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Introduction

Candida albicans is an opportunistic fungus that can cause both mucosal and invasive infec-

tions. As a commensal, C. albicans is well adapted to the rapidly changing environments within

the host, where availability of many nutrients is limited. Any organism trying to colonize these

environments must adapt to the nutrients that are available in order to thrive and also must

cope with mechanisms of immune surveillance. This Pearl will discuss recent findings

highlighting the remarkable ability of C. albicans to utilize a wide array of nutrients and how

this ability has been channeled to promote both commensal and pathogenic interactions.

What nutrients are available in the host?

Nutrients available in the host come both directly from the diet and after processing by the

combined metabolism of the host and microbiota (Fig 1). Simple sugars from the diet are rap-

idly absorbed in the small intestine and are available in the blood at low concentrations (0.1%–

0.2%). Bacteria in the colon contribute to the digestion of complex carbohydrates and produce

a variety of metabolites such as organic and short chain fatty acids (lactate, acetate, butyrate,

propionate); lactate is particularly abundant. Salivary and vaginal fluids are also nutritionally

complex and are rich in protein and protein byproducts (peptides and amino acids) [1,2]; the

highest protein concentrations are found in the blood. Other carbon sources found in the host

include the abundant amino sugar N-Acetyl-glucosamine (GlcNAc), a common constituent of

glycosylated proteins from the host and a major component of bacterial cell wall peptidogly-

can. Lipids and phospholipids found ubiquitously in cell membranes also represent a poten-

tially accessible nutrient.

How is C. albicans sensing the nutrients in the host?

Glucose remains the preferred carbon source (Fig 2A), and C. albicans detects this sugar via

three sensing pathways that act in concert to activate glucose transport and metabolism: the

sugar receptor–repressor pathway, the glucose repression pathway, and the adenylate cyclase

pathway (reviewed in ref. [3]). Glucose metabolism via glycolysis and fermentation seems to

be crucial during C. albicans gastrointestinal (GI) colonization, since genes controlled by the

glycolysis transcriptional regulators Gal4 and Tye7 are highly expressed in the cecum of mice.

Interestingly, whereas Tye7 is required for GI colonization, this transcription factor (TF) is dis-

pensable for systemic infection [4]. In contrast, glycolytic enzymes are critical for systemic

pathogenesis [5]. This suggests there are additional regulators yet to be discovered that control

central metabolism in some host niches.
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Amino acids are a preferred nitrogen source in most fungi, but only a few species have been

reported to effectively utilize them as a sole source of carbon, with Candida species as a key

exception [6,7]. Extracellular amino acids are sensed via the SPS system, a three-protein com-

plex consisting of the permease-like sensor Ssy1, the relay protein Ptr3, and the endoprotease

Ssy5. The SPS system proteolytically activates two transcription factors: Stp1, which controls

Fig 1. Available nutrients in infection-relevant niches and responses from C. albicans. The nutrients available in diverse niches are

summarized. Note that the overall nutrient composition remains constant, but the response varies from one anatomical site to the other.

“Alternative metabolism” refers to nutrients catabolized via pathways other than glycolysis, such as the glyoxylate cycle, fatty acid β-

oxidation, and amino acid degradation. Key references: oral cavity [2,10], bloodstream [11–13,47], organs [15,19], gastrointestinal (GI) tract

[4,48], vagina [1,49].

doi:10.1371/journal.ppat.1006144.g001
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the expression of extracellular proteases and peptide transporters, and Stp2, which controls the

expression of amino acid permeases and catabolic enzymes [8,9]. The combined activity of the

Stp proteins increases the supply, import, and catabolism of amino acids (Fig 2B).

These sensing mechanisms are highly interconnected and share common elements [3]. It

is not unreasonable to think that these circuits have evolved in this pathogen to act in an

orchestrated way in order to have a coordinated response depending on the nutrients that

are available. How C. albicans senses other nutrients (e.g., lipids, phospholipids) is not well

understood.

Fig 2. Sensing mechanism and transport systems for the utilization of different carbon sources. A)

Sensing of monosaccharides via Hgt4 up-regulates the expression of sugar transporters and metabolic

genes. Organic acid uptake is facilitated via Jen transporters. B) Sensing of peptides and amino acids via the

Ssy1-Ptr3-Ssy5 (SPS) complex up-regulates the expression of amino acid permeases (AAPs) and

oligopeptide transporters (OPTs) as well as secreted proteases and amino acid catabolic genes. Resulting

ammonia from amino acid catabolism is extruded via ammonia transporters (ATOs).

doi:10.1371/journal.ppat.1006144.g002
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Metabolic flexibility as a strategy for virulence

Evidence suggests that C. albicans utilizes multiple carbon sources in the host (Fig 2). During

infection of organs and tissues, a signature shift in gene expression is seen towards alternative

carbon utilization through the up-regulation of pathways, such as gluconeogenesis, glyoxylate

cycle, and β-oxidation of fatty acids (Fig 1). This response has been observed in several infec-

tion models, such as reconstituted human oral epithelium (RHE) [10], murine macrophages

[11] and human neutrophils [12,13].

C. albicans makes use of both sugar and nonsugar carbon sources during infection, and

impairment of individual pathways reduces virulence and colonization [14]. Indeed, in con-

trast to Saccharomyces cerevisiae, data suggests that C. albicans will utilize diverse carbon

sources simultaneously. Single-cell reporter strains provide evidence for active switching

between glycolysis and gluconeogenesis at a transcriptional level [15]. While the addition of

glucose triggers the rapid ubiquitin-dependent degradation of alternative assimilation path-

ways in S. cerevisiae, these same enzymes, including Icl1 (glyoxylate cycle) and Pck1 (gluconeo-

genesis), have specifically lost ubiquitination sites in C. albicans such that metabolism of

lactate, notably, continues for extended times after glucose readdition [16,17]. The conse-

quences of ubiquitination rewiring in these key pathways has an enormous impact on the abil-

ity of this fungus to colonize the GI of mice, to resist phagocyte attack, and in general to cause

infection [18].

A second characteristic response is the induction of amino acid permeases, oligopeptide

transporters, and amino acid catabolic genes, which can be seen during oral candidiasis, in

cells phagocytosed by macrophages or neutrophils, and in tissue [10–12,19]. Moreover, amino

acid auxotrophs in several species retain full virulence [20–22], reinforcing the idea that amino

acids are readily available in the host. Vacuolar proteases are also induced, suggesting that C.

albicans is catabolizing proteins acquired through endocytosis [11,12]. Mutants defective in

autophagy are not more susceptible to macrophage killing than the wild type counterpart [23],

which suggests that C. albicans finds a source of host protein to use.

C. albicans has an expanded family of ten secreted aspartic proteinases that mediate the uti-

lization of host proteins and are involved in tissue invasion and pathogenicity [24,25]. Simi-

larly, it encodes an expanded family of eight oligopeptide transporters [26] as well as many

amino acid permeases [8]. This indicates that C. albicans has a very robust system for the utili-

zation and uptake of host proteins.

In addition to these nonfermentable carbon sources, C. albicans can assimilate sugars that

are not commonly utilized by other fungi, such as N-Acetyl-glucosamine (Fig 2A). The

GlcNAc transporter and metabolic genes are induced during macrophage phagocytosis

[11,27], and mutants unable to utilize GlcNAc are defective in both virulence and commensal

persistence [28,29].

Lactate is abundant in many host niches, and C. albicans uses this nutrient as a signal to

promote profound changes in its cell wall architecture that impact the resistance of this patho-

gen to multiple stresses [30]. Macrophage phagocytosis induces the expression of lactate trans-

porters and metabolic enzymes [11,31], which suggests that this organic acid may be available

inside the phagocyte. The carboxylic acid transporters Jen1 and Jen2 [32,33] are both induced

upon phagocytosis, though they do not appear to be required for systemic virulence [33].

C. albicans secretes a wide array of lipases and phospholipases [34] that may have overlap-

ping roles in nutrient acquisition and host damage. Secreted lipases have been associated with

virulence in C. parapsilosis [35] as have phospholipases in C. albicans [36]. Fatty acid catabo-

lism via the β–oxidation pathway feeds into central carbon pathways and is also required for

full virulence [37].
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Quirks of metabolism that contribute to virulence

Nutrient metabolism directly affects host–pathogen interactions. As mentioned above, the

presence of lactate influences resistance to osmotic and cell wall stress [30]. These cells are also

less visible to the innate immune system, shifting cytokine production away from IL-17 (a key

proinflammatory cytokine) and toward the anti-inflammatory cytokine IL-10. Additionally,

lactate-grown cells are less efficiently phagocytosed by macrophages and more capable at

escaping when they are engulfed [38].

Incorporation of amino acids into carbon metabolism starts with their deamination; the

released amino group is extruded as ammonia [39,40], a strongly basic compound (Fig 2B).

Amino acid catabolism appears particularly important in macrophages, in which C. albicans
interferes with the normal acidification of the phagosome, inhibits the maturation of this

organelle, and autoinduces hyphal morphogenesis, which contributes to the escape from (and

death of) the macrophage by both physical disruption and induction of pyroptosis [39,41–43].

C. albicans also alters extracellular pH during growth on GlcNAc, which potently induces the

switch to the hyphal form. Unlike with amino acids, catabolism of GlcNAc is not required for

the induction of morphogenesis [44]. Thus, it has a signaling role in addition to being a nutri-

ent, similar to that proposed for lactate. In each scenario, C. albicans is using nutritional signals

to trigger adaptations to the host.

Summary

C. albicans has not only an extraordinary flexibility to utilize a variety of nutrients present in

the host but also the ability to manipulate the microniches in order to cause disease and avoid

the immune system. We are only beginning to unravel the strategies that this yeast uses to

modulate its environment, but it is clear that the presence of several carbon sources contrib-

utes to fitness both as nutrients and as signals to affect extracellular pH, stress resistance, and

cell wall structure. For instance, our group has just described how C. albicans is able to robustly

modulate the environmental pH in response to carboxylic acids [45], a phenomenon that con-

tributes to resistance to phagocytic cells. Growth on one of these carboxylic acids, lactate,

results in profound changes to the C. albicans cell wall by masking β-glucans, an effective

immune evasion tactic [46]. Utilization of GlcNAc, a common sugar in host environments,

modulates extracellular pH and induces hyphal growth [28,29]. Thus, there are many examples

of how metabolism of specific nutrients directly impacts pathogenic behavior. Further under-

standing of these mechanisms will shed light on the strategies that underlie the commensal

and pathogenic fitness of C. albicans.
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