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Abstract: The M1 zinc metalloproteases ERAP1, ERAP2, and IRAP play a role in HLA-I antigen
presentation by refining the peptidome either in the ER (ERAP1 and ERAP2) or in the endosomes
(IRAP). They have also been entrusted with other, although less defined, functions such as the
regulation of the angiotensin system and blood pressure. In humans, ERAP1 and IRAP are commonly
expressed. ERAP2 instead has evolved under balancing selection that maintains two haplotypes, one
of which undergoing RNA splicing leading to nonsense-mediated decay and loss of protein. Hence,
likewise in rodents, wherein the ERAP2 gene is missing, about a quarter of the human population
does not express ERAP2. We report here that macrophages, but not monocytes or other mononuclear
blood cells, express and secrete an ERAP2 shorter form independent of the haplotype. The generation
of this “short” ERAP2 is due to an autocatalytic cleavage within a distinctive structural motif and
requires an acidic micro-environment. Remarkably, ERAP2 “short” binds IRAP and the two molecules
are co-expressed in the endosomes as well as in the cell membrane. Of note, the same phenomenon
could be observed in some cancer cells. These data prompt us to reconsider the role of ERAP2, which
might have been maintained in humans due to fulfilling a relevant function in its “short” form.

Keywords: ERAP1; ERAP2; IRAP; macrophages; Renin-Angiotensin system

1. Introduction

The aminopeptidases ERAP1, ERAP2, and IRAP, the latter being the product of the
gene LNPEP, are members of the oxytocinase subfamily of M1 zinc-metallopeptidases
whose corresponding genes lie contiguously on chromosome 5 [1,2]. ERAP1 and ERAP2
reside in the ER where they cooperate to trim the N-terminal peptide residues to the
correct length to bind the HLA-I molecules [3]. IRAP instead, thanks to an additional
N-terminal cytoplasmic domain, is retained in the endosomal vesicles from where it can
traffic to the cell membrane, forming a type II integral membrane glycoprotein [4]. IRAP
is a multifaceted protein: it has been shown to be involved in cross-presentation in the
endosomes of dendritic cells (DC) and, when in the cell membrane, to catalyze the final
step of the angiotensinogen to angiotensin IV (AT4) conversion, being itself a receptor for
AT4 [5,6]. In addition, it has been shown to be involved in several other functions, ranging
from the insulin metabolic pathway to vesicular trafficking, and has even been present in
cognitive processes [7,8]. Furthermore, the three genes have been found to be associated
with autoimmune and inflammatory conditions, hypertension, and cancer [2,9–15]. Since
they are regulators of the Renin-Angiotensin system (RAS), their imbalance can indeed
have consequences on different aspects of the associated pathologies [16–18]. In the MHC-I-
opathies [19], while ERAP1 association resides in variants influencing its trimming activity,
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the molecular terms of the association of ERAP2 and LNPEP with some of these diseases
are at present poorly understood [20]. In particular, ERAP2 has been shown to be involved
in MHC-I-opathies and other conditions, while much of its biology remains uncertain,
including the dramatic variability in its functional opposite haplotypes maintained in the
population. This is mainly due to a balanced polymorphism at SNP rs2248374 that makes
one haplotype null due to a shift in the splicing that leads to mRNA instability and nonsense-
mediated decay (NMD). Consequently, about a quarter of the human population does not
express ERAP2 full length and about 50% shows an allelic exclusion. Of note, this gene is
missing in rodents as well as in several other species [2,21]. These observations raise several
questions about the physiological role of ERAP2. Indeed, by looking at the expressions of
ERAP1, ERAP2, and IRAP along the zoological scale, we have recently pointed out how a
high degree of redundancy and, most likely interchangeability, characterizes these three
aminopeptidases [2]. ERAP1 has been shown to be secreted [22] and a soluble form of IRAP
has been detected in the serum of pregnant women [23]. More recently, an ERAP2 soluble
isoform has been described as being released by human monocyte-derived macrophages
(MDMs) in response to IFNγ/LPS stimulation and this corresponds to an increased CD8+
T cells activity [24]. The aim of this study was to analyze the expression of the three
aminopeptidases along the maturation of monocytes to macrophages. The results show
the existence of a shorter subunit of ERAP2 that is expressed by macrophages but not by
monocytes, and which forms a complex with IRAP. This ERAP2 “short” corresponds to an
N-terminal fragment that requires an acidic micro-environment to be generated and it is
present even in those subjects expected to be ERAP2-deficient. These suggestive findings
prompted us to reconsider the role of ERAP2 in physiology as well as in pathology.

2. Results
2.1. Monocyte-Derived Macrophages Express a Short ERAP2 Isoform That Binds IRAP

Peripheral blood mononuclear cells (PBMC) from six donors, three genotyped as G/G
and three as A/A at the allelic variant rs2248374, were analyzed for the expression of
ERAP1, ERAP2, and IRAP. The CD14+ positive monocytes were then differentiated to
either M1 or M2 macrophages, whereas the corresponding CD14 negative mononuclear
cells were activated by phytohaemagglutinin (PHA). To obtain type 1 (M1) and type 2
(M2) macrophages, monocytes were kept in culture for seven days with either Granulocyte-
Macrophage Colony-Stimulating Factor (GM-CSF) or Macrophage Colony-Stimulating
Factor (M-CSF), and then stimulated for 24 h with either Interferon-gamma (IFNγ) and
lipopolysaccharide (LPS) (M1) or Interleukin-4 (IL-4) (M2). The expression of the three
aminopeptidases was analyzed by western blot (Figure 1A,B). ERAP2, as expected, was
expressed by those subjects genotyped as A/A but not by those genotyped as G/G at SNP
rs2248374. Interestingly however, the blotting with the anti-ERAP2 MoAb revealed the
presence of a protein of ~55 kDa in the differentiated monocytes, which was independent
from the stimulus and from the SNP rs2248374 genotyping. Of note, a band corresponding
to the ~55 kDa was also observed in the surnatants of the Monocyte-Derived Macrophages
(MDMs), particularly in the case of the M2-type. Since M2 macrophages are characterized
by the expression of Membrane Spanning 4-Domains A4A (MS4A4A) [25], this marker
was used to analyze the MDMs population for its expression. In our hands, the freshly
isolated monocytes from different individuals showed a variable percentage of MS4A4A
positive cells (Figure S2). This can be due to different reasons: their native state, the stimuli
received during the isolation or through the CD14 positive selection, etc. However, once
differentiated, MS4A4A positivity increases up to 85–90% in the case of M2 and up to
about 70–80% in the case of M1. We therefore investigated whether the secreted ERAP2
~55 kDa protein was also detectable in the cell surface of MDMs. The results showed
that a high percentage of the MS4A4A positive MDMs stained also positive for ERAP2
(Figure 1C), whereas CD14 negative PBMC did not express appreciable levels of either
MS4A4A or ERAP2 even after seven days of PHA-stimulation. The positivity for ERAP2 in
the MDMs derived from the individuals genotyped as G/G at rs2248374 indicates that it is
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the “short” and not the full length ERAP2 that is present in the cell membrane. In addition,
the co-expression of the MS4A4A and ERAP2 strongly suggests that the “short” ERAP2
is secreted by the M2-type macrophages since, in our hands, MS4A4A-positive cells are
present also in the putative M1-type.

The confocal analysis of the three aminopeptidases on MDMs (Figure 1D) revealed that,
of all the possible two-by-two combinations of the three aminopeptidases, a co-localization
of ERAP2 with IRAP was evident, particularly in the case of M2-type macrophages (overlap
coefficient = 0.73 vs M1 overlap coefficient = 0.56). Of note, MDMs shown here derive
from a donor genotyped as G/G at rs2248374 and, therefore, do not express the full length
ERAP2. These observations allowed us to conclude that ERAP2 “short” co-localizes with
IRAP both inside the cell as well as in the cell membrane. No co-localization between IRAP
and ERAP1 or between ERAP1 and ERAP2 could be observed (overlap coefficient < 0.50).

These data indicate that, independent from the ERAP2 genotype, MDMs express a
“short” ERAP2 that co-localizes with IRAP and that is secreted primarily by the M2-type
macrophages.

Figure 1. Cont.
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Figure 1. Monocyte-Derived-Macrophages express a ~55 kDa ERAP2 form. (A) Western Blot analysis
of ERAP1, ERAP2, and IRAP expression in monocytes, M1 and M2 macrophages, and CD14 neg
PBMCs, the latter treated with PHA or untreated, from two donors genotyped as G/G (left) or A/A
(middle) at rs2248374. Right: surnatants from MDMs treated with either IFNγ + LPS (M1) or IL-4
(M2). The images are representative of three experiments using PBMCs derived from three donors
genotyped as G/G and three as A/A at rs224837. Control (Ctrl): protein extract from B-LCL (EBV+

B-lymphoblastoid cell line genotyped A/A at rs2248374). (B) Monocytes/macrophages and CD14
negative PBMC western blot densitometric analysis: the intensity of bands was quantified using the
program UN-SCAN-IT gel (Silk Scientific Inc., Orem, UT, USA). Results were evaluated as a ratio
of intensity between relevant protein and β Actin from the same sample. Values are the mean+ SD
of three independent experiments. (C) Cytofluorimetric analysis of the same samples as in (A) M1
(IFNγ + LPS treated) and M2 (IL-4 treated) macrophages were analyzed for their expression in the
cell membrane of ERAP2 and the M2 marker MS4A4A. The image is representative of three different
experiments. (D) Confocal microscopy images of M1 (IFNγ + LPS treated) or M2 (IL-4 treated)
MDMs generated from monocytes from a subject genotyped as G/G at rs2248374. Cells were fixed,
permeabilized, and co-stained with two-by-two combinations of ERAP1, ERAP2, and IRAP antibodies.
Left: ERAP2 (red) and IRAP (green) Middle: ERAP2 (red) and ERAP1 (green) right: ERAP1 (green)
and IRAP (red). Images were obtained using the 63× objective with a 3× magnification (z = 3–4 µm).
Co-localization was determined based on the overlap coefficient according to Manders, which was
automatically calculated by ZEISS Zen Software Scale bar:10 µm. The image is representative of three
different experiments.
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2.2. Differentiation of U937 Cells Correlates with the Loss of ERAP2 Full Length and the
Occurrence of a ~55 kDa Fragment

To get more insights into these unexpected findings, we used the human pro-monocytic
myeloid leukemia cell line U937 as a model for macrophage differentiation. After 48 h
of treatment with Phorbol 12-myristate (PMA), the adherent cells underwent either LPS
plus IFN-γ or IL-4 plus IL-13 treatment to induce an M1-like or an M2-like polarization,
respectively. The expression of ERAP1, ERAP2, and IRAP was therefore analyzed by
immunofluorescence (Figure S3) and by western blotting (Figure 2A). Compared to the
untreated cells, PMA-treated cells show a higher expression of MS4A4A and, in parallel,
of ERAP2, whereas ERAP1 and IRAP did not vary (Figure S3). Western Blot analysis
(Figure 2A,B) showed that U937 cells, despite being genotyped as G/G at SNP rs2248374,
express the canonical ERAP2 protein (115 kDa). This was not surprising since it has been
already reported in other transformed cell lines carrying the G/G genotype [26] some of
which are showed here (Figure S4) indicating that the alternative splicing associated with
the presence of the variant G at rs2248374 is not a universal occurrence. PMA treatment per
se led to a substantial decrease in the expression of the ERAP2 canonical protein, which
was replaced by a fragment of ~55 kDa. An additional band of ~65 kDa is expressed by
the U937 as well by other cancer cell lines (Figure S4), which was not observed in MDMs
and therefore was not further investigated here. Additional differentiation of the U937 cells
by M1 or M2 stimuli did not substantially modify the expression of the different isoforms.
Likewise to MDMs (Figure 1), the protein of ~55 kDa was also detected in the surnatant, in
particular from M2-like or PMA-treated cells. ERAP1 was expressed across all conditions,
and, as previously described, it was secreted as full length upon stimulation [22]. Instead,
IRAP could not be detected in the surnatant, either because it was not secreted by these
cells or because the MoAb (F-5 sc-365300, Santa Cruz, Dallas, TX, USA) recognizes a region
proximal to the cell membrane (data not shown).

PMA-differentiated U937 cells along with an untreated control were kept in culture for
five days and then analyzed using confocal microscopy. Indeed, following PMA-treatment,
these cells acquired a M2-like phenotype as revealed by the expression of the MS4A4A
marker (Figure S3) [25,27]. We therefore proceeded to analyze the localization of ERAP1,
ERAP2, and IRAP. The data showed an intracellular co-localization of ERAP2 with IRAP
(overlap coefficient = 0.79), but not with ERAP1 (overlap coefficient < 0.5) (Figure 2B). As
in the case of MDMs, no co-localization of IRAP with ERAP1 or ERAP1 with ERAP2 was
appreciable (overlap coefficient < 0.5). The staining with the endosomal marker EEA1
showed that the co-localization takes place specifically in the endosomes where IRAP1
resides (Figure 2C) (overlap coefficient = 0.74). Interestingly, IRAP and ERAP2 co-localize
in the cell membrane as well (overlap coefficient = 0.67). Given that the differentiated U937
cells do not express the full length ERAP2 protein (Figure 2A), we could confirm that the
co-localization with IRAP specifically refers to the ERAP2 ~55 kDa. To verify whether this
co-localization was a special feature of the MDMs or if the presence of the “short” ERAP2
was a sufficient condition, we took advantage of two colon carcinoma cell lines, Caco-2 and
LoVo. Indeed, Caco-2 spontaneously express the ~55 kDa ERAP2, whereas LoVo cells do
not (Figure S4). We therefore analyzed its expression. As shown in Figure 3, Caco-2 not
only stained positive for ERAP2 in the cell surface (Figure 3A), but the confocal imaging
showed, as in the case of MDMs, a co-localization of IRAP with ERAP2 in Caco-2 (overlap
coefficient = 0.71); but not in LoVo cells (overlap coefficient < 0.5) (Figure 3B). No soluble
ERAP2 could be detected in the surnatant of either cell line (not shown). Once again, these
data confirm that the “short” ERAP2 co-localizes with IRAP.
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Figure 2. ERAP1, ERAP2, and IRAP expression in U937 cell line. (A) Western Blot analysis of ERAP1,
ERAP2, and IRAP expression in U937 cells that were untreated or differentiated to macrophages by
different stimuli (see text): membranes were blotted with anti-ERAP1, anti-ERAP2, and anti-IRAP
MoAbs. Images of anti-ERAP2 are shown separately to highlight the bands specific for the anti-ERAP2
MoAb. The respective surnatants were blotted with the three antibodies (IRAP not shown). Control
(Ctrl): protein extract from B-LCL (EBV+ B-lymphoblastoid cell line genotyped A/A at rs2248374).
Results shown are representative of 3 independent experiments. (B) Densitometric analysis: the
intensity of bands was quantified using the program UN-SCAN-IT gel (Silk Scientific Inc., Orem,
UT, USA). Results were evaluated as the ratio of intensity between relevant protein and β Actin
from the same sample. Values are the mean + SD of three independent experiments. (C) Confocal
images of two-by-two combinations of ERAP1, ERAP2, and IRAP in U937 cells treated with PMA or
untreated. Co-localization was determined based on the overlap coefficient according to Manders,
which was automatically calculated by ZEISS Zen Software. Left panel: intracellular staining of
permeabilized U937 cells. Right panel: extracellular staining of permeabilized cells. Results shown
are representative of three independent experiments. (D) Images show the co-localization of ERAP2
with IRAP in either the endosomes (upper panel) or the lysosomes (lower panel). The markers used
are: EEA1 (mAb MA5-31575, Invitrogen, Carlsbad, CA, USA) for the endosomes and LysoTracker®

Red (Invitrogen, Carlsbad, CA, USA) for the lysosomes.
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Figure 3. ERAP2 and IRAP expression in LoVo and Caco-2 cell lines. (A) Cytofluorimetric analysis of
the cell membrane expression of ERAP2 (green) and IRAP (blue). LoVo cells express no ERAP2 in
the cell membrane, whereas CaCo-2 cells do. IRAP is equally expressed in both cells. (B) Confocal
analysis of the intracellular expression of ERAP2 (red) and IRAP (green) in the same samples. Scale
bar: 10 µm. Results shown are representative of three independent experiments.

2.3. IRAP Directly Binds the ~55 kDa ERAP2

Next, we investigated the nature of the ERAP2 and IRAP association by performing co-
immunoprecipitation experiments. Cellular extracts from untreated or PMA-treated U937
cells underwent immunoaffinity assays with anti-ERAP2, anti-IRAP and, as a control, anti-
ERAP1 MoAbs. The eluates were then separated on SDS-PAGE and blotted with the three
antibodies (Figure 4). As expected, each MoAb immunoprecipitated the corresponding
protein in the untreated cells. Interestingly, in the PMA-treated cells, a band recognized by
the anti-IRAP MoAb could be observed in the outflow of the α-ERAP2 column (Figure 4A
first lower panel, lane 2). The reciprocal was also true and a band of ~55 kDa was recognized
by the anti-ERAP2 MoAb when the lysate was immunoprecipitated with the anti-IRAP
MoAb (Figure 4A second lower panel, lane 3). No co-immunoprecipitation between ERAP1
and either ERAP2 or IRAP was detectable (Figure 4A). As a control, the three MoAbs
used were run in the last three lanes to exclude the presence of the heavy chain of the
MoAbs used in the immunoprecipitation assay, whose MW was ~50 kDa, and which could
overlap with the ~55 kDa ERAP2. Of note, to elute ERAP2 from the beads conjugated
with the corresponding antibody, a harsher treatment was necessary. In this case, the
same ~55 kDa fragment was present in the eluates of both the untreated and PMA-treated
U937 cells, although the untreated cells expressed none or a barely detectable ~55 kDa
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fragment (Figure 2A), suggesting that the treatment to which the U937 cell line underwent
in the co-immunoprecipitation procedure (i.e., the low pH of the elution buffer) caused the
generation of the ~55 kDa fragment. To verify this, U937-untreated cell extracts underwent
a pH gradient (from 8 to 5) before loading (Figure 4B). The band corresponding to the
~55 kDa fragment, which was absent at pH 8 and pH 7, is detectable at the lower pHs and
inversely correlates with the full-length band (Figure 4B). We concluded that the ~55 kDa is
generated from the full-length protein through a mechanism that requires acidic conditions.

Figure 4. Cont.
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Figure 4. Immunoprecipitation of ERAP1, ERAP2 and IRAP. (A) Top membranes: Untreated
U937 cells; bottom membranes: U937 treated with 80 nM PMA for 96 h. Panels show the input
and the immunoprecipitate with anti-ERAP2, anti-IRAP, anti-ERAP1, and the respective antibodies
run as controls in the last three lanes. From the left: the membranes were blotted with anti-IRAP,
anti-ERAP2, anti-ERAP1, and anti-actin. In the PMA-treated series, the first panel has been blotted
with the anti-IRAP, which is present in the input (1◦ lane) and the immunoprecipitate with anti-IRAP
(4◦ lane), but also in the immunoprecipitate with anti-ERAP2 (3◦ lane). The second panel has been
blotted with the anti-ERAP2 antibody and the “short” ERAP2 is evident in the input and in the
anti-IRAP immunoprecipitate. Of note, in the corresponding upper panel, according to Figure 2,
the input shows the two bands characteristic of the U937 cells, whereas in the lower panel the
input shows only the “short” ERAP2. The third panel shows the same samples blotted with the
anti-ERAP1 antibody: ERAP1 is present in the input and in the anti-ERAP1 immunoprecipitated
with no difference between the upper and lower panel. In the fourth panel, the immunoprecipitated
samples have been blotted with an anti-actin as control. The last three lanes in each gel contain,
as indicated, the three monoclonal antibodies used in the experiment. At the bottom: since the
acid elution buffer did not allow the release of the ERAP2 bound to the beads (lane 2 of the second
panel), they were heated (99 ◦C, 5 min) to confirm the presence of the ERAP2, which was released
as a ~55 kDa fragment in both untreated and PMA-treated samples. (B) Untreated U937 cell lysates
underwent a pH gradient and run on SDS-PAGE. CTRL = PMA-treated U937 cells. (C) Structure of
ERAP2 (PDB 5AB0), showing the extended loop that characterizes ERAP2 in comparison with ERAP1
(PDB 2YD0) and IRAP (PDB 4PJ6) (not shown). (D) Amino acid sequences of ERAP1, ERAP2, and
IRAP in the region surrounding the cysteine bridge. The specific Asp-Pro motif site that characterizes
ERAP2 is marked (yellow-green dots).

2.4. ERAP2 Contains a Potential Autocatalytic Cleavage Site

In order to gain structural insights into the mechanism of the cleavage observed in
ERAP2, but not in the closely related ERAP1 and IRAP, the crystal structure of ERAP2
(PDB: 5AB0) was investigated and compared to the other two aminopeptidases [28]. In
the case of ERAP2, the protein structure shows the presence of a unique extended loop,
encompassing residues 500–520 (Figure 4C). This distinctive structural motif is peculiar of
ERAP2 and contains two potential sites, which could be sensitive to low pH regulation:
(1) a disulfide bridge formed by Cys 503 and Cys 514, which might be broken at low pH
values and (2) a specific Asp-Pro motif (Figure 4D). However, while the disulfide bridge
is also conserved in ERAP1, the Asp-Pro motif is unique of ERAP2. This site has been
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reported to be particularly sensitive to pH variations [29] and it could represent a weak
structural site that, when in an acidic micro-environment, can determine the breakage and
thus generate the N-terminus ~55 kDa fragment recognized by the anti-ERAP2 MoAb.

A possible model of the ~55 kDa fragment of ERAP2 bound to IRAP was also investi-
gated by protein–protein docking means to tentatively explain the strong affinity observed
in the co-immunoprecipitation experiments. As shown in Figure 5, ERAP2 is predicted to
form a pseudo-symmetric heterodimer with IRAP, with the N-terminal β-sheet-rich region
of ERAP2 (residues 50–170) making extensive contacts with the corresponding region of
IRAP. The predicted ∆G of binding and dissociation constant (Kd) values were −15.5
Kcal/mol and 4.3 e−12, respectively, which is indicative of a strong affinity between the
two proteins. Moreover, the large amount of surface area buried upon interaction and the
complementarity of the surface charge validate a plausible mechanism of dimerization,
which could account for the specific interaction observed in vitro.

Figure 5. Proposed model of interaction between ERAP2 55 kDa fragment and IRAP. ERAP2 (~55 kDa
fragment; brown cartoons) and IRAP (cyan cartoons) are predicted to interact in a pseudo-symmetric
heterodimer, with the N-terminal region of ERAP2 (residues 50–170) making extensive contacts with
the corresponding region of IRAP.

2.5. ERAP2 “Short” Derives from Longer Precursors

An open question is from which precursor was the ~55 kDa fragment generated?
Indeed, while in individuals typed as “A” at rs2248374, as well in the case of the U937 cells,
it is likely to derive from the full-length protein (Figures 1 and 4), in the case of the “G”
haplotype, we could not detect any precursor in macrophages. A possible explanation is
that, in macrophages, part of the ERAP2 mRNA copies can escape NMD and the naturally
encoded truncated protein that normally undergoes proteolysis can be stabilized, possibly
by binding to IRAP when an acidic micro-environment allows the generation of the ~55 kDa
fragment. To explore this hypothesis, two constructs were generated (Figure S1): one
carrying the natural “G” mRNA which encodes for the specific sequence that stops at
amino acid 532 and carries the sequence VRIKRVTE at the C-terminus before the stop
codon, and the other carrying the alternative “A” mRNA but interrupted at the same length
as the “G” haplotype and therefore differing at the C-terminus for the last amino acids
(LAFLGENAEVK) (Figure 6). Following transfection into HEK293T cells, both proteins
were expressed. However, the results show that, at low pH, the “short” ERAP2 is obtained
only from the construct carrying the “VRIKRVTE” motif encoded by the “G” haplotype
(Figure 6A). Modelling of the two truncated proteins support our findings: in the case of
the “A” haplotype (LAFLGENAEVK) both the ion bridge between Asp517-Lys518 and the
disulphide bridge between Cys503 and Cys514 are conserved, whereas, in the case of the
“G” haplotype carrying at C-terminus the sequence “VRIKRVTE”, the disulphide bridge is
lost and the conformation of the Asp517-Pro518 motif is kept away from Lys518, bringing
the carboxyl side chain of Asp517 and the backbone amide on the neighbouring Pro518
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into proximity, which locks the local moiety into an advantageous conformation for the
subsequent hydrolysis at low pH values (Figure 6B).

Figure 6. Expression and proposed model of the truncated proteins. (A) Western blot of the truncated
proteins transfected into Hek293T cells. Plasmids containing the sequence reported in Figure S1
corresponding to ERAP2/iso2 were transfected into Hek293T cells. The first four lanes are controls
(Hek293T cells and Hek293T cells transfected with the vector pcDNA3.1). Lanes 5 and 6 report
respectively the untreated or acid-treated Hek293T cell lysates previously transfected with the
plasmid expressing the 534 aa of the haplotype A (A at rs2248374). Lanes 7 and 8 report respectively
the untreated or acid-treated Hek293T cell lysates previously transfected with the plasmid expressing
the 532 aa corresponding to the haplotype G (G at rs2248374). To note: when treated at pH 5 before
running, the samples move slightly slower than the untreated counterpart. (B) Modelling of the two
truncated proteins. Rosetta 3.13 Linux version was used to predict the conformation of the two “short”
ERAP2 carrying either the LAFLGENA or the VRIKRVTE motif. The initial atomic coordinates were
taken from the X-ray crystal structure of ERAP2 (Protein Data Bank ID: 5AB0). The Python protocol
which makes use of the Rosetta 3.13 neural network to generate inter-residue distance and orientation
constraints for a sequence of unknown structure, was used. The Rosetta minimizer was then used to
find the backbone conformation consistent with the constraints.

We concluded that the specific C-terminus of the “G” isoform was responsible, in
specific circumstances (i.e., acidic pH) and in some cells (i.e., macrophages or cancer cells),
for the generation of the ~55 kDa fragment.

3. Discussion

We report here the existence of a short form of ERAP2 that binds IRAP and is se-
creted by the M2-type macrophages. Although the M1 and M2 macrophage differentiation
obtained in vitro does not immediate translate to the more heterogeneous in vivo situ-
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ation, the expression of some markers and specific cytokine production points out the
pro-inflammatory or the anti-inflammatory activity of the two subtypes. Therefore, the
expression of the “short” ERAP2 appears as a possible candidate in interfering with the
activity of the M2-type. Remarkably, this “short” ERAP2 is generated by an autocatalytic
process that occurs in an acidic micro-environment. A similar event has been reported for
MUC2 protein with which ERAP2 shares some features. Indeed, ERAP2 displays a unique
disordered loop containing two cysteines (Cys503 and Cys514) and a close downstream
Asp517-Pro518 specific sequence. The reduction of the disulfide bridge could expose and
allow the hydrolysis of the Asp-Pro bond as previously described for the MUC2 in the
late secretory pathway [29]. It is known that IRAP lies in the endosomes whose acidic
micro-environment can eventually determine the generation of the ERAP2 “short” frag-
ment. We do not know, however, where exactly the encounter between ERAP2 and IRAP
occurs, i.e., whether ERAP2 reaches the endosomes along its way to the cell membrane or
whether it is endocytosed once bound to IRAP. Whatever the case, it is shown here that
the two molecules are co-expressed in the endosomes, suggesting that it is their acidic
micro-environment that allows the catalytic process leading to the “short” ERAP2. In addi-
tion, the immunoprecipitation experiments, supported by the modelling, unambiguously
demonstrate the existence of a direct, strong binding between the two molecules. It is
interesting that the same phenomenon was observed in some cancer cell lines expressing
the “short” ERAP2, although the secretion appears to be specific for the MDMs. Most
remarkable, however, is the observation that, different from the full-length protein, the
“short” ERAP2 is expressed in macrophages independent of the polymorphism at rs2248374
that discriminates the two possible haplotypes. While this is conceivable in the haplotype
expressing the full length ERAP2 (allele A at rs2248374), we could not observe any pre-
cursor to which the ~55 kDa fragment could be ascribed in the alternative haplotype. It
is possible, and not unlikely, that in macrophages part of the mRNA copies escape NMD
and the translated shorter form is stabilized only when the micro-environment conditions
allow for the formation of the ~55 KDa fragment as our data suggest. It must be noted
that previous reports [30,31] have shown the existence of smaller ERAP2 isoforms (isoform
3) of similar MW in macrophages carrying a G at rs2248374. The starting codon of the
ERAP2/Iso3, however, eliminates which maps after the terminal codon of ERAP2/Iso2 the
latter corresponding to the sequence of the constructs expressed in Figure 6 and recognized
by the anti-ERAP2 monoclonal antibody. Moreover, in the context of a previous work, we
have sequenced the RNA from PMA-treated U937 cells [32] as well as from two mono-
cytes/macrophages series (unpublished). No RNA corresponding to the ~55 kDa ERAP2
described here was found while the ERAP2 Iso/3, although listed, was undetectable in
the U937 cells and barely detectable in monocytes as well as in the M1 but not in the M2
macrophages. These observations, together with the fact that the “short” ERAP2 is obtained
by the acid-treatment of the cell lysates, strongly supports its catalytic origin.

Of note, our results also show that the process is distinctive of the differentiated
myeloid cells within the PBMCs, which points to a specific role in these cells. It is known
that IRAP binds with high affinity to AT4, a biologically active fragment of Angiotensin
II. IRAP is also named oxytocinase since it was found to regulate the level of circulating
oxytocin during the later stages of human pregnancy and, interestingly, is also highly
expressed in brain regions associated with cognition, being recognized as a potential target
for the treatment of cognitive disorders [33]. The observation reported here that it can
bind ERAP2 adds a novel piece to the intriguing puzzle regulating the IRAP multifaceted
functions, including inflammation. In particular, it has been shown that ACE2 (Angiotensin
I-converting enzyme-2) is the receptor for SARS-CoV-2 [34] and it has been postulated
that its reduction in the cell membrane due to the endocytic pathway associated with
SARS-CoV-2 binding can play a role in altering the inflammatory balance [16]. ERAP2
“short” fragment secreted by type 2 macrophages, by binding IRAP, is likely to interfere
with the RAS (Renin-Angiotensin-System) by modulating its anti-inflammatory arm. In this
context, a polymorphism in the ERAP2 gene has been found to be associated with death
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due to SARS-CoV-2 [35]. The possible role of this molecule in the SARS-CoV-2 infection is
definitively worth investigating further.

In addition to this, and most interestingly, our results offer a new sight on the peculiar
evolutionary story of ERAP2. Indeed, this gene is absent in many species and, so far,
believed to be redundant in humans since at least a quarter of subjects does not express
ERAP2. We have shown here that, even in macrophages not expressing the full length
ERAP2, this is present as a fragment playing a role that, although in need of further in-
vestigation, appears to be unrelated to the conventional antigen presentation. It is also
conceivable that this role is the reason why the ERAP2 gene has been retained in humans
under a balanced selection so that this fragment can be expressed by every individual inde-
pendently from the haplotype, even though ERAP2 full length remains dispensable. Indeed,
most of the reported ERAP2-disease associations are with the haplotype expressing the
full-length protein whose presence might even be detrimental. Interestingly, we observed
that monocytes stimulated for several days with M-CSF as well as PMA-treated U937 cells,
tend to acquire an M2 phenotype as shown by the expression of the marker MS4A4A, and
therefore secrete the “short” ERAP2. This allows to speculate that ERAP2, through the
binding with IRAP, can be secreted by aging macrophages and possibly, through IRAP,
could keep at bay the inflammation associated with senescence [36].

In conclusion, the observations reported here, although not conclusive about the
exact mechanisms underpinning the generation and the activity of this “short” ERAP2,
are pivotal in several contexts. In particular, the observation that it can be expressed by
macrophages even in individuals supposed to be ERAP2 “null”, offers a completely new
perspective of relevant impact.

4. Materials and Methods
4.1. Cell Lines

Human histiocytic leukemia U937 (ATCC: CRL-1593.2, Manassas, VA, USA) cells were
maintained in culture (106 cells/mL) in Roswell Park Memorial Institute medium (RPMI
1640, Invitrogen, Carlsbad, CA, USA) containing 10% heat-inactivated fetal bovine serum
(FBS, Invitrogen) and supplemented with 10 mM Hepes (Gibco, #15630-056, Waltham,
USA), 1 mM pyruvate (Gibco, #11360-039), and 2.5 g/L D-glucose (Merck, Darmstat,
Germany). U937 cells were differentiated to macrophages by 24 h incubation with 20 nM
phorbol 12-myristate 13-acetate (PMA, Sigma, P8139, St. Louis, MO, USA) followed by 24
h incubation in RPMI medium. Macrophages were polarized to M1 by incubation with
20 ng/mL of IFN-γ (R&D system, #285-IF, Minneapolis, MN, USA) and 10 pg/mL of LPS
(Sigma, #2630). Macrophage M2 polarization was obtained by incubation with 20 ng/mL
of IL-4 (R&D Systems, #204-IL) and 20 ng/mL of IL-13 (R&D Systems, #213-ILB). U937
cells were plated in complete RPMI 1640 for each condition. M2-like U937 phenotype was
obtained also by treating the cells with 80 nM PMA for five days.

Caco-2 (ATCC: HTB-37), LoVo (ATCC: CCL-229), HEK293T (ATCC: CRL-1573) and
HeLa (ATCC: CCL-2) were cultured in completed Dulbecco’s Modified Eagle Medium
(DMEM, Invitrogen, Carlsbad, CA, USA) supplemented with 10% FBS; K-562 (ATCC CRL-
3343), C1R (ATCC: CRL-2369), and HL-60 (ATCC: CRL-2257) were grown (106 cells/mL) in
RPMI 1640 supplemented with 10% FBS.

4.2. Antibodies

The following mouse monoclonal antibodies were used: anti-ERAP1 (mAb clone B-10,
sc-271823 Santa Cruz, Dallas, TX, USA), anti-ERAP2 (mAb clone 3F5, MAB 3830 R&D
Systems) [37], anti-IRAP (mAb F-5 sc-365300, Santa Cruz, Dallas, TX, USA), anti-β-Actin
(mAb clone C4, sc-477778 Santa Cruz, Dallas, TX, USA), anti-CD14 (mAb UCHM1, Abcam,
Cambridge, UK), anti-MS4A4A (mAb MAB7797-SP, R&D), and anti-EEA1 (mAb MA5-
31575, Invitrogen, Carlsbad, CA, USA).
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4.3. Macrophages-Derivated-Monocytes Generation and CD14 Negative PBMCs

Human Peripheral Blood Mononuclear Cells (PBMCs) were purified from the pe-
ripheral blood of six healthy donors (four males and two females) from the local data
banks by density centrifugation on Lympholyte (Cedarlane Laboratories, Ontario, Canada).
The study was carried out in accordance with the recommendation of the Ethical Com-
mittee of the Policlinico Umberto I (Sapienza University, Rome, Italy). All subjects gave
written informed consent in accordance with the Declaration of Helsinki (ethical code N.
1061bis/2019, 13 September 2019).

Monocyte- and lymphocyte-enriched PBMC suspensions were sorted using Isolation
kits and Depletion Column Type LS (Miltenyi Biotec Inc., Auburn, CA, USA) according to
the supplier’s instructions. Cell viability, as measured by Trypan blue exclusion, always
exceeded 95%. Monocytes and lymphocytes isolated by this procedure were found by FAC-
Scan flow cytometer (FACsort, Becton-Dickinson, Franklin Lakes, NJ, USA) analysis more
than 90% and 98% purity, respectively. Cells were adjusted to the density of 106 cells/mL
and were suspended in RPMI 1640 that was supplemented with 10% heat-inactivated FBS,
2 mM L-glutamine, 25 U/mL penicillin, and 25 U/mL streptomycin (all purchased from
GIBCO) in cell culture plates and kept at 37 ◦C in a humidified 7% CO2 incubator.

For MDMs differentiation, purified cells were cultured in complete medium added
with 100 ng/mL M-CSF (Peprotech, Stockholm, Sweden) or 100 ng/mL GM-CSF (Pepro-
tech) for six days. Media were changed every 2–3 days. After seven days, MDMs were
stimulated with either LPS (100 ng/mL) and IFNγ (20 ng/mL) (M1-stimulation), IL-4 (20
ng/mL) (M2-stimulation), or left untreated (M0) for 24 h before collecting the cells and the
respective surnatants.

CD14 negative PBMCs were cultured at 5 × 106 cells/mL in RPMI 1640 with 10% FBS
in the absence or presence of Phytohemagglutinin (PHA) (1 µg/mL) (Hoffman-La Roche,
Basel, Switzerland) for 24 h.

Cell and bovine serum albumin-free surnatants were harvested by centrifugation
(1000 g; 15 min) and stored at 4 ◦C until assayed.

4.4. DNA Extraction and rs2248374 Genotyping

Genomic DNA from EDTA-treated peripheral blood samples were extracted using QI-
Aamp DNA Blood mini-kit (Qiagen, Hilden, Germany) according to the manufacturer’s
protocol. Genotyping of the SNP rs2248374 was performed by quantitative Real-Time Poly-
merase Chain reaction (qRT-PCR) with functionally tested TaqMan Allelic Discrimination
Assay (C_25649529_10; 7300 real-time PCR system, Applied Biosystems, Waltham, MA, USA).

4.5. Flow Cytometry Analysis

Collected cells were washed and resuspended in staining buffer (PBS 1X +1% BSA)
with Fc Receptor Binding Inhibitor Antibody (Invitrogen, # 14-9161-73, Carlsbad, CA, USA)
for 15 min at 4 ◦C. After blocking, samples were incubated in the dark for 1 h at 4 ◦C
with a saturating concentration of anti-human primary mouse monoclonal antibodies.
After two washes in PBS 1X +1% BSA, cells were incubated with secondary antibodies:
Alexa Fluor 488® F(ab’)2 fragment of goat anti-mouse IgG (Invitrogen, Carlsbad, CA, USA)
and/or Alexa Fluor 594® F(ab’)2 fragment of goat anti-mouse IgG (H + L) (Invitrogen). The
samples were then washed with PBS 1X + 1% BSA and resuspended in 200 µL of the same
buffer. The macrophages were electronically gated according to light scatter properties to
exclude cell debris and contaminating lymphocytes. Fluorescence was measured using a
FACSCalibur flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA) and analyzed
using FlowJo software (Tree Star Inc., Ashland, OH, USA).

4.6. Western Blot

Approximately 5 × 106 cells for conditions were harvested, washed twice in cold
1× PBS, and resuspended in 100 µL of hypotonic buffer solution (20 mM Tris-HCl, pH 7.4;
10 mM NaCl; 3 mM MgCl2) containing 100 U/mL of phenylmethylsulfonyl fluoride
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(PMSF), which consists of 1µg/mL of aprotinin, 0.5% sodium deoxycholate, and proteinase
inhibitors cocktails (Pierce), as well as 25 µL of 10% NP40. After centrifugation at 16,000 g
for 15 min at 4 ◦C, the total protein concentration was determined by the Biorad protein
assay kit (Biorad, Hercules, CA, USA) with BSA used as the standard. Fortyµg of protein
extract for each sample were separated on a 4–12% NuPage Bis-Tris gel at 125 V for 100 min
in NuPage MES SDS Running Buffer (Invitrogen, Carlsbad, CA, USA) and transferred to
nitrocellulose membranes.

For each sample, 200 µL of BSA-free surnatant was recovered and the proteins were
precipitated by a chloroform/methanol procedure [38]. The proteins were resuspended in
denaturing loading Buffer 2×, boiled for 5 min, separated on a 4–12% NuPage Bis-Tris gel
(Invitrogen), and transferred to nitrocellulose membranes. After incubation ON with the
respective antibodies, the membranes were washed twice in 0.1% Tween PBS, incubated
for 1 h with horseradish peroxidase–conjugated secondary Ab (Jackson Immunoresearch
Laboratories, Inc., West Grove, PA, USA), and revealed by the ECL western blotting
detection system (Amersham). The proteins were visualized by ChemiDoc XRS+ System
(Biorad, Hercules, CA, USA) (maximum exposure: 600 s).

4.7. Confocal Microscopy

Cells were washed with PBS 1X + BSA 1%, incubated with Fc Receptor Binding
Inhibitor Antibody for 15 min at 4 ◦C, fixed, and permeabilized with EtOH (70%) or with
paraformaldehyde (4%) for 30 min. Any specific bond was saturated by incubating the
samples with PBS + BSA 1% for 30 min. After two washes, cells were incubated with
primary antibodies for 45 min and then with secondary antibodies Alexa Fluor 594® F(ab’)2
fragments of goat anti-mouse IgG (H + L) and Alexa Fluor 488® F(ab’)2 fragments of
goat anti-mouse IgG (H + L), Invitrogen) for 45 min. Laser lines: LASER ARGON 488
for Alexa 488 (green), LASER A HELIUM (He) 543 for Alexa 594 (red). The images were
processed with the ImageJ software [39]. Co-localization was determined based on the
overlap coefficient according to Manders, which was automatically calculated by ZEISS Zen
Software. The overlap coefficient has a range from +1 (perfect correlation) to 0, denoting no
relationship. Values > 0.5 represent the high probability that there is an overlap denoting
co-localization, while values closer to 0 (<0.5) denote a lower probability that pixels from
both channels, in relation to the entire image, have overlapped (no relationship) [40].

4.8. Immunoprecipitation

Immunoprecipitation was carried out according to the PierceTM Crosslink protocol
Immunoprecipitation kit (Thermo Fisher, Waltham, MA, USA). In short, the antibodies
were “cross-linked” to the resin using the DSS (disuccinimidyl suberate) 0.25 mM reagent
in DMSO (dimethyl sulfoxide). For each immunoprecipitation, 1 mg of total protein lysate
was previously incubated with control resin in order to obtain an INPUT free of non-specific
bonds. The INPUT was then incubated with the antibody-bound resin ON at 4 ◦C and the
bound proteins were eluted using the elution buffer kit.

4.9. Transfection

HEK293T cells were seeded in 12-well plates in complete medium (DMEM) containing
10% FBS and transfected after 24 h with jetPEI® (Polyplus-transfection ® SA) according to
the manufacturer’s protocol. A total of 1 µg plasmid DNA/well was transfected: empty
vector pcDNA 3.1 or plasmid constructs carrying the first 1605 bp nucleotide sequence of
the ERAP2 “G” haplotype or the “A” haplotype encoding the first 532 or 534 amino acids,
respectively (Figure S1). The difference in length is due to the presence of a stop codon in
the “G” haplotype. The plasmid construct was supplied by GenScript USA Inc.

4.10. Modelling

The crystal structures of the soluble domains of human ERAP1 (PDB 2YD0) [41],
ERAP2 (PDB 5AB0) [42], and IRAP (PDB 4PJ6) [43] were used for structural analysis
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and comparison. The HADDOCK server with default parameters was used for ~55 kDa
ERAP2/IRAP docking [44]. The Prodigy algorithm was used to predict the binding affinity
and for the analysis of the interface [45,46].

Rosetta 3.13 Linux version was used to predict the conformation of ERAP2 short
isoforms in the presence of the LAFLGENA and the VRIKRVTE motifs. The initial atomic
coordinates were taken from the X-ray crystal structure of ERAP2 (Protein Data Bank ID:
5AB0). The Python protocol described in Yang et al. [47], which makes use of the Rosetta
3.13 neural network to generate inter-residue distance and orientation constraints for a
sequence of unknown structure, was used. The Rosetta minimizer was then used to find
the backbone conformation consistent with the constraints.

4.11. Quantification and Statistical Analysis

ImageJ, ChemiDoc XRS+ System, and FlowJo software were used for image analysis.
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//www.mdpi.com/article/10.3390/ijms23094961/s1.

Author Contributions: F.P., B.M. and R.S. designed and performed experiments; analyzed data and
drafted the manuscript; F.P. produced and analyzed the genetic data and flow cytometry assay; B.M.
and S.C. did the confocal analysis; F.P., B.M., S.D., E.V. and M.F. processed the samples, developed
and performed western blots and analysis. A.P. did the bioinformatic models. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was found by Ceschina Foundation, Switzerland and Sapienza, University of
Rome, Italy.

Acknowledgments: The authors wish to thank Valentina Tedeschi, Maria Teresa Fiorillo and all the
members of the laboratory for suggestions and are grateful to Federica Lucantoni for the excellent
technical assistance.

Conflicts of Interest: The authors declare that the submitted work was carried out in the absence of
any personal, professional or financial relationships that could potentially be construed as a conflict
of interest.

References
1. Tsujimoto, M.; Hattori, A. The oxytocinase subfamily of M1 aminopeptidases. Biochim. Biophys. Acta 2005, 1751, 9–18. [CrossRef]

[PubMed]
2. Paladini, F.; Fiorillo, M.T.; Tedeschi, V.; Mattorre, B.; Sorrentino, R. The Multifaceted Nature of Aminopeptidases ERAP1, ERAP2,

and LNPEP: From Evolution to Disease. Front. Immunol. 2020, 11, 1576. [CrossRef] [PubMed]
3. Weimershaus, M.; Evnouchidou, I.; Saveanu, L.; van Endert, P. Peptidases trimming MHC class I ligands. Curr. Opin. Immunol

2013, 25, 90–96. [CrossRef] [PubMed]
4. Saveanu, L.; Carroll, O.; Weimershaus, M.; Guermonprez, P.; First, E.; Lindo, V.; Fiona, G.; Jean, D.; Roland, K.; Susanna, R.K.; et al.

IRAP identifies an endosomal compartment required for MHC class I cross-presentation. Science 2009, 325, 213–217. [CrossRef]
5. Weimershaus, M.; Mauvais, F.X.; Evnouchidou, I.; Lawand, M.; Saveanu, L.; van Endert, P. IRAP Endosomes Control Phagosomal

Maturation in Dendritic Cells. Front. Cell Dev. Biol. 2020, 8, 585713. [CrossRef] [PubMed]
6. Vear, A.; Gaspari, T.; Thompson, P.; Chai, S.Y. Is There an Interplay Between the Functional Domains of IRAP? Front. Cell Dev.

Biol. 2020, 8, 585237. [CrossRef]
7. Descamps, D.; Evnouchidou, I.; Caillens, V.; Drajac, C.; Riffault, S.; van Endert, P.; Saveanu, L. The Role of Insulin Regulated

Aminopeptidase in Endocytic Trafficking and Receptor Signaling in Immune Cells. Front. Mol. Biosci. 2020, 7, 583556. [CrossRef]
8. Albiston, A.L.; Morton, C.J.; Ng, H.L.; Pham, V.; Yeatman, H.R.; Ye, S.; Fernando, R.N.; de Bundel, D.; Ascher, D.B.; Mendel-

sohn, F.A.O.; et al. Identification and characterization of a new cognitive enhancer based on inhibition of insulin-regulated
aminopeptidase. FASEB J. 2008, 22, 4209–4217. [CrossRef]

9. Vargas, F.; Wangesteen, R.; Rodríguez-Gómez, I.; García-Estañ, J. Aminopeptidases in Cardiovascular and Renal Function. Role
as Predictive Renal Injury Biomarkers. Int. J. Mol. Sci. 2020, 21, 5615. [CrossRef]

10. Sharip, A.; Kunz, J. Understanding the Pathogenesis of Spondyloarthritis. Biomolecules 2020, 10, 1461. [CrossRef]
11. Babaie, F.; Hosseinzadeh, R.; Ebrazeh, M.; Seyfizadeh, N.; Aslani, S.; Salimi, S.; Maryam, H.; Gholamreza, A.; Farhad, J.; Hamed,

M.; et al. The roles of ERAP1 and ERAP2 in autoimmunity and cancer immunity: New insights and perspective. Mol. Immunol.
2020, 121, 7–19. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/ijms23094961/s1
https://www.mdpi.com/article/10.3390/ijms23094961/s1
http://doi.org/10.1016/j.bbapap.2004.09.011
http://www.ncbi.nlm.nih.gov/pubmed/16054015
http://doi.org/10.3389/fimmu.2020.01576
http://www.ncbi.nlm.nih.gov/pubmed/32793222
http://doi.org/10.1016/j.coi.2012.10.001
http://www.ncbi.nlm.nih.gov/pubmed/23089230
http://doi.org/10.1126/science.1172845
http://doi.org/10.3389/fcell.2020.585713
http://www.ncbi.nlm.nih.gov/pubmed/33425891
http://doi.org/10.3389/fcell.2020.585237
http://doi.org/10.3389/fmolb.2020.583556
http://doi.org/10.1096/fj.08-112227
http://doi.org/10.3390/ijms21165615
http://doi.org/10.3390/biom10101461
http://doi.org/10.1016/j.molimm.2020.02.020
http://www.ncbi.nlm.nih.gov/pubmed/32135401


Int. J. Mol. Sci. 2022, 23, 4961 17 of 18

12. Tedeschi, V.; Paldino, G.; Paladini, F.; Mattorre, B.; Tuosto, L.; Sorrentino, R.; Fiorillo, M.T. The Impact of the ‘Mis-Peptidome’ on
HLA Class I-Mediated Diseases: Contribution of ERAP1 and ERAP2 and Effects on the Immune Response. Int. J. Mol. Sci. 2020,
21, 9608. [CrossRef] [PubMed]

13. Zhen, Q.; Yang, Z.; Wang, W.; Li, B.; Bai, M.; Wu, J.; Ge, H.; Dong, Z.; Shen, J.; Tang, H.; et al. Genetic Study on Small Insertions
and Deletions in Psoriasis Reveals a Role in Complex Human Diseases. J. Invest. Dermatol. 2019, 139, 2302–2312.e14. [CrossRef]
[PubMed]

14. Li, D.T.; Habtemichael, E.N.; Bogan, J.S. Vasopressin inactivation: Role of insulin-regulated aminopeptidase. Vitam. Horm. 2020,
113, 101–128. [CrossRef]

15. Compagnone, M.; Cifaldi, L.; Fruci, D. Regulation of ERAP1 and ERAP2 genes and their disfunction in human cancer. Hum.
Immunol. 2019, 80, 318–324. [CrossRef]

16. D’Amico, S.; Tempora, P.; Lucarini, V.; Melaiu, O.; Gaspari, S.; Algeri, M.; Fruci, D. ERAP1 and ERAP2 Enzymes: A Protective
Shield for RAS against COVID-19? Int. J. Mol. Sci. 2021, 22, 1705. [CrossRef]

17. Lee, E.D. Endoplasmic Reticulum Aminopeptidase 2, a common immunological link to adverse pregnancy outcomes and cancer
clearance? Placenta 2017, 56, 40–43. [CrossRef]

18. Soltani, S.; Nasiri, M. Association of ERAP2 gene variants with risk of pre-eclampsia among Iranian women. Int. J. Gynaecol.
Obstet. 2019, 145, 337–342. [CrossRef]

19. McGonagle, D.; Aydin, S.Z.; Gül, A.; Mahr, A.; Direskeneli, H. MHC-I-opathy-unified concept for spondyloarthritis and Behçet
disease. Nat. Rev. Rheumatol. 2015, 11, 731–740. [CrossRef]

20. Kenna, T.J.; Robinson, P.C.; Haroon, N. Endoplasmic reticulum aminopeptidases in the pathogenesis of ankylosing spondylitis.
Rheumatology 2015, 54, 1549–1556. [CrossRef]

21. Andrés, A.M.; Dennis, M.Y.; Kretzschmar, W.W.; Cannons, J.L.; Lee-Lin, S.Q.; Hurle, B.; NISC Comparative Sequencing Program;
Schwartzberg, P.L.; Williamson, S.H.; Bustamante, C.D.; et al. Balancing selection maintains a form of ERAP2 that undergoes
nonsense-mediated decay and affects antigen presentation. PLoS Genet. 2010, 6, e1001157. [CrossRef] [PubMed]

22. Goto, Y.; Ogawa, K.; Hattori, A.; Tsujimoto, M. Secretion of endoplasmic reticulum aminopeptidase 1 is involved in the activation
of macrophages induced by lipopolysaccharide and interferon-gamma. J. Biol. Chem. 2011, 286, 21906–21914. [CrossRef] [PubMed]

23. Ofner, L.D.; Hooper, N.M. Ectodomain shedding of cystinyl aminopeptidase from human placental membranes. Placenta 2002,
1, 65–70. [CrossRef] [PubMed]

24. Saulle, I.; Ibba, S.V.; Torretta, E.; Vittori, C.; Fenizia, C.; Piancone, F.; Minisci, D.; Lori, E.M.; Trabattoni, D.; Gelfi, C.; et al.
Endoplasmic Reticulum Associated Aminopeptidase 2 (ERAP2) Is Released in the Secretome of Activated MDMs and Reduces
in vitro HIV-1 Infection. Front. Immunol. 2019, 10, 1648. [CrossRef] [PubMed]

25. Mattiola, I.; Tomay, F.; De Pizzol, M.; Silva-Gomes, R.; Savino, B.; Gulic, T.; Doni, A.; Lonardi, S.; Boutet, M.A.; Nerviani, A.; et al.
The macrophage tetraspan MS4A4A enhances dectin-1-dependent NK cell-mediated resistance to metastasis. Nat. Immunol. 2019,
8, 1012–1022. [CrossRef]

26. Fruci, D.; Ferracuti, S.; Limongi, M.Z.; Cunsolo, V.; Giorda, E.; Fraioli, R.; Sibilio, L.; Carroll, O.; Hattori, A.; van Endert, P.M.; et al.
Expression of Endoplasmic Reticulum Aminopeptidases in EBV-B Cell Lines from Healthy Donors and in Leukemia/Lymphoma,
Carcinoma, and Melanoma Cell Lines. J. Immunol. 2006, 176, 4869–4879. [CrossRef]

27. Sanyal, R.; Polyak, M.J.; Zuccolo, J.; Puri, M.; Deng, L.; Roberts, L.; Zuba, A.; Storek, J.; Luider, J.M.; Sundberg, E.M.; et al.
MS4A4A: A novel cell surface marker for M2 macrophages and plasma cells. Immunol. Cell Biol. 2017, 95, 611–619. [CrossRef]

28. Papakyriakou, A.; Stratikos, E. The Role of Conformational Dynamics in Antigen Trimming by Intracellular Aminopeptidases.
Front. Immunol. 2017, 8, 946. [CrossRef]

29. Lidell, M.E.; Johansson, M.E.V.; Hansson, G.C. An autocatalytic cleavage in the C terminus of the human MUC2 mucin occurs at
the low pH of the late secretory pathway. J. Biol. Chem. 2003, 278, 13944–13951. [CrossRef]

30. Saulle, I.; Vanetti, C.; Goglia, S.; Vicentini, C.; Tombetti, E.; Garziano, M.; Mario, C.; Mara, B. A New ERAP2/Iso3 Isoform
Expression Is Triggered by Different Microbial Stimuli in Human Cells. Could It Play a Role in the Modulation of SARS-CoV-2
Infection? Cells 2020, 9, 1951. [CrossRef]

31. Ye, C.J.; Chen, J.; Villani, A.C.; Gate, R.E.; Subramaniam, M.; Bhangale, T.; Mark, N.L.; Towfique, R.; Raktima, R.; Li, W.; et al.
Genetic analysis of isoform usage in the human anti-viral response reveals influenza-specific regulation of ERAP2 transcripts
under balancing selection. Genome Res. 2018, 28, 1812–1825. [CrossRef] [PubMed]

32. Rossetti, C.; Picardi, E.; Ye, M.; Camilli, G.; D’Erchia, A.M.; Cucina, L.; Locatelli, F.; Fianchi, L.; Teofili, L.; Pesole, G.; et al. RNA
editing signature during myeloid leukemia cell differentiation. Leukemia 2017, 12, 2824–2832. [CrossRef] [PubMed]

33. Georgiadis, D.; Ziotopoulou, A.; Kaloumenou, E.; Lelis, A.; Papasava, A. The Discovery of Insulin-Regulated Aminopeptidase
(IRAP) Inhibitors: A Literature Review. Front. Pharmacol. 2020, 11, 585838. [CrossRef] [PubMed]

34. Yang, J.; Petitjean, S.J.L.; Koehler, M.; Zhang, Q.; Dumitru, A.C.; Chen, W.; Derclaye, S.; Vincent, S.P.; Soumillion, P.; Alsteens, D.;
et al. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat. Commun. 2020, 11, 4541. [CrossRef]

35. Lu, C.; Gam, R.; Pandurangan, A.P.; Goug, J. Genetic risk factors for death with SARS-CoV-2 from the UK Biobank. medRxiv 2020.
[CrossRef]

36. Barbé-Tuana, F.; Funchal, G.; Schmitz, C.R.R.; Maurmann, R.M.; Baue, M.E. The interplay between immunosenescence and
age-related diseases. Semin. Immunopathol. 2020, 42, 545–557. [CrossRef]

http://doi.org/10.3390/ijms21249608
http://www.ncbi.nlm.nih.gov/pubmed/33348540
http://doi.org/10.1016/j.jid.2019.03.1157
http://www.ncbi.nlm.nih.gov/pubmed/31078570
http://doi.org/10.1016/bs.vh.2019.08.017
http://doi.org/10.1016/j.humimm.2019.02.014
http://doi.org/10.3390/ijms22041705
http://doi.org/10.1016/j.placenta.2017.03.012
http://doi.org/10.1002/ijgo.12816
http://doi.org/10.1038/nrrheum.2015.147
http://doi.org/10.1093/rheumatology/kev218
http://doi.org/10.1371/journal.pgen.1001157
http://www.ncbi.nlm.nih.gov/pubmed/20976248
http://doi.org/10.1074/jbc.M111.239111
http://www.ncbi.nlm.nih.gov/pubmed/21531727
http://doi.org/10.1053/plac.2001.0751
http://www.ncbi.nlm.nih.gov/pubmed/11869093
http://doi.org/10.3389/fimmu.2019.01648
http://www.ncbi.nlm.nih.gov/pubmed/31379846
http://doi.org/10.1038/s41590-019-0417-y
http://doi.org/10.4049/jimmunol.176.8.4869
http://doi.org/10.1038/icb.2017.18
http://doi.org/10.3389/fimmu.2017.00946
http://doi.org/10.1074/jbc.M210069200
http://doi.org/10.3390/cells9091951
http://doi.org/10.1101/gr.240390.118
http://www.ncbi.nlm.nih.gov/pubmed/30446528
http://doi.org/10.1038/leu.2017.134
http://www.ncbi.nlm.nih.gov/pubmed/28484266
http://doi.org/10.3389/fphar.2020.585838
http://www.ncbi.nlm.nih.gov/pubmed/33071797
http://doi.org/10.1038/s41467-020-18319-6
http://doi.org/10.1101/2020.07.01.20144592
http://doi.org/10.1007/s00281-020-00806-z


Int. J. Mol. Sci. 2022, 23, 4961 18 of 18

37. Paladini, F.; Fiorillo, M.T.; Vitulano, C.; Tedeschi, V.; Piga, M.; Cauli, A.; Alessandro, M.; Rosa, S. An allelic variant in the intergenic
region between ERAP1 and ERAP2 correlates with an inverse expression of the two genes. Sci. Rep. 2018, 8, 10398. [CrossRef]

38. Fic, E.; Kedracka-Krok, S.; Jankowska, U.; Pirog, A.; Dziedzicka-Wasylewska, M. Comparison of protein precipitation methods
for various rat brain structures prior to proteomic analysis. Electrophoresis 2010, 21, 3573–3579. [CrossRef]

39. Schneider, C.; Rasband, W.; Eliceiri, K. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [CrossRef]
40. Zinchuk, V.; Zinchuk, O.; Okada, T. Quantitative Colocalization Analysis of Multicolor Confocal Immunofluorescence Microscopy

Images: Pushing Pixels to Explore Biological Phenomena. Acta Histochem. Cytochem. 2007, 40, 101–111. [CrossRef]
41. Kochan, G.; Krojer, T.; Harvey, D.; Fischer, R.; Chen, L.; Vollmar, M.; von Delft, F.; Kavanagh, K.L.; Brown, M.A.; Bowness, P.; et al.

Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide
trimming. Proc. Natl. Acad. Sci. USA 2011, 108, 7745–7750. [CrossRef] [PubMed]

42. Mpakali, A.; Giastas, P.; Mathioudakis, N.; Mavridis, I.M.; Saridakis, E.; Efstratios, S. Structural Basis for Antigenic Peptide
Recognition and Processing by Endoplasmic Reticulum (ER) Aminopeptidase 2. J. Biol. Chem. 2015, 290, 26021–26032. [CrossRef]
[PubMed]

43. Hermans, S.J.; Ascher, D.B.; Hancock, N.C.; Holien, J.K.; Michell, B.J.; Chai, S.Y.; Morton, C.J.; Parker, M.W. Crystal structure of
human insulin-regulated aminopeptidase with specificity for cyclic peptides. Protein Sci. 2015, 24, 190–199. [CrossRef] [PubMed]

44. De Vries, S.J.; van Dijk, M.; Bonvin, A.M. The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 2010, 5,
883–897. [CrossRef] [PubMed]

45. Vangone, A.; Bonvin, A.M.J.J. Contact-based prediction of binding affinity in protein-protein complexes. eLife 2015, 4, e07454.
[CrossRef]

46. Xue, L.; Rodrigues, J.; Kastritis, P.; Bonvin, A.M.J.J.; Vangone, A. PRODIGY: A web-server for predicting the binding affinity in
protein-protein complexes. Bioinformatics 2016, 32, 3676–3678. [CrossRef]

47. Yang, J.; Anishchenko, I.; Park, H.; Peng, Z.; Ovchinnikov, S.; Baker, D. Improved protein structure prediction using predicted
interresidue orientations. Proc. Natl. Acad. Sci. USA 2020, 117, 1496–1503. [CrossRef]

http://doi.org/10.1038/s41598-018-28799-8
http://doi.org/10.1002/elps.201000197
http://doi.org/10.1038/nmeth.2089
http://doi.org/10.1267/ahc.07002
http://doi.org/10.1073/pnas.1101262108
http://www.ncbi.nlm.nih.gov/pubmed/21508329
http://doi.org/10.1074/jbc.M115.685909
http://www.ncbi.nlm.nih.gov/pubmed/26381406
http://doi.org/10.1002/pro.2604
http://www.ncbi.nlm.nih.gov/pubmed/25408552
http://doi.org/10.1038/nprot.2010.32
http://www.ncbi.nlm.nih.gov/pubmed/20431534
http://doi.org/10.7554/eLife.07454
http://doi.org/10.1093/bioinformatics/btw514
http://doi.org/10.1073/pnas.1914677117

	Introduction 
	Results 
	Monocyte-Derived Macrophages Express a Short ERAP2 Isoform That Binds IRAP 
	Differentiation of U937 Cells Correlates with the Loss of ERAP2 Full Length and the Occurrence of a ~55 kDa Fragment 
	IRAP Directly Binds the ~55 kDa ERAP2 
	ERAP2 Contains a Potential Autocatalytic Cleavage Site 
	ERAP2 “Short” Derives from Longer Precursors 

	Discussion 
	Materials and Methods 
	Cell Lines 
	Antibodies 
	Macrophages-Derivated-Monocytes Generation and CD14 Negative PBMCs 
	DNA Extraction and rs2248374 Genotyping 
	Flow Cytometry Analysis 
	Western Blot 
	Confocal Microscopy 
	Immunoprecipitation 
	Transfection 
	Modelling 
	Quantification and Statistical Analysis 

	References

