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Background: In children, retinoblastoma (RB) is one of the most common primary malignant ocular 
tumors and has a poor prognosis and high mortality. To understand the molecular mechanisms of RB, we 
identified microRNAs (miRNAs), key genes and transcription factors (TFs) using bioinformatics analysis to 
build potential miRNA-gene-TF networks. 
Methods: We collected three gene expression profiles and one miRNA expression profile from the Gene 
Expression Omnibus (GEO) database. We used the limma R package to identify overlapping differentially 
expressed genes (DEGs) and differentially expressed miRNAs in RB tissues compared to noncancer tissues. 
The robust rank aggregation (RRA) method was implemented to identify key genes among the DEGs. Then, 
miRNA-key gene-TF networks were built using the online tools TransmiR and miRTarBase. Next, we used 
RT-qPCR to confirm the results. 
Results: We identified 180 DEGs in RB tissues compared to nontumor tissues using integrative analysis, 
among which 109 genes were upregulated and 71 were downregulated. Gene ontology (GO) analysis revealed 
that these DEGs were primarily involved with chromosome segregation, condensed chromosome and DNA 
replication origin binding. The most highly enriched pathways obtained in Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis were cell cycle, DNA replication, homologous recombination, 
P53 signaling pathway and pyrimidine metabolism. Furthermore, two key differentially expressed miRNAs 
(DEMs) were also established: let-7a and let-7b. Finally, the potential regulatory networks of miRNA-target 
gene-TFs were examined. 
Conclusions: This study identified key genes and built miRNA-target gene-TF regulatory networks in 
RB, which will deepen our understanding of the molecular mechanisms involved in the development of RB. 
These key genes and miRNAs may be potential targets and biomarkers for RB diagnosis and therapy.
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Introduction

Retinoblastoma (RB) is the most common primary 
intraocular tumor of childhood, seriously threatening the 
vision and life of children (1,2). Common signs of RB 
include leukocoria, strabismus, glaucoma and inflammation. 
To date, a range of treatments is available to RB experts, 
including chemotherapy, focal treatment, radiation 
therapy and surgery (3). Although treatment methods have 
improved over the past few years, mortality remains ~70% 
in developing countries (4). In order to find new therapeutic 
strategies, we need to carefully study the biological 
processes (BP) and related underlying mechanisms of RB.

MicroRNAs (miRNAs) are small endogenous noncoding 
RNAs that function as universal specificity factors in mRNA 
posttranscriptional gene silencing (5). MiRNAs comprise a 
growing class of ~22 nt long nonprotein-coding RNAs (6). 
Considerable evidence indicates that miRNAs and their 
biogenesis machinery are involved in the development 
of cancer. In recent years, many research groups have 
focused their efforts on studying the causes of aberrant 
miRNA expression in cancer (7). Previously, some studies 
have suggested that miRNAs play a role in regulating the 
progression of RB. For example, miR-361-3p (8), miR-330 (9) 
and miRNA‑874‑3p (10) are all involved in the development 
of RB. Some genes have also been reported to influence RB 
progression, for instance, taurine up-regulated 1 (TUG1) (11) 
and centromere protein E (CENPE) (12). Kruppel like factor 
2 (KLF2), a transcription factor (TF), has also been involved 
in the development of RB (13). Therefore, elucidating the 
relationships among aberrantly expressed miRNAs and their 
target mRNAs and TFs in RB may provide new ideas for 
the study of RB molecular mechanisms and therapies. In 
this study, three mRNA expression profiles (GSE111168, 
GSE110811, GSE125903) and one miRNA expression 
profile (GSE41321) from the GEO database were selected, 
and differentially expressed genes (DEGs) and differentially 
expressed miRNAs (DEMs) were identified by comparing 
RB and noncancer samples. Then, we performed miRNA-
target gene network analysis and further identified TFs 
related to the key DEMs from the interaction network. 
Our work will support the screening of key genes, miRNAs 
and TFs in RB and the construction of miRNA-target 
gene-TF regulatory networks to determine the crucial 
molecular mechanisms involved in RB. We present the 
following article in accordance with the REMARK reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-21-1748/rc).

Methods

Bioinformatics data 

The Gene Expression Omnibus (GEO) database is an 
international public repository that archives and distributes 
high-throughput gene expression and genomics datasets. 
We downloaded both mRNA and miRNA expression 
profiles from the GEO database (http://www.ncbi.nlm.nih.
gov/gds/). The GSE111168, GSE110811 and GSE125903 
datasets were used for mRNA, while the GSE41321 dataset 
was used for miRNA. All data sets were screened according 
to the following criteria: (I) not less than 6 samples, (II) 
from human tissues, and (III) data sets included case 
controls. We extracted and summarized information from 
each dataset, as shown in Table 1. The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013).

Analysis of DEGs and DEMs

We conducted data analysis by using R program (V4.1.0. 
R Core Team (2021). R: A language and environment 
for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. URL https://www.R-project.
org/). The limma R package was used to identify aberrantly 
expressed genes and aberrantly expressed miRNAs in RB 
tissues compared to normal tissues. To decrease the false-
positive rate, we utilized the Benjamini–Hochberg false 
discovery rate (FDR) method to obtain the adjusted P value. 
Genes with an adjusted P<0.05 and |log fold change (FC)| 
>1 were considered DEGs. Standard for the truncation of 
abnormal expression of miRNAs was a |log fold change 
(FC)| >0.5 and adjusted P<0.05. However, among DEGs, 
we maintained the upregulated and downregulated gene lists 
as Excel files. Then, they were sorted by logFC for further 
integration analysis. The Version of RStudio is 3.6.1. 

Integration of microarray data

The robust rank aggregation (RRA) R package (https://cran.
rstudio.com/bin/windows/contrib/3.5/RobustRankAggreg 
_1.1.zip) was used to integrate the two final Excel files 
according to previously published work (14). The adjusted P 
value in the RRA tool indicates the possibility of each gene 
ranking highly in the final two gene lists. Genes with adjusted 
P value <0.05 and |logFC| >1 were considered significantly 
altered. Finally, a comprehensive list of up-regulated and 
down-regulated DEGs was saved for further analysis.

https://tcr.amegroups.com/article/view/10.21037/tcr-21-1748/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-21-1748/rc
http://www.ncbi.nlm.nih.gov/gds/
http://www.ncbi.nlm.nih.gov/gds/
http://www.ncbi.nlm.nih.gov/gds/
https://www.R-project.org/
https://www.R-project.org/
https://cran.
rstudio.com/bin/windows/contrib/3.5/RobustRankAggreg
_1.1.zip
https://cran.
rstudio.com/bin/windows/contrib/3.5/RobustRankAggreg
_1.1.zip
https://cran.
rstudio.com/bin/windows/contrib/3.5/RobustRankAggreg
_1.1.zip
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Functional and pathway enrichment analysis

Gene ontology (GO) analysis and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analysis were 
performed to analyze the functions of the DEGs. Then, we 
used the GOplot R package to visualize the GO analysis 
results, and the Cytoscape (Version 3.8.0) plugin ClueGO 
(Version 2.5.7) was carried out to visualize the results of 
KEGG pathway analysis. The ClueGO plugin provides a 
series of biological explanations for gene lists that identify 
and functionally classify important KEGG pathways. A  
P value <0.05 was selected as a cutoff criterion for both GO 
terms and KEGG pathway enrichment analysis.

Protein-protein interaction (PPI) network construction 
and analysis of modules

Hub genes are considered key genes that play an important 
role in regulating disease progression. We uploaded key 
genes identified using the RRA method to the STRING 
database (http://www.string-db.org/, Version 11.5). The 
PPIs network was analyzed by using the combined score 
from STRING database, with the association score >0.4 
as the cut-off criterion. Moreover, PPIs were visualized 
using Cytoscape software. We also used a Cytoscape plugin, 
CytoNCA (Version 2.1.6), to evaluate the score of key 
genes for centrality analysis (15). Then, molecular complex 
detection (MCODE) (Version 1.6.1) was used to identify 
densely connected regions based on topology (MCODE 
degree cutoff = 2, maximum depth = 100, node score cutoff 
= 0.2 and k Core = 2).

Prediction of TFs and miRNAs and construction of a 
miRNA-target gene-TF regulatory network

We utilized MiRTarBase (http://mirtarbase.mbc.nctu.edu.
tw/php/index.php, Version 7.0) to predict miRNAs that 
possibly regulate the DEGs. The online tool miRTarBase 
is a manually collected, experimentally validated miRNA 
target gene database. Only miRNAs supported by strong 
evidence were included. We then identified critical miRNAs 
by crossing DEMs acquired from the GSE41321 profile 
dataset with miRNAs obtained from miRTarBase. In the 
present research, TFs that might be associated with the key 
DEMs were predicted using TransmiR (http://www.cuilab.
cn/transmir, Version 2.0). Likewise, only data with evidence 
from the literature was identified. Ultimately, miRNA-
target gene-TF regulatory networks were established.

Cell culture

Human retinal pigment epithelial cells (ARPE-19, FH0543, 
FuHeng Cell Center, Shanghai, China) and human RB 
cell lines (WERI-Rb-1, FH0300, FuHeng Cell Center) 
were both purchased from FuHeng Cell Center. WERI-
Rb-1 cells were cultured in RPMI-1640 (Gibco, 72400047, 
USA) medium containing 10% fetal bovine serum (FBS) 
(Gibco,10099141C), 100 μg/mL penicillin, and 100 μg/mL  
streptomycin (Gibco,15140122, USA) at 37 ℃ and 5% 
CO2.  ARPE-19 cells were cultured in DMEM/F12 
(Gibco,11330057, USA) medium containing 10% FBS 
(Gibco,10099141C, USA), 100 μg/mL penicillin, and  
100 μg/mL streptomycin (Gibco,15140122, USA) at 37 ℃ 
and 5% CO2.

Total RNA extraction and RT-qPCR validation

We used TRIzol (Invitrogen, CA, USA) to extracted RNA 
from the cell lines according to the manufacturer’s protocol. 
A NanoDrop 2000 (Thermo Fisher Scientific, USA) 
was used to measure RNA purity and concentration. We 
extracted RNA using 6-well plates with 1×107 cells in each 
well, and each set of experiments was repeated at least three 
times. Total RNA was reverse transcribed into cDNA using 
a cDNA Synthesis Kit (Takara, RR036A, Japan). The cDNA 
synthesis conditions were 37 ℃ for 15 min followed by 85 ℃ 
for 5 s. RNA expression was then examined by quantitative 

Table 1 Information of mRNA and miRNA expression dataset 
profiles

Author, year GEO Platform Control Tumor

Chai et al., 2018 GSE111168 GPL11154 3 3

Hudson et al., 2018 GSE110811 GPL16686 3 28

Rajasekaran  
et al., 2019

GSE125903 GPL16791 3 7

Beta et al., 2013 GSE41321 GPL14767 3 3

The last one is miRNA expression profile, the rest are mRNA 
expression profiles. miRNA, microRNA; GEO, Gene Expression 
Omnibus.

file:///C:\Users\Michelle.L\Downloads\MiRTarBase
http://mirtarbase.mbc.nctu.edu.tw/php/index.php
http://mirtarbase.mbc.nctu.edu.tw/php/index.php
http://www.cuilab.cn/transmir
http://www.cuilab.cn/transmir
http://www.cuilab.cn/transmir
https://pubmed.ncbi.nlm.nih.gov/29741668/
https://pubmed.ncbi.nlm.nih.gov/30036517/
https://pubmed.ncbi.nlm.nih.gov/31058073/
https://pubmed.ncbi.nlm.nih.gov/31058073/
https://pubmed.ncbi.nlm.nih.gov/23400111/
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real-time PCR using SYBR® Premix Ex Taq™ II (Takara, 
RR820A, Japan) and MicroRNAs qPCR (BioTNT, China) 
kits and a Biosystems 7500 Fast Real-Time PCR System. 
The thermal cycling conditions were 95 ℃ for 30 s followed 
by 40 cycles of 95 ℃ for 5 s and 60 ℃ for 34 s for PCR. 
The expression of miRNA and mRNA was normalized to 
U6 and GAPDH expression respectively. The 2-∆∆Ct method 
was used to calculate the expression levels of miRNA and 
mRNA expression. The primers for quantitative real-time 
polymerase chain reaction (RT-qPCR) used in the present 
research are as follows: let-7a-5p, 5'- CTC AAC TGG 
TGT CGT GGA GTC GGC AAT TCA GTT GAG AAC 
TAT AC -3'; let-7b-5p, 5'- CTC AAC TGG TGT CGT 
GGA GTC GGC AAT TCA GTT GAG AAC CAC AC 
-3'; U6, 5'- AAA AAT ATG GAA CGC TTC ACG -3'; the 
mRNA primers were listed in Table S1. 

Statistical analysis 

GraphPad Prism Version 8.0 was used to analyze the RT-
qPCR data, and comparisons between two groups were 
performed using Student’s t test, with a P value <0.05.

Results

Identification of DEGs and DEMs in RB using integrated 
bioinformatics

Three mRNA and one miRNA expression profile datasets, 
including a total of 41 RB and 12 healthy samples, were 
downloaded from the GEO database. Aberrantly expressed 
genes and miRNAs were identified using the limma R 
package with adjusted P<0.05 and |logFC| >1. Three 
hundred eighteen abnormally expressed genes were 
obtained in the GSE110811 profile dataset, consisting 
of 165 upregulated genes and 153 downregulated genes. 
Additionally, 3,003 abnormally expressed genes were 
identified in the GSE111168 profile dataset, including 
2,887 upregulated genes and 116 downregulated genes, and 
869 abnormally expressed genes were established in the 
GSE125903 profile dataset, involving 336 downregulated 
genes and 533 downregulated genes. The miRNA 
expression profile (GSE41321) revealed 35 DEMs, 
including 18 upregulated miRNAs and 16 downregulated 
miRNAs. The volcano plots of the four datasets are shown 
in Figure 1, and Figure 2 shows the heatmaps of aberrantly 
expressed genes and miRNAs.

We identified the overlapping expression matrix of the 

three mRNA profile datasets using the limma R package. 
The results were sorted according to log fold change. 
Then, the RRA R package was used to identify integrated 
DEGs. Only results with adjusted P<0.05 and |logFC| 
>1 were included. The RRA method operates on the 
hypothesis that every gene in each dataset is randomly 
arranged. According to the gene ranks in all datasets, 
the higher the ranking, the lower the correlating P value 
and the greater the possibility of abnormally expressed 
genes. Using the RRA method, we obtained a total of  
180 integrated DEGs, containing 109 upregulated genes 
and 71 downregulated genes (Table S2).

Functional enrichment analysis of DEGs

In order to understand the function and mechanism of 
these DEGs, KEGG pathways and GO terms, including 
BP, cellular component (CC), and molecular function 
(MF), were identified by utilizing the GOplot R package 
and the ClueGO plugin. The results were considered 
statistically significant if the P<0.05, and the three parts of 
the GO results are shown in Figure 3. In the BP-related 
category, the top 5 significantly enriched GO terms were 
regulation of chromosome segregation (GO: 0007059) 
with P=5.23E-14, nuclear division (GO: 0000280) with 
P=9.30E-14, organelle fission (GO: 0048285) with 
P=7.77E-13, mitotic nuclear division (GO: 0140014) 
with P=1.30E-12 and sister chromatid segregation (GO: 
0000819) with P=7.31E-12. In the cell component (CC)-
associated category, the most considerably enriched GO 
terms were spindle (GO: 0005819) with a P=8.18E-09, 
condensed chromosome (GO: 0000793) with a P=8.12E-09, 
spindle microtubule (GO: 0005876) with a P=7.04E-07, 
MCM complex (GO: 0042555) with a P=8.39E-05 and 
spindle pole (GO: 0000922) with a P=8.67E-05. In the MF-
associated category, the key DEGs were enriched in DNA 
replication origin binding (GO: 0003688) with P=5.43E-08, 
ferric iron binding (GO: 0008199) with P=0.004132, 
coreceptor binding (GO: 0039706) with P=0.005792, 
heparan sulfate proteoglycan binding (GO: 0043395) with 
P=0.008756 and amyloid-beta binding (GO: 0001540) with 
P=0.032651. The KEGG pathway analysis of the combined 
DEGs was carried out by using Cytoscape software, and the 
results of the analysis are shown in Figure 4. The identified 
DEGs were primarily enriched in five pathways; pyrimidine 
metabolism, DNA replication, homologous recombination, 
Fanconi anemia pathway and cell cycle.

https://cdn.amegroups.cn/static/public/TCR-21-1748-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-1748-Supplementary.pdf
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Figure 1 The volcano map of each dataset. (A) GSE110811, (B) GSE125903, (C) GSE111168, (D) GSE41321. The red dots indicate up-
regulated genes; the blue dots indicate down-regulated genes; the gray dots indicate genes with no significant difference in expression.

PPI network construction and analysis of modules

A PPI network was established for 180 DEGs in RB tissues 
compared to control tissues, containing 167 nodes and 1,115 
edges (Figure S1). A network topology analysis was used to 
identify the top 20 nodes with high degrees. We identified 
top 20 nodes as hub genes according to the three centrality 
methods (Table 2), including genes like cell division cycle 20 
(CDC20), aurora kinase B (AURKB), DNA topoisomerase 
II alpha (TOP2A), kinesin family member 11 (KIF11), 
BUB1 mitotic checkpoint serine/threonine kinase (BUB1), 
cyclin B2 (CCNB2), ribonucleotide reductase regulatory 
subunit M2 (RRM2), cell division cycle 45 (CDC45), 
minichromosome maintenance complex component 2 
(MCM2), and kinesin family member 20A (KIF20A). Next, 

we performed subnetwork module analysis and obtained 
a total of 3 cluster modules. The top modules with the 
highest score (score: 39.762) included 43 nodes and 835 
edges (Figure S2). All aberrantly expressed genes in the 
top module were included to perform GO functional 
enrichment and KEGG pathway analysis. According to 
the enrichment results of genes in the top module were 
primarily enriched in the cell cycle, DNA replication and 
p53 signaling pathways (Figure S3).

Prediction of TFs and establishment of a miRNA-target 
gene-TF regulatory network

We used miRTarBase, a miRNA-target interaction database 
that has been experimentally validated by reporter assay, 

https://cdn.amegroups.cn/static/public/TCR-21-1748-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-1748-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-1748-Supplementary.pdf


Wen et al. Revealing the underlying regulatory mechanisms of RB2230

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2022;11(7):2225-2237 | https://dx.doi.org/10.21037/tcr-21-1748

GSE110811

GSE111168

A B

C D

Group

Group

Group

Group

1.5

1

0.5

0

−0.5

−1

−1.5

2

1

0

−1

−2

Normal
Tumor

GSE125903

GSE41321

Group

Group

Group

Group

1

0.5

0

−0.5

−1

2

1

0

−1

−2

Normal
Tumor

Normal
Tumor

Normal
Tumor
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upregulation of gene expression; blue indicates the relative downregulation of gene expression. These genes indicate differently expressed genes.

western blot, microarray and next-generation sequencing 
experiments, to predict the upstream miRNAs of DEGs (16).  
In order to obtain more reliable prediction results, we 
selected only the miRNA-target interactions verified 
by the reporter assay for further analysis. A total of  
162 miRNAs were identified. Next, we removed miRNAs 
whose expression levels were positively associated with that 
of DEGs, and we obtained 2 overlapping miRNAs that were 
downregulated, including let-7b-5p, predicted to regulate 1 
gene which was high mobility group AT-hook 1 (HMGA1). 
RRM2, AURKB and enhancer of zeste 2 polycomb 
repressive complex 2 subunit (EZH2) were predicted to be 
regulated by let-7a-5p.

miRNAs and TFs are involved in transregulators that 
influence gene regulatory networks in different ways (17). 
Therefore, it is important to determine the function of 
miRNAs, which may allow us to better understand the 
interactions between TFs and miRNAs. We hypothesized 

that the miRNA-target gene-TF regulatory network might 
take part in RB pathogenesis. Therefore, we used the online 
tool TransmiR to predict TFs that might regulate the 
expression of miRNAs. Only the data with evidence from 
the literature was identified. As can be seen from Figure 5, 
let-7a-5p and let-7b-5p can be regulated by some of the 
same TFs. For example, interleukin 6 (IL6), argonaute 
RISC catalytic component 2 (EIF2C2) and tripartite motif 
containing 32 (TRIM32) regulate both let-7a-5p and let-
7b-5p. However, lysine demethylase 2B (KDM2B) and 
signal transducer and activator of transcription 1 (STAT1) 
regulate let-7b-5p and let-7a-5p, respectively. The 
regulatory networks for let-7a-5p and let-7b-5p are shown 
in Figure 5. 

Verification of potential biomarker expression by RT-qPCR

Twenty hub genes and two miRNAs were verified. Then, 
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Figure 3 Top 10 GO enrichment terms associated with integrated DEGs. (A) BP; (B) CC; (C) MF. GO, gene ontology; BP, biological 
process;  CC, cellular component; MF, molecular function; DEG, differentially expressed gene. 
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the selected biomarkers, including let-7a-5p and let-7b-5p, 
were validated in RB cells and RPE cells using RT-qPCR 
analysis. Consistent with the prediction, the results showed 
that expression levels of the top 5 hub genes were higher in 
RB cells than in RPE cells. Furthermore, validation of the 
two miRNAs and their associated genes also confirmed the 
results from the GEO dataset (Figure 6).

Discussion

RB is a rare pediatric cancer of the developing retina 
that occurs either as an inherited or as a sporadic disease. 
However, the precise pathological mechanisms of RB 
remain unclear. In addition, more effective therapies are still 

needed. Gene therapy takes therapeutic genes or disease-
related genes as therapeutic targets to treat diseases and has 
a good application prospect in various tumor treatments. 
(18,19). Therefore, it is very important to investigate the 
underlying mechanism of RB development and progression. 
In recent years, researchers have widely used microarray 
technology to explore whether there are differences in the 
expression of various tumor genes, which provides a new 
method for identifying key genes and lays a foundation for 
further research on development and progression of tumors. 
Therefore, we assume that the differentially expressed 
mRNAs in RB compared to nontumor tissues might provide 
potential targets for RB treatments. In this research, we 
carried out RRA method to analyze the GSE111168, 
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Figure 4 Functionally enriched KEGG pathways analysis of integrated DEGs. The network of functionally enriched genes generated for 
the DEGs by using ClueGO. The node size represents the pathway enrichment significance. DEG, differentially expressed gene; KEGG, 
Kyoto Encyclopedia of Genes and Genomes. 

Table 2 Top 20 gene names of DEGs in PPI network

Gene Degree Betweenness Closeness  

CDC20 51 270.05453 0.04576144

AURKB 51 1034.8419 0.04596835

TOP2A 51 319.67508 0.04576144

KIF11 51 731.74243 0.045812994

BUB1 50 117.515045 0.045727137

CCNB2 49 275.38492 0.045710005

RRM2 49 111.97493 0.045607477

CDC45 49 69.68993 0.045590434

MCM2 48 61.376442 0.04550541

KIF20A 48 157.32498 0.045692883

UBE2C 48 606.3233 0.045727137

CDC6 48 50.60078 0.04557340

CDCA8 47 66.23398 0.045675777

MCM3 47 114.58486 0.045471486

NUSAP1 47 66.23398 0.045675777

CENPF 47 263.64554 0.045675777

MELK 46 61.64553 0.04565868

PBK 46 664.2733 0.045812994

MKI67 46 837.691 0.04589917

TYMS 46 123.92797 0.0454207

DEG, differentially expressed genes; PPI, protein-protein interaction.
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Figure 5 Regulatory networks of the key miRNAs, target genes and transcription factors. Blue diamonds indicate transcription factors. Red 
squares indicate miRNAs, green circles indicate target genes regulated by key miRNAs. miRNA, microRNA.
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Figure 6 Expression of Hub gene and two DEMs. (A) Let-7a expression level in GSE41321 dataset. (B) Let-7b expression level in 
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GSE110811, GSE125903 and GSE42321 datasets, and total 
180 DEGs were identified. We then conducted BP, CC 
and MF enrichment analysis for these DEGs. These DEGs 
were primarily enriched in the regulation of chromosome 
segregation (ontology: BP), spindle (ontology: CC), and 
DNA replication origin binding (ontology: MF). These 
results suggest that these DEGs are involved in the cell 
cycle of RB cells. We can see from the results of KEGG 
pathway analysis that these DEGs are mainly enriched in 
the following top five pathways: pyrimidine metabolism, 
DNA replication, homologous recombination, Fanconi 
anemia pathway and cell cycle.

We also identified 20 hub genes, and the top 5 were 
CDC20, AURKB, TOP2A, KIF11, and BUB1. Among 
these DEGs, certain genes have previously been reported 
to be involved in tumorigenesis of various cancers. High 
expression of BUB1 and CDC20 in tumors was significantly 
associated with poorer overall survival in pancreatic ductal 
adenocarcinoma (20). Moreover, knockdown of CDC20 can 
be used for therapeutic benefit and represents an effective 
adjuvant anticancer treatment to eliminate CSCs during 
prostate cancer progression (21). Aurora B, a member of 
the Aurora family of serine/threonine protein kinases, 
plays a crucial role in chromosome segregation. Previous 
studies have shown that it regulates nearly every stage 
of cell division, including chromosome condensation, 
chromosome biorientation, spindle checkpoint formation, 
chromosome segregation, and cytokinesis (22,23). Aurora 
B has been reported to induce EMT to promote breast 
cancer metastasis through the OCT4/AKT/GSK3β/
Snail1 signaling pathway. (24). Wu et al. showed that 
AURKB silencing promotes apoptosis of osteosarcoma 
143B cells through unc-51 like autophagy activating 
kinase 1 (ULK1) phosphorylation-induced autophagy (25). 
Recently, it was revealed that AURKB plays an important 
role in the regulation of mitosis and is gaining prominence 
as a therapeutic target in RB (26). A previous study 
overexpressed TOP2A in bladder urothelial carcinoma 
(BLCA) and concluded that TOP2A represents a diagnostic 
marker of BLCA (27). The analysis also predicted RRM2 as 
a vital factor associated with RB prognosis. Ribonucleotide 
reductase M2 subunit (RRM2) plays important roles in 
many vital cellular processes (28). Some studies have found 
that RRM2 is critical for DNA synthesis and DNA repair. 
Therefore, there is much evidence suggesting that RRM2 
may be an effective target for tumor therapy. For instance, 
expression levels of RRM2 are high in breast cancer 
patients, and the higher the expression of RRM2 was, 

the worse the prognosis (29). Furthermore, Wilson et al. 
repressed RRM2 in ER-negative breast cancer cells, which 
led to RRM2 being confirmed as a potential treatment for 
breast cancer (30). In hepatocellular carcinoma, RRM2 
was also reported to be a crucial diagnostic marker. Jin 
et al. revealed that overexpression of RRM2 promotes 
the proliferation of LUAD cells and that RRM2 is an 
independent prognostic factor for patients with lung  
cancer (31).

miRNAs are noncoding RNA molecules that play a 
crucial role in regulating a range of basic cellular processes. 
They may induce RNA silencing and act as post-DNA 
transcription regulators (32). miRNAs involve in a variety 
of physiological and pathological processes by regulating 
the expression of multiple downstream target genes. It has 
been reported that abnormal regulation of miRNAs may be 
associated with the progression of RB. miR-146a has been 
reported to play a key role in proliferation and metastasis 
by inhibiting NOVA alternative splicing regulator 1  
(NOVA1) (33). Many miRNAs have been reported to be 
abnormally expressed in RB, like miR-192, miR-34a and 
miR-376a (34-37). In RB, miR-188-5p promotes epithelial–
mesenchymal transition by targeting DNA binding 4 via 
Wnt/β–catenin signaling pathway (38). This study screened 
DEMs in RB samples in comparison to nontumor retina 
samples. Then, a miRNA target gene regulatory network was 
established based on the DEMs and their overlaps among 
the DEGs. Two key DEMs, let-7a and let-7b, which were 
downregulated in RB samples in comparison to noncancer 
retina samples, were identified. Let-7a was reported to be 
associated with type 2 diabetes, asthma, and breast cancer 
(39-41). Let-7a has been reported that it acts as a tumor 
suppressor in hepatocellular carcinoma (42). The underlying 
mechanism of let-7a’s role in breast cancer may relate to 
a complicated network of solute carrier family 2 member 
12 (GLUT12) (43). Therefore, we assume that let-7a may 
be an important factor in tumor progression, including 
RB. Some studies have reported that let-7b is involved in 
the development of multiple cancers, including ovarian  
cancer (44), prostate cancer (45), and breast cancer (46). 
Let-7b has been found to inhibit cell proliferation via 
upregulation of p21 in hepatocellular carcinoma (47). 
However, whether let-7a and let-7b expressed differently 
in RB has not been verified in previous studies. Thus, RT-
qPCR was carried out to confirm the results of bioinformatics 
analysis and showed that expression of the miRNAs and key 
genes was consistent with our analysis. However, our current 
study only existed to verify and built some possible regulatory 
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networks, which needs to be confirmed by subsequent and 
more detailed basic experiments. Due to the complexity 
of crosstalk of miRNA, TF and hub genes, the regulatory 
relationship between them needs to be studied very carefully. 
Furthermore, the underlying regulatory patterns between 
them may contribute to the discovery of new molecular 
targets for RB diagnosis and treatment.

Conclusions

We constructed some miRNA-gene-TFs regulatory 
networks by analyzing bioinformatics data, and found that 
let-7a and let-7b may serve as markers for the treatment 
and diagnosis of RB.
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