracycline resistance. Currently, 
different epigenetic treatment strategies, including HDAC 
inhibitors, are being evaluated in a number of active 
sarcoma clinical trials (NCT01136499), (NCT01879085), 
(NCT00937495).

IMMUNE THERAPY

Immune microenvironment of sarcomas

The immune microenvironment of sarcomas is 
poorly characterized to date, leaving open the question 
of which sarcoma subtypes are immunogenic. D’Angelo 
et al [143] conducted an immunohistochemistry survey 
of 50 soft tissue sarcomas to evaluate the presence of 
tumor-infiltrating lymphocytes (TILs), tumor-associated 
macrophages, and immune checkpoint receptor and 
ligand, PD1 and PD-L1. Immunohistochemical staining 
examined CD3 (TILs), CD4 (helper T-cells), CD8 
(cytotoxic T-cells), FOXP3 (regulatory T-cells), PD1, and 
PD-L1 expression, and multiplex IHC was performed 
for CD3/PD1, CD3/CD8, and CD3/CD4/FOXP3. The 
presence of macrophages was evaluated histologically. 
Lymphocyte and macrophage infiltration were observed 
in 98% and 90% of cases, respectively. Defining “low” or 
“high” density TILs as below or above 5%, they noted that 
27 (54%) had low-density TILs, mainly leiomyosarcoma 
(3/4), synovial sarcoma (4/5), and chondrosarcoma (1/1), 
and 22 (44%) had high-density TILs, mainly GIST (9/14). 
Tumor, lymphocyte, and macrophage PD-L1 expression 
were 12%, 30%, and 58%, respectively, with the highest 
frequency of PD-L1 positivity seen in GIST (4/14). They 
observed no clear correlation between marker expression 
and clinical outcomes in this small study. Movva et al [18] 
also assessed PD-L1 expression by immunohistochemistry 
across 221 sarcomas, and found that 57% expressed PD-L1 
and 54.8% had PD-1+ TILs. Significantly high expressors 
of PD-L1 included 19 of 60 (32%) leiomyosarcomas, 12 of 
16 (75%) chondrosarcomas, 23 of 30 (77%) liposarcomas, 
and 7 of 10 (70%) undifferentiated pleomorphic sarcomas. 

Smaller studies focusing on specific subtypes 
revealed broadly similar results. A study of 35 well- and 
de- differentiated liposarcomas [144] found TILs in all 
samples by flow cytometry, with a greater prevalence 
of CD4+ (80%) than CD8+ (20%) T-cells. Among CD8 
T cells, 65% expressed PD-1. They also found mature 
dendritic cells in close proximity with CD4+ T-cells, 
suggesting intra-tumoral antigen presentation. Feng et al 
[145] examined 78 chordomas by immunohistochemistry 
and found that 75% have TILs present. While PD-L1 
expression was seen in 95% of samples, 43% were 
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classified as “PD-L1-high” due to moderate or strong 
staining intensities. While presence of these TILs 
correlated with PD-L1 expression, there was no clear 
correlation with survival. In osteosarcoma, Fritzsching et 
al [146] surveyed 135 samples for CD8+ and FOXP3+ 
T-cell presence by immunohistochemistry. 95% of 
cases had both CD8+ and FOXP3+ T-cells, and a high 
CD8:FOXP3 ratio correlated with improved survival. 
It is clear that the immune microenvironment of 
sarcomas is highly variable; however, given the strong 
immune presence in some subtypes, there is promise for 
immune therapy in many of these malignancies. Table 3 
summarizes the clinical trials in immune therapy described 
below.

“Hot” tumors: checkpoint inhibitor strategies

Hot tumors are those that are immunogenic, 
associated with high numbers of TILs and tumor 
associated macrophages, but that are actively modulating 
the immune response to survive, for example by 
expressing immune checkpoint ligands that suppress anti-
tumor immune responses. Hot tumors are the most likely 
to benefit from immunomodulatory therapies such as 
checkpoint inhibitors. 

Translational science

Lussier et al [147] showed that metastatic 
osteosarcomas (but not primary tumors) express PD-
L1 and are infiltrated by PD1+ T-cells. Upon treatment 
with an anti-PD-L1 monoclonal antibody in a mouse 
cell-line xenograft model of metastatic osteosarcoma, 
they observed improved cytotoxic T-cell functioning, 
decreased tumor burden, and increased survival. However, 
in a follow-up study [148], they noted that xenografts 
quickly become resistant to PD-L1 blockade through 
the up-regulation of additional checkpoints, including 
CTLA-4. Treatment with a combination of anti-PD-L1 
and anti-CTLA-4 monoclonal antibodies was able to 
control tumors completely and also conferred immunity 
to further tumor inoculation. Together, these pre-clinical 
results demonstrate that checkpoint blockade might be a 
worthwhile strategy for metastatic osteosarcoma patients. 
Clinical trials

Ipilimumab, an anti-CTLA-4 therapeutic 
monoclonal antibody, was tested in a phase I trial on 33 
pediatric patients with refractory solid tumors, including 
17 sarcomas (8 osteosarcomas, 2 rhabdomyosarcomas, 
2 clear cell sarcomas, 2 synovial sarcomas) [149]. At 
3 weeks, researchers observed increased numbers of 
circulating activated T-cells, predominately CD4+ helper 

Table 3: A survey of recently published immune therapy studies in sarcoma

Immune Therapy Study Analyzed Design Stage Subtype N Median PFS 
(months)

Median OS 
(months)

Ipilimumab Merchant et al. Clin 
Cancer Res. 2016 Phase I Advanced

CCS
OSa
RMS
SS

17 NA NA

Pembrolizumab
Tawbi et al.  ASCO 
Meeting Abstracts. 
2016

Phase II Advanced

CSa
DDLPS
Ewing
LMS
OSa
SS 
UPS

40 Not reached Not reached

Dendritic cell training, 
tumor lysate, reinfusion

Merchant et al.  
Clin Cancer Res. 
2016

Phase II Advanced STS 29 24 42

Tumor cell  transduction 
with GM-CSF, radiation, 
reinfusion

Goldberg et al.  
Clin Cancer Res. 
2015

Phase I Advanced ASPS
CCS 11 NA NA

HER-2 expressing CAR-
T-cells

Ahmed et al. J Clin 
Oncol. 2015 Phase I/II Advanced

DSRCT
Ewing
OSa

16 1.5 10.3

MAGE-A1, MAGE-A3, 
and NY-ESO-1 dendritic 
cell vaccine (with 
decitabine)

Krishnadas et al. 
Cancer Immunol 
Immunother. 2015

Phase I Advanced Ewing
RMS 2 0 NA

Abbreviations: PFS = progression-free survival, OS = overall survival, ASPS = alveolar soft part sarcoma, CCS = clear cell 
sarcoma, CSa = chondrosarcoma, DDLPS = dedifferentiated liposarcoma, DSRCT = desmoplastic small round cell tumor, 
LMS = leiomyosarcoma, OSa = osteosarcoma, RMS = rhabdomyosarcoma, SS = synovial sarcoma, STS = soft tissue sarcoma, 
UPS = undifferentiated pleomorphic sarcoma, NA = not available
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T-cells. Toxicities were similar to those reported in 
adult patients. Although no objective tumor responses 
were observed, 6 subjects had stable disease at 6 weeks, 
including cases of osteosarcoma, clear cell sarcoma, and 
synovial sarcoma. Furthermore, subjects with immune-
related toxicities exhibited improved overall survival over 
those who showed no evidence of immune stimulation.

In an abstract recently published for ASCO, Tawbi 
et al [150] presented the first results from SARC028, a 
much-anticipated phase II study of the PD1 inhibitor 
pembrolizumab in 40 soft tissue (leiomyosarcoma, 
dedifferentiated liposarcoma, undifferentiated 
pleomorphic sarcoma, synovial sarcoma) and 40 bone 
(osteosarcoma, Ewing sarcoma, chondrosarcoma) 
sarcomas. At 8 weeks, partial responses by RECIST 1.1 
were observed for undifferentiated pleomorphic sarcoma 
(4/9), dedifferentiated liposarcoma (2/9), synovial 
sarcoma (1/9), chondrosarcoma (1/6), and osteosarcoma 
(1/19). Stable disease was observed in some cases for all 
subtypes enrolled. The PFS rate at 8 weeks was 50% in 
leiomyosarcoma, 63% in liposarcoma, 30% in synovial 
sarcoma, 67% in UPS, 24% in osteosarcoma, 9% in Ewing 
sarcoma, and 67% in chondrosarcoma. A new phase II 
study (NCT02500797) for ipilimumab (anti-CTLA-4) with 
or without nivolumab (anti-PD1) is currently accruing 
patients with unresectable or metastatic bone or soft tissue 
sarcoma. Together, these studies suggest select and limited 
use for checkpoint blockade in these diseases; however, 
because immune therapy trials are only just beginning for 
sarcomas, it is difficult to draw concrete conclusions from 
the evidence available.

“Cold” tumors: immune augmentation strategies

Cold tumors are those that appear not to have 
been recognized by the immune system much - if at all 
- and theoretically would benefit best from stimulatory 
immune therapy such as cytokine treatment, immune cell 
engineering, and/or cancer vaccines.
Translational science

Yang et al [151] investigated STAT3 inhibitors 
as an adjuvant to conventional chemotherapy. STAT3 
is an oncogenic transcription factor that functions to 
enhance cell growth, inhibit apoptosis, and mediate 
immunosuppression. Knockout or pharmacologic 
inhibition of STAT3 in syngeneic fibrosarcoma tumors 
in mice enhanced growth inhibition by anthracycline-
based chemotherapy. This response was only found in 
immunocompetent, not immunodeficient mice, likely due 
to immune activation from STAT3 inhibition. There was 
increased tumor infiltration by dendritic and cytotoxic 
T cells and an increase in the expression of interferon-
responsive genes. Reintroduction of wild-type STAT3 
inhibited this expression pattern and eliminated the 
improved response to chemotherapy. These pre-clinical 

results suggest that STAT3 inhibitors may improve the 
outcome of chemotherapy via activation of the immune 
system.

Dendritic cell strategies involve removal of a 
patient’s own immune cells, dendritic cell training with 
or without tumor antigen exposure/engineering, and re-
introduction of the trained dendritic cells. In osteosarcoma, 
dendritic cells from an osteosarcoma rat model were 
electrically fused with an osteosarcoma cell line to 
generate a fusion tumor vaccine [152]. This fusion vaccine 
was reintroduced, resulting in T lymphocyte proliferation. 
CD8+/CD4+ T-cell ratio increased, and CD4+ T-cell 
percentage dropped. Following vaccination, tumors shrunk 
or disappeared entirely, leading to improved survival of 
the rats. Also in osteosarcoma, Kawano et al [153] found 
that a combination of a dendritic cell strategy with an 
anti-GITR antibody inhibited tumor growth in a mouse 
xenograft model. Therapy constituted treatment with tumor 
lysate-pulsed dendritic cells, combined with an agonist 
for GITR, a co-stimulatory receptor for CD4/CD8 T-cell 
proliferation and effector functions. With combination 
treatment, they observed tumor growth inhibition and 
improved survival. Furthermore, this regimen increased 
the numbers of cytotoxic and reduced the numbers of 
regulatory T-cells. The same group found that combining 
doxorubicin with the same dendritic cell therapy in that 
murine osteosarcoma model induces immunogenic cell 
death and tumor inhibition [154]. This combinatorial 
approach is particularly appealing, as it suggests that 
dendritic cell therapy may serve to significantly enhance 
responses to conventional chemotherapy. Taken together, 
these studies suggest a promising future for dendritic cell 
therapies in osteosarcoma.

The innate immune system’s natural killer (NK) 
cells are newer targets for immune therapy interventions. 
NKG2D is an activating immune receptor on NK and 
cytotoxic T cells whose ligands are frequently present 
on tumor cell surfaces but rarely detectable on normal 
cells. Fernández et al [155] found moderate to high levels 
of NKG2D ligand expression by flow cytometry on all 
of 22 human osteosarcoma cell lines. Using a mouse 
osteosarcoma xenograft model injected with human 
natural killer cells, they showed that treatment of mouse 
osteosarcoma xenografts with IL-2 and the diuretic 
spironolactone resulted in enhanced receptor-ligand 
interactions of NKG2D, leading to NK cell activation, 
expansion, and targeting of osteosarcoma tumor-initiating 
cells. Zhu et al [156] found that osteosarcoma expression 
of NKG2D receptor and ligands were enhanced by 
treatment with the HDAC inhibitor entinostat, an effect 
not seen in normal human fibroblasts. In a mouse cell 
line xenograft model, mice treated with both entinostat 
and NK cells had a significantly reduced tumor burden, 
supporting the hypothesis that HDAC treatment sensitizes 
osteosarcoma cells to NK-mediated cell death. Finally, 
Jemitzky et al [157] show that anti-IGF1 receptor 
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therapeutic antibodies not only diminish Ewing cell line 
viability, but also promote in vitro expansion of human 
NK cells. When co-incubated with Ewing sarcoma cell 
lines, NK cells exhibit potent degranulation responses. 
These studies together suggest that combining adoptive 
transfer of activated NK cells with IL-2, HDAC, anti-
IGF1R, or other agents may have therapeutic benefit in 
sarcomas. 
Clinical trials

A phase II cancer vaccine trial for 29 sarcomas by 
Merchant et al [158] employed a particularly complex 
protocol involving autologous monocyte extraction, 
dendritic cell training, tumor lysate-pulsing, and 
reinfusion. They observed a 62% 5-year overall survival, 
which is a significant improvement over the subjects’ 
expected 25% survival (based on previous studies, not a 
randomized control group). Benefits were seen chiefly in 
Ewing sarcoma and rhabdomyosarcoma (63%), whereas 
no benefit was seen in synovial sarcoma or desmoplastic 
small round cell tumor (0%). T-cell responses were 
identified in 62% subjects, and these responses were 
associated with improved survival. 

In a phase I trial for alveolar soft part sarcoma and 
clear cell sarcoma by Goldberg et al [159], tumor cells 
from subject metastases (n = 11) were transduced with 
GM-CSF, irradiated, and re-infused. Vaccination enhanced 
infiltration of local dendritic cells and stimulated T cell 
reactions to tumor cells. Tumor biopsies showed PD1-
positive T cells and PD-L1-expressing sarcoma cells, in 
correlation with each other. No tumor regressions were 
observed, but authors suggest concomitant treatment with 
checkpoint blockade to improve antitumor immunity.

Immune therapy against specific tumor antigens 
may prove a particularly useful strategy in sarcomas, 
due to their comparatively low genomic complexity (and 
presumed low burden of tumor neoantigens). Chimeric 
antigen receptor T-cells (CAR-T-cells) are T-cells, usually 
autologous cells extracted from the patient receiving 
therapy, that have been engineered to target a specific 
tumor antigen. Ahmed et al [160] conducted a phase I/
II trial using CAR-T-cells targeting HER-2-expressing 
sarcomas. At 6 weeks, stable disease was attained in 3 of 
14 osteosarcomas, 1 of 1 desmoplastic small round cell 
tumor, and 0 of 1 Ewing sarcoma. No partial or complete 
responses were observed. They analysed peripheral-blood 
mononuclear cells to confirm presence of HER2-CAR-T-
cells, which were detected in 14 of 16 treated patients. In 
a related phase I veterinary trial, 18 dogs presenting with 
osteosarcoma were treated with HER2 Listeria vaccine 
[161]. Treatment induced a HER2-specific interferon-γ 
response 15 of 18 dogs within 6 months. Additionally, they 
saw reduced rates of metastasis and improved 1-, 2- and 3- 
year survival rates, compared to a historical control group 
treated with amputation and chemotherapy alone.

Dendritic cell vaccines can also serve to target 
specific tumor antigens, as seen in a phase I trial by 
Krishnadas et al [162] in children with relapsed or 
refractory solid tumors, including Ewing sarcoma (n = 2), 
osteosarcoma (n = 2), and rhabdomyosarcoma (n = 1). The 
protocol involved treatment with decitabine (a cytotoxic 
therapy), followed by a vaccine of autologous dendritic 
cells pulsed with peptides derived from tumor antigens 
MAGE-A1, MAGE-A3, and NY-ESO-1. Only one Ewing 
sarcoma patient and one rhabdomyosarcoma patient 
received the dendritic cell vaccine, and while neither 
had any objective response to therapy, both developed an 
antigen-specific response in their CD4+ T-cells. Given 
the limited number of sarcoma subjects in this study and 
the presence of a tumor-specific immune response, this 
strategy warrants further exploration for these and other 
sarcoma subtypes, such as myxoid liposarcoma, in which 
a strong correlation between poor prognosis and high 
expression (protein and mRNA) of PRAME and/or NY-
ESO-1 has been reported [163]. 

SUMMARY

Recent publications have shown that significant, 
albeit incremental progress can still be made using 
cytotoxic chemotherapy agents, including eribulin, 
trabectedin, and aldoxorubicin. Efforts to conduct larger 
international studies have been somewhat successful, and 
there has been a partial move toward more histology-
specific studies rather than the lumping together of 
completely disparate entities. Targeted therapies have 
shown fewer advances at the level of clinical practice, 
despite numerous trials involving various receptor tyrosine 
kinase inhibitors; however, advances in basic science, 
driven by spectacular technological advances in genomics, 
highlight targetable pathways, including mTOR, Notch, 
Wnt, Hedgehog, and MDM2, and other targetable 
proteins, such as Hsp90, RNA helicase, and FOXM1. 
Epigenetic approaches have had some preclinical success 
with BET and EZH2 inhibitors, and immuno-oncology 
approaches are advancing from pre-clinical to phase I- and 
II- level studies in both immunostimulatory and immune 
checkpoint therapies.
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