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Objective: The gut microbiota and its metabolites are important for host physiological
homeostasis, while dysbiosis is related to diseases including the development of cancers
such as colorectal cancer (CRC). In this study, we characterized the relationship of an
altered gut microbiome with the fecal metabolome in CRC patients in comparison with
volunteers having a normal colorectal mucous membrane (NC).

Methods: The richness and composition of the microbiota in fecal samples of 30 CRC
patients and 36 NC controls were analyzed through 16S rRNA gene sequencing, and the
metabolome was determined by ultra-performance liquid chromatography coupled to
tandem mass spectrometry. Spearman correlation analysis was to determine the
correlation between the gut microbiome and fecal metabolome in CRC patients.

Results: There were significant alterations in the gut microbiome and fecal metabolome in
CRC patients compared with NC controls. Bacteroidetes, Firmicutes, Actinobacteriota,
and Proteobacteria dominated the gut microbial communities at the phylum level in both
groups. Compared with NC controls, CRC patients had a lower frequency of Blautia and
Lachnospiracaea but a higher abundance ofBacteroides fragilis and Prevotella. Regarding
the fecal metabolome, twenty-nine metabolites were identified as having significantly
changed, showing increased levels of adrenic acid, decanoic acid, arachidonic acid, and
tryptophan but a reduction in various monosaccharides in the fecal samples of CRC
patients. Moreover, increased abundance of Bacteroides fragilis was strongly associated
with decreased levels of monosaccharides, whileBlautiawas positively associated with the
production of monosaccharides in the fecal samples.

Conclusion: These results highlight alterations of gut microbiota in association with
certain metabolites in CRC progression, implying potential diagnostic and intervention
potential for CRC.
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INTRODUCTION

Colorectal cancer (CRC), a serious malignant carcinoma, is the
third leading cause of cancer-related deaths worldwide (Cao W
et al., 2021). Increasing evidence has shown that the gut
microbiota and its metabolites are closely associated with CRC
carcinogenesis (Wu et al., 2021; Dalal et al., 2021; Duttaroy,
2021). Profiling of gut microbiota was explored for screening or
predictive CRC biomarkers, and modulating the microbiota may
have the potential for prevention or even treatment of CRC
(Wong and Yu, 2019). The role of bacteria in CRC
development has been supported by considerable studies.
Compared with germ-free and conventional mice, it was
found that the microbes transplanted from CRC patients could
potentiate carcinogen-induced tumorigenesis, demonstrating the
critical role of gut microbes in CRC development (Wong et al.,
2017). An altered intestinal microbiome may serve as a “bacterial
driver” to directly promote tumorigenesis in part through the
induction of epithelial DNA damage and mutagenesis or by
promoting so-called “passenger bacteria” to advantage the
tumor microenvironment (Gagnière et al., 2016). On the other
hand, bacterial biofilms may promote pro-carcinogenic activities
for CRC initiation (Li S et al., 2017). Moreover, an altered gut
microbiome and its metabolites may also elicit systemic and
intestinal inflammation, a predominant reason for
tumorigenesis at every stage (Cheng et al., 2020). Previous
studies have demonstrated that specific microbes, such as
Fusobacterium nucleatum, Streptococcus bovis, Helicobacter
pylori, Bacteroides fragilis, and Clostridium septicum,
contribute to CRC development. As a strong pathogen,
Fusobacterium nucleatum could potentiate intestinal
tumorigenesis through a TLR4/p-PAK1/b-catenin S675 cascade
(Wu et al., 2018). Animal work has shown that Streptococcus bovis
contributes to colorectal tumorigenesis by recruiting
CD11b⁺TLR-4⁺ cells (Deng et al., 2020). Likewise,
enterotoxigenic Bacteroides fragilis promoted CRC by
inhibiting exosome-packaged miR-149-3pf (Cao Y et al.,
2021), and Helicobacter pylori were associated with CRC, but
the underlying mechanism remains unclear (Kim et al., 2017;
Corredoira et al., 2017).

In addition to direct microbe-epithelial interactions,
metabolites from the microbiome can profoundly impact host
metabolism and pathogenesis. It has been reported that microbes
may modulate cancer susceptibility or progression via
metabolites (Peng et al., 2021). Short-chain fatty acids
(SCFAs), the principal metabolites generated from gut
microbial fermentation from insoluble dietary fiber or
supplementation with SCFA-producing probiotics, can inhibit
intestinal tumor development (Hou et al., 2022). Major SCFAs
include acetate, butyrate, and propionate. Butyrate could inhibit
the motility of colorectal cancer cells by deactivating Akt/ERK
signaling (Li et al., 2017); acetate was shown to promote the
expression of anti-inflammatory cytokines and reduce the
generation of pro-inflammatory factors and NF-κB pathway
activation in CRC cells (Tedelind et al., 2007); and propionate
suppressed CRC growth by promoting the proteasomal
degradation of euchromatic histone-lysine N-methyltransferase

2 (EHMT2) through HECT domain E3 ubiquitin protein ligase 2
(HECTD2) upregulation (Ryu et al., 2022). Secondary bile acids,
lactate, trimethylamine N-oxide (TMAO), N-nitroso
compounds, acetaldehyde, 4-hydroxyphenylacetic acid,
phenylacetic acid, and phenol are related to CRC (Mohseni
et al., 2020). Specifically, CpG-DNA produced by gut microbes
can promote tumor cell proliferation and epithelial-mesenchymal
transition and increase vasculogenic formation by targeting
cellular receptors, leading to intestinal carcinogenesis (Song
et al., 2021). Moreover, hydrogen sulfide was able to induce
genomic DNA damage in host cells, which may lead to
genomic instability in CRC (Attene-Ramos et al., 2007).
Lactate is known to promote the proliferation, invasion, and
migration of colon cancer cells (Chen et al., 2020). Thus, microbe-
produced metabolites may either exert genotoxic and
tumorigenic effects or protect the host through tumor-
suppressive functions.

The combination of metagenomic sequencing analysis and
metabolomics-based profiling of microbial metabolites can
provide new insight into CRC biogenesis and prognosis. For
instance, a recent review updated the notion that gut microbiome
reprogramming in CRC patients is associated with alterations in
the serummetabolome (Chen F et al., 2021). Another study using
an untargeted approach found that polyamines made by gut
microbes are associated with CRC (Yang et al., 2019). Of note, the
same method was applied to find beneficial metabolites produced
by intestinal symbionts (Dalal et al., 2021). Nevertheless, the
particular association between microbes and metabolites in CRC
development remains elusive. In the present study, we
investigated fecal metabolome and microbiome profiles in
CRC patients and compared them with healthy controls. Here,
we identified a specific association between the gut microbiota
and metabolite profiles, which may shed new light on potential
applications for the prevention, diagnosis, and treatment of CRC.

MATERIALS AND METHODS

Sample Collection
A cohort of 66 participants was enrolled from the Affiliated
Hospital of North SichuanMedical College (Nanchong, China) in
this study, including 30 patients with sporadic CRC and 36 people
with normal colorectal mucosa membrane (NC). The inclusion
criteria were as follows: all participants over 18 years of age and
received complete colonoscopy and who were newly diagnosed
with colorectal cancer by pathological examination represented
the CRC group, and healthy colorectal mucosa represented the
NC group. All fecal samples were collected at the moment of
diagnosis before any surgery or adjuvant treatment, immediately
transported to the laboratory, and stored at -80 °C until further
use. Exclusion criteria were set including immunodeficiency,
cardiopathy, diabetes, hypertension, other malignant tumors or
other severe gastroenterological diseases, antibiotic treatment in
the last 2 months, and regular treatment with nonsteroidal anti-
inflammatory drugs, probiotics, or statins. Individuals who
received preoperative chemotherapy or radiation therapy were
also excluded from the study. Clinical data, such as age, sex,
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tumor stage, tumor location, and tumor differentiation, were
acquired according to hospital records. Prior to enrollment,
informed consent was obtained from all participants. The
study was approved by the Institutional Review Board of the
Affiliated Hospital of North SichuanMedical College (Nanchong,
China).

Fecal DNA Extraction for Microbiome
Analysis
DNA from fecal samples was isolated utilizing the E. Z.N.A.® Soil
DNA kit (Omega Bio-Tek, Norcross, GA, U.S.), followed by the
quantification of DNA concentration and purity measurement
with a NanoDrop2000 UV–vis spectrophotometer (Thermo
Scientific, Wilmington, United States).

High-Throughput 16S Ribosomal RNA Gene
Sequencing
The hypervariable region V4 of the bacterial 16S rRNA gene was
amplified with the forward primer 515F (5′-
GTGCCAGCMGCCGCGG-3′) and reverse primer 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) by an ABI
GeneAmp®9700 PCR thermocycler (ABI, CA, United States).
The amplicons were purified and pooled in equimolar amounts
and paired-end sequenced on an Illumina MiSeq PE300
platform/NovaSeq PE250 platform (Illumina, San Diego,
United States) according to the standard protocols by
Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China).

Processing of Sequencing Data
The raw 16S rRNA gene sequencing reads were demultiplexed,
quality-filtered by fastp version 0.20.0 (Chen et al., 2018), and
merged by FLASH version 1.2.7 (Magoč and Salzberg, 2011) with
the following criteria: 1) the 300 bp reads were truncated at any
site receiving an average quality score of <20 over a 50 bp sliding
window, and the truncated reads shorter than 50 bp or the reads
containing ambiguous characters were discarded; 2) only
overlapping sequences longer than 10 bp were assembled
according to their overlapped sequence. The maximum
mismatch ratio of the overlap region is 0.2. Reads that could
not be assembled were discarded; and 3) samples were
distinguished according to the barcode and primers, and the
sequence direction was adjusted, with exact barcode matching
and two nucleotides mismatched in primer matching.

Operational taxonomic units (OTUs) with a 97% similarity
cutoff were clustered using UPARSE version 7.1 (Edgar, 2013),
and chimeric sequences were identified and removed. To
minimize the variation in sequencing depth between samples,
an average and rounded rarefied OTU value table was
constructed by calculating the average of 100 average
resampled OTU subsets (minimum sequencing depths of
<90%) for further study. The taxonomy of each OTU
representative sequence was analyzed by RDP Classifier
version 2.2 (Wang et al., 2007) against the 16S rRNA database
(e.g., Silva v138) using a confidence threshold of 0.7.

Diversity Indices
The Shannon index and Simpson index were calculated to
characterize the α-diversity. The Shannon index is derived
using the following equation:

H � −∑
Sobs

i�1

ni
N

ln
ni
N
,

whereH = Shannon index.Sobs = number of OTUs.ni = number of
sequences contained in the ith OTU.ln = natural log.N = all
numbers of sequences.

The higher the Shannon index, the higher the microbiota
diversity.

The Simpson index was calculated using the following
formula:

D � ∑Sobs
i�1 ni(ni − 1)
N(N − 1) ,

whereD = Simpson index.Sobs = number of OTUs.ni = number of
sequences contained in the ith OTU.N = all numbers of sequences.

As biodiversity increases, the Simpson index decreases.

Sample Preparation for Metabolomics Analysis
Fecal samples were thawed on ice. Approximately 5 mg of each
lyophilized sample was weighed and transferred to a new 1.5 ml
tube. Then, 25 μL of water was added, the sample was
homogenized with zirconium oxide beads for 3 min, and
120 μL of methanol containing internal standard was extracted
for gut metabolites. The sample was homogenized for another
3 min and then centrifuged at 18,000 rpm for 20 min. Then, 20 μL
of supernatant was transferred to a 96-well plate. The following
procedures were performed on an Eppendorf epMotion
Workstation (Eppendorf Inc., Hamburg, Germany). A total of
20 μL of freshly prepared derivative reagents was added to each
well. The plate was sealed, and the derivatization was carried out
at 30°C for 60 min. After derivatization, 330 μL of ice-cold 50%
methanol solution was added to dilute the sample. Then the plate
was stored at -20°C for 20 min, followed by centrifugation at
4,000 g at 4°C for 30 min. A total of 135 μL of supernatant was
transferred to a new 96-well plate with 10 μL of internal standards
in each well. Serial dilutions of derivatized stock standards were
added to the left wells. Finally, the plates were sealed for analysis.

Ultra-performance Liquid Chromatography
Coupled to Tandem Mass Spectrometry
(UPLC–MS/MS) Analysis
A 5 μL aliquot of the pretreated sample was injected into a
100 mm × 2.1 mm, 1.7 μM BEH C18 column (Waters,
Milford, United States) on a UPLC–MS/MS station (Waters,
Milford, United States). The column temperature was set at
40°C, and the flow rate was 0.40 ml/min. The mobile phase
consisted of two solutions, A (water with 0.1% formic acid)
and B (acetonitrile), and was eluted in the following
proportions: the mode involved 5% acetonitrile for 0-1 min,
5–78% for 1–11 min, 78–95% for 11–13.5 min, and 95–100%
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for 13.5–14 min; the concentration was then held at 98% for
2 min, returned to 5% for 16–16.1 min, and finally held at 5% for
16.1–18 min. All analyses were acquired with a locking spray to
ensure accuracy and reproducibility.

Quality Control and Data Processing
To achieve reliable data, quality control (QC) samples are
routinely used in our metabolomics platform. In addition to
the quality controls, conditioning samples and solvent blank
samples were also required for obtaining optimal instrument
performance. QC samples were used to assess the reproducibility
and reliability of the UPLC–MS system. The QC sample, made by
mixing and blending equal volumes (10 μL) of each fecal sample,
was used to estimate a mean profile representing all the analytes
encountered during analysis. Reagent blank samples are a
mixture of solvents used for sample preparation and are
commonly processed using the same procedures as the
samples to be analyzed. The calibrators consist of a blank
sample (matrix sample processed without internal standard), a
zero sample (matrix sample processed with internal standard),
and a series of seven concentrations covering the expected range
for the metabolites present in the specific biological samples. To
diminish analytical bias within the entire analytical process, the
samples were analyzed in group pairs, but the groups were
analyzed randomly. The QC samples, calibrators, and blank
samples were analyzed across the entire sample set.

The raw data files generated by UPLC–MS/MS were processed
using MassLynx software (v4.1, Waters, Milford, MA,
United States) to perform peak integration, calibration, and
quantitation for each metabolite. The self-developed platform
iMAP (v1.0, Metabo-Profile, Shanghai, China) was used for
statistical analyses, including PCA, OPLS-DA, univariate
analysis, and pathway analysis.

Quantitation of Metabolites
Mass spectrometry-based quantitative metabolomics refers to the
determination of the concentration of a substance in an unknown
sample by comparing the unknown to a set of standard samples of
known concentration (i.e., calibration curve). The calibration
curve is a plot of how the analytical signal changes with the
concentration of the analyte (the substance to be measured). For
most analyses, a plot of instrument response vs. concentration
will show a linear relationship. This yields a model described by
the equation y = ax + b, where y is the instrument response, e.g.,
peak height or area, a represents the slope/sensitivity, and b is a
constant that describes the background. The analyte
concentration (x) of unknown samples may be calculated from
this equation.

Statistical Analysis
The differences in alpha diversity between the CRC and NC
groups were analyzed by using Student’s t tests. We used
ANOSIM to compare differences in beta diversity between
groups, using weighted UniFrac for categorical variables and
the Mann–Whitney-Wilcoxon test to compare the abundance
of microbiota between the CRC and NC groups. A metagenomic
biomarker discovery approach was employed with LEfSe (linear

discriminant analysis coupled with effect size measurement),
which performed a nonparametric Wilcoxon sum-rank test
followed by LDA analysis using online software (http//
huttenhower.sph.harvard.edu/galaxy/) to assess the effect size
of each differentially abundant taxon.

Orthogonal projection to latent structure discriminant
analysis (OPLS-DA) was performed to examine the overall
fecal metabolite distribution in each group. The qualities of all
OPLS-DA models were assessed with R2X (the total variation
explained by themodel) and Q2 (denoting the predictability of the
model). The significance of the models was further validated by
univariate statistical analyses including Student’s t test,
Mann–Whitney-Wilcoxon test, ANOVA, and correlation
analysis. Moreover, we also used the intersection of univariate
analysis and OPLS-DA models to identify the metabolic
biomarkers of CRC.

The p-values were adjusted for multiple comparisons using
the Benjamini–Hochberg false discovery rate (FDR). Both raw
p-values (P) and P-adjusted FDR Q-values (Q) are reported.
Microbes with a raw p-value of less than 0.05 were considered
significant since FDR correction can increase the risk of false-
negative conclusions. To report the magnitude of the
difference between the groups as well as to consider the
relatively small sample size, effect size and 95% confidence
intervals were also calculated. The meaningful metabolites
were listed according to the following parameters: a
univariate p-value of <0.05, a Q-value of <0.25, and a
multivariate variable importance in the projection (VIP)

TABLE 1 | The basic characteristics of patients.

NC (n = 33) CRC (n = 30) p-value

Gender
Female (n) 20 18 0.204
Male (n) 13 12
Average age (year) 59.27 56.67 0.222

Location
Right location NA 5
Left location NA 25

TNM staging
I NA 2
II 12
III 14
IV 2

Differentiation
WD NA 6
MPD 24

Metastasis
Non-LNM NA 13
LNM 17

Smoking
Absence 25 24 0.6916
Presence 8 6

Drinking
Never 10 8 0.5907
Occasionally 22 20
Frequently 1 2

AD, adenoma; CRC, colorectal cancer; LNM, lymph node metastasis; MPD, moderately
and poorly differentiated; NA, not applicable; NC, human with normal colorectal mucous
membrane; Non-LNM, non-lymph node metastasis; WD, well-differentiated.
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value of >1.0. We used receiver-operating characteristic (ROC)
curves to evaluate the predictive ability of differential
metabolites for CRC diagnosis. To avoid overfitting the data
with logistic regression models, we used leave-one-out cross-
validation. For correlation analysis, we conducted Spearman’s
rank test as implemented in the R package (v 3.2.0). All graphs
were generated using the Adobe Illustrator CC 2017 release or
GraphPad Prism 7.

RESULTS

Pathological Characteristics of the Human
Subjects
All patients and volunteers were Han Chinese from Sichuan
Province, China, with comparable eating habits. The
clinicopathological characteristics are listed in Table 1. Both
groups were age- and sex-matched, and they had similar body
mass indexes (BMIs). Furthermore, the two groups had similar

lifestyle factors, and most subjects did not smoke and
occasionally drink.

Decreased Diversity of the Fecal
Microbiome in CRC Patients
To measure the diversity of the fecal microbiota of CRC patients
and healthy volunteers, we performed 16S rDNA sequencing and
obtained a total of 3,815,908 high-quality sequences with an
average length of 255 for each sample (Supplementary Table
S1). A total of 998 OTUs were identified, and the coverage values
approached 99.99% in both groups, indicating that the
sequencing depth was sufficient for the discovery and
investigation of the microbiota. The sequences were then
clustered into operational taxonomic units (OTUs), with
74.9% (748 in 998) shared by the two groups and 179 unique
to the CRC group (Figure 1A). Further analysis showed a
significant difference in the Shannon index (p = 0.04)
(Figure 1B) and Simpson index (p = 0.04) (Figure 1C)

FIGURE 1 | Comparison of the fecal microbiome composition between the CRC and NC groups. (A) Venn diagram of operational taxonomic units (OTUs) in CRC
patients and NC controls. (B,C) α-diversity of 16S rRNA genes in the gut microbiota of CRC patients and NC controls. (D) Principal coordinate analysis (PCoA) of a
weighted UniFrac distance analysis. NC, normal colorectal mucous membrane; CRC, colorectal cancer.
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between the CRC and NC groups, demonstrating a remarkably
lower α-diversity in CRC patients than that in NC controls
(Supplementary Table S2). ß-diversity refers to species
diversity among different environmental groups. A significant
difference in ß-diversity was obtained using the weighted UniFrac
distance statistic (qualitative, ADONIS p = 0.001) (Figure 1D).
The observed differences in α- and ß-diversity indicated the
imbalanced structure of the intestinal flora in CRC patients
compared with NC controls.

Alterations in the Taxa Between Fecal
Specimens of CRC Patients and NC
Controls
To identify specific microbiota species or genera associated with
CRC and compare the composition of fecal microflora between
CRC and NC groups, Welch’s t test was performed at different
taxonomic levels. At the phylum level, Bacteroidetes,
Firmicutes, Actinobacteriota, and Proteobacteria dominated
the gut microbial communities in both groups. Compared
with NC controls, CRC patients had fewer Firmicutes (p =
0.00002) but higher levels of Bacteroidota (p = 0.007),
Fusobacteriota (p = 0.003), and Campylobacter (p = 0.007).

Each differential phylum remained significant after FDR
correction (Figure 2A). At the genus level, we found that
Prevotella was increased (p = 0.01) in the CRC group, which
most studies showed to be CRC-associated pathobionts (Liu W
et al., 2021), while Blautia, Eubacterium hallii group,
Subdoligranulum, Agathobacter, Romboutsia, and Clostridium
sensus tricto 1 were significantly decreased (p < 0.05). After FDR
correction, only Agathobacter, Romboutsia, and Clostridium
sensus tricto 1 reached a significant difference (Figure 2B).
Prior to FDR correction, some bacteria showed p-values
lower than 0.05 at the species level. The abundance of
Bacteroides fragilis (p = 0.0009) and Veillonella parvula (p =
0.01) was markedly enriched in CRC patients. Notably,
Veillonella parvula is a common and abundant member of
the oral microbiome and possesses important metabolic
pathways that utilize lactate as an energy source (Mashima
et al., 2021), but there have been no previous reports that
this bacterium was enriched in CRC patients. Some bacteria
with probiotic properties, such as Blautia, Eubacterium rectale
ATCC33656, Lachnospiraceae, and Eubacterium hallii, were
significantly enriched in NC controls (Figure 2C).

To determine the role of fecal microflora in CRC progression,
we detected the fecal microbial communities in various

FIGURE 2 | Comparison of the abundance of fecal microbiota by CRC and NC groups. (A-C) Relative abundance of the bacterial composition in the CRC and NC
groups at the phylum, genus, and species levels. (D) LEfSe analysis of enriched bacterial taxa in the gut microbiota of the CRC and NC groups (LDA>3.5 of LEfSe). (E)
Cladogram representation of the taxonomic differences between the CRC and NC groups.
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differentiation and pathological tumor-node-metastasis (pTNM)
stages. However, there was no significantly different microbiota
in fecal samples among CRC patients at TNM stage I, stage II,
stage III, and stage IV (p > 0.05, Supplementary Figure S1A).
Likewise, we did not find statistically significantly different
microbiota between the well-differentiated and moderately/
poorly differentiated CRC fecal specimens (p > 0.05,
Supplementary Figure S1B).

Next, we performed a linear discriminant analysis effect size
(LEfSe) analysis to identify specific taxa with the varied
abundance that may make them potential diagnostic
biomarkers. In total, 14 species were identified with LDA
scores >3.5 (Figure 2D). According to LEfSe analysis, the
CRC group was enriched with five species, including
Bacteroides fragilis, Veillonella parvula, Porphyromonas
asaccharolytica DSM 20707, uncultured organism
Alloprevotella, and Bacteroides thetaiotaomicron, while the
NC group was enriched with nine species, including
unclassified Blautia, Eubacterium_rectale ATCC 33656,
unclassified Lachnospiraceae, and unclassified Ruminococcus.
A cladogram from phyla to species is shown in Figure 2E.
These results showed reduced probiotic species and an increased
quantity of facultative pathogenic bacteria in patients with CRC.
Taken together, these data indicate changes in the gut
microbiota in CRC patients. Specifically, CRC is associated
with a reduction in the biodiversity of gut bacteria compared
with the NC controls. Thus, CRC-specific fecal microbial

communities may have pathological relevance as potential
diagnostic markers.

Metabolomic Signature of Fecal Samples
From CRC Patients and NC Controls
It was described that the metabolites produced by gut
microbiota could modulate host immune systems (Ejtahed
et al., 2020; Parker et al., 2020). To identify the metabolomic
signature of CRC patients, we compared the fecal metabolomics
profiles of CRC patients and NC controls through in-depth
targeted metabolomics analysis of fecal contents by UPLC–MS/
MS. In total, 139 metabolites were identified, followed by
classification into 12 categories (Figure 3A). Specifically, we
identified short-chain fatty acids (SCFAs), benzoic acids, indole,
phenylpropanoic acid, benzenoid, carmitines, phenol, amino
acids, fatty acids, organic acids, bile acids, and carbohydrates
from the fecal samples. Compared with NC controls, three
categories, including carbohydrate (p = 0.001173), organic
acids (p = 0.016787), and pyridines (p = 0.014594), were
significantly decreased (Figures 3B, C; Supplementary
Figure S2), which is in line with the decreased bacterial
diversity. Of interest is that many gut metabolites are
actually acidic components derived from bacterial
fermentation. The inherent trend within the metabolic data
of the CRC and NC groups was distinguished through a
principal component analysis (PCA) algorithm. The score

FIGURE 3 | Metabolomic signature of fecal samples from CRC and NC groups. (A) Pie chart illustrating the abundance ratio of different classes of metabolites
detected by targeted metabolic profiling in fecal samples from CRC patients and NC controls. (B) Stacked bar plot showing the relative abundance of different classes of
metabolites in both the control CRC and NC groups. *p < 0.05, **p < 0.01, ***p < 0.001. (C) Aggregate values for metabolite categories from CRC patients and NC
controls. *p < 0.05, **p < 0.01.
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plot of the PCA showed that the CRC group had a clear
tendency of separation from the NC group (Supplementary
Figure S3A). To better discriminate the fecal metabolic profiles
of the NC group and the CRC group, a supervised orthogonal
partial least squares discriminant analysis (OPLS-DA) was
constructed, which can enhance the separation between
groups of observations and improve the interpretation of
models. To this end, a clear separation with some overlap
was observed between these two groups in the selected
OPLS-DA model (Supplementary Figure S3B). The
goodness of fit (R2Y) and prediction ability (Q2) of this
model were 0.647 and 0.258, respectively, suggesting good
fitness and predictive ability of the OPLS-DA model
(Supplementary Figure S3C).

Identification of Metabolic Biomarkers
Based on the comparison of metabolites between the CRC and NC
groups, 53 individual metabolites that differed in abundance were
identified (Supplementary Figure S4). To avoid intergroup biases
and an uneven sample distribution, univariate analysis with the
Mann–Whitney-Wilcoxon test (p ≤ 0.05 and |log2FC| ≥ 0) further
narrowed down the metabolites to 39 identities, including 33
downregulated and six upregulated metabolites (Figure 4A).

To further identify the metabolic biomarkers of CRC, taking
the intersection of univariate analysis and orthogonal partial least
squares discriminant analysis (OPLS-DA) models, a total of 29
metabolites were selected as potential biomarkers (25 metabolites
were downregulated, and four metabolites were upregulated in
the CRC group) (Table 2; Figure 4B). First, five long-chain fatty
acids were distinguished, and three fatty acids, adrenic acid (p =
0.01, Q = 0.08), arachidonic acid (p = 0.02, Q = 0.09), and
decanoic acid (p = 0.01, Q = 0.08), were upregulated in the CRC
group (Figure 4C). In particular, the data are in agreement with a
previous report showing that decanoic acid may serve as a
biomarker for the diagnosis of early CRC (Uchiyama et al.,
2017). SCFAs, such as acetate, propionate, and butyrate, are
beneficial and downregulated in colorectal cancer (Hou et al.,
2022), while our results found that 3-hydroxyisovaleric acid (p =
0.02, Q = 0.10), which is a natural catabolite of leucine and can
regulate excessive inflammation (Cavallucci and Pani, 2021), was
actually downregulated in the CRC group. It is generally known
that bacterial enzymes convert tryptophan into indole and its
derivatives (Kumar et al., 2021), and our results showed a
significantly lower content of indoleacrylic acid (p = 0.007,
Q = 0.053) and a higher content of tryptophan (p = 0.03, Q =
0.13) in the CRC group. This paradoxical phenomenon might

FIGURE 4 | Identification of metabolites related to CRC. (A) Identification of dysregulated metabolites in CRC patients and NC controls. p-values were calculated
using the Mann–Whitney-Wilcoxon test. (B) Heatmap showing the relative content of dysregulated metabolites. (C) The 29 dysregulated metabolites were selected
based on the intersection of univariate analysis and OPLS-DA models. Significance was determined by the Mann–Whitney-Wilcoxon test. (D,E) ROC curve analysis of
upregulated metabolites (D) and the top five downregulated metabolites (E) in the CRC group. OPLS-DA, orthogonal partial least squares discriminant analysis;
ROC, receiver operating characteristic; A, colorectal cancer group; B, normal colorectal mucous membrane group.
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TABLE 2 | The potential metabolic biomarkers in CRC and NC groups.

Metabolite Class HMDB KEGG Uni_P Uni_FDR FC log2FC OPLSDA_VIP Negatively
associated
bacteria

Positively
associated
bacteria

3-Hydroxyisovaleric acid SCFAs HMDB0000754 NA 0.0265 0.1053 0.6258 −0.6763 1.7164 Campilobacterota NA
Euryarchaeota

4-Aminohippuric acid Benzoic acids HMDB0001867 D06890 0.0059 0.0431 0.4988 −1.0036 2.0604 Campilobacterota Firmicutes
Euryarchaeota
Bacteroidota

Adipic acid Fatty acids HMDB0000448 C06104 0.005 0.0431 0.2969 −1.7521 1.9343 NA Desulfobacterota
Adrenic acid Fatty acids HMDB0002226 C16527 0.0147 0.081 2.4847 1.313 1.1435 Desulfobacterota Patescibacteria

Chloroflexi
Arachidonic acid Fatty acids HMDB0001043 C00219 0.0231 0.0973 1.8146 0.8596 1.8683 Desulfobacterota Patescibacteria
Azelaic acid Fatty acids HMDB0000784 C08261 0.0028 0.0363 0.6015 −0.7333 1.3316 Campilobacterota Firmicutes

Bacteroidota
Fructose Carbohydrates HMDB0000660 C02336 0.0054 0.0431 0.5241 −0.9321 1.2895 Bacteroidota Firmicutes

Desulfobacterota Patescibacteria
Glucose Carbohydrates HMDB0000122 C00221 0.0174 0.0864 0.5383 −0.8935 1.8352 Verrucomicrobiota Firmicutes Patescibacteria

Euryarchaeota
Synergistota
Bacteroidota
Desulfobacterota

Ribulose Carbohydrates HMDB0000621 C00309 0.0014 0.0358 0.4524 −1.1445 2.0969 Euryarchaeota Firmicutes Patescibacteria
Synergistota
Bacteroidota
Campilobacterota

Xylose Carbohydrates HMDB0000098 C00181 9.0E-4 0.0358 0.6365 −0.6519 2.1046 Verrucomicrobiota Firmicutes Patescibacteria
Euryarchaeota
Synergistota
Bacteroidota
Desulfobacterota
Campilobacterota

Xylulose Carbohydrates HMDB0001644 C00310 0.0011 0.0358 0.4484 −1.1571 2.1097 Euryarchaeota Firmicutes Patescibacteria
Synergistota
Bacteroidota
Campilobacterota
Methylomirabilota

Decanoic acid Fatty acids HMDB0000511 C01571 0.0187 0.0867 1.7265 0.7879 1.2096 NA Synergistota
Actinobacteriota

Glycodeoxycholic acid Bile acids HMDB0000631 C05464 0.0033 0.0379 0.2335 −2.0986 1.0268 Proteobacteria Firmicutes
Hydroxypropionic acid Organic acids HMDB0000700 C01013 0.0026 0.0363 0.3883 −1.3649 1.392 Bacteroidota Firmicutes

Desulfobacterota Patescibacteria
Indoleacrylic acid Indoles HMDB0000734 NA 0.0077 0.0534 0.5234 -0.9341 1.0677 Fusobacteriota NA

Campilobacterota
isoLCA Bile acids HMDB0000717 C17658 0.0248 0.1012 0.2611 −1.9372 1.2815 Desulfobacterota Proteobacteria

Patescibacteria
alpha-Aminobutyric acid Amino acids HMDB0000452 C02356 0.0369 0.1317 0.4579 −1.127 1.042 Verrucomicrobiota Firmicutes Patescibacteria

Euryarchaeota
Bacteroidota
Desulfobacterota

Glutamic acid Amino acids HMDB0000148 C00025 0.0274 0.1059 0.7932 -0.3343 1.7331 Campilobacterota Firmicutes
Euryarchaeota
Bacteroidota

Isoleucine Amino acids HMDB0000172 C00407 0.0046 0.0425 0.542 −0.8835 1.0266 Bacteroidota Firmicutes
Desulfobacterota Patescibacteria

Actinobacteriota
(Continued on following page)
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reflect gut dysbiosis that impaired the tryptophan metabolic
pathway. In agreement with increased fatty acids in the feces
of CRC, short-chain carbohydrates, i.e., monosaccharides such as
xylulose (p = 0.001, Q = 0.035), xylose (p = 0.0009, Q = 0.035),
ribulose (p = 0.01, Q = 0.08), fructose (p = 0.005, Q = 0.04), and
glucose (p = 0.01, Q = 0.08) were decreased, which may be due to
increased fermentation by gut microbes in CRC. Moreover, the
top three identified metabolomic pathways in CRC (p < 0.05)
were starch and sucrose metabolism, pentose and glucuronate
interconversions, and aminoacyl-tRNA biosynthesis, of which
the starch and sucrose metabolism pathways were the most
notable (Supplementary Table S3; Supplementary Figure S5).

To summarize the metabolism alterations according to the
progressive stage of CRC, we classified the cancer stage according
to the TNM staging system of the eighth edition of the American
Joint Committee on Cancer (AJCC) cancer staging manual and
further identified the differential metabolites in different TNM
stages. Previously, we found that monosaccharides were
significantly reduced in the CRC group, but this phenomenon
was not found in the progressive stage of CRC. We found that the
SCFAs (butyric acid, isovaleric acid, ethylmethylacetic acid, and
acetic acid), carnitine, indole-3-carboxylic acid, 4-
hydroxyphenylpyruvic acid, and penylpyruvic acid decreased
gradually with tumor progression (Supplementary Table S4).
However, the specific mechanism underlying these differences
requires further study.

Next, we assessed the potential of the dysregulated metabolites
to serve as CRC diagnostic biomarkers. A ROC curve analysis
indicated that the four upregulated metabolites, including adrenic
acid (area under the curve (AUC), 0.676; p = 0.01), arachidonic
acid (AUC, 0.663; p = 0.02), decanoic acid (AUC, 0.669; p =
0.002), and tryptophan (AUC, 0.652; p = 0.03), were significantly
associated with CRC patients (Figure 4D) while the five
downregulated metabolites, including xylose (AUC, 0.735; p =
0.0008), xylulose (AUC, 0.731; p = 0.001), ribulose (AUC, 0.727;
p = 0.001), N-acetyl-D-glucosamine (AUC, 0.722; p = 0.006), and
indoleacrylic acid (AUC, 0.692; p = 0.01), were significantly
associated with NC controls (Figure 4E). Therefore, these
results suggest the potential diagnostic value of the fecal
metabolic signature in CRC risk stratification. These results
thus illustrate the changing energy metabolism by gut
microbes in CRC patients.

Correlation Between the Altered
Metabolites and Gut Microbiome
To further investigate the correlation between gut microbial
dysbiosis and altered fecal metabolites, Spearman’s correlation
coefficients were calculated between the 29 potential metabolic
biomarkers and microbial communities at the phylum, genus,
and species levels. At the phylum level, Firmicutes was positively
correlated with the fermentation of carbohydrates and amino
acids, and Bacteroidetes was negatively correlated with the use of
carbohydrates, amino acids, and organic acids. Campilobacterota,
which causes bacterial diarrheal illness, was negatively correlated
with pyroglutamic acid and glutamic acid, while Desulfobacterota
was negatively correlated with tryptophan, arachidonic acid, andT
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alpha-aminobutyric acid, and Patescibacteria was positively
correlated with alpha-aminobutyric acid (Figures 5A, B). At
the genus level, 29 bacterial taxa were significantly associated
with 22 fecal metabolites (Figures 5C, D). At the species level, we

further explored the significantly differentially abundant
bacterial-associated metabolic biomarkers. The results revealed
that Parvimonas was positively correlated with the production of
adrenic acid, and Fusobacterium was negatively correlated with

FIGURE 5 | Spearman’s rank correlation between metabolites and gut microbiota in CRC and NC groups. A network diagram and heatmap demonstrating the
correlation between differential metabolites and bacteria at the phylum, genus, and species levels. Spearman rank correlation coefficient, *: p < 0.05. Red represents a
positive correlation, while blue and green represent a negative correlation.
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indoleacrylic acid, which are both CRC-associated oral pathogens
that have been known for a long time (Sun J et al., 2020).
Ruminococcus bicirculans, a new Firmicutes species belonging
to the dominant human colonic microbiota (Wegmann et al.,
2014), was negatively correlated with arachidonic acid and
tryptophan. In addition, we focused on Bacteroides fragilis
because it promotes CRC progression via multiple
mechanisms, such as weakening adherence junctions,
breakdown of the extracellular matrix, and reorganization of
the cytoskeleton (Li et al., 2021). Enterotoxigenic Bacteroides
fragilis (ETBF) produces Bacteroides fragilis toxin, which has been
associated with acute diarrheal disease, inflammatory bowel
disease, and colorectal cancer (CRC) (Henstra et al., 2021). In
this study, we found that Bacteroides fragilis was significantly
enriched in the CRC group, showing moderate to strong negative
correlations with the metabolism of ribulose, xylose,
hydroxypropionic acid, 4-aminohippuric acid, nicotinic acid,
and acetic acid. In contrast, Blautia was significantly increased
in the NC group and showed moderate positive correlations with
ribulose, N-acetyl-D-glucosamine xylulose, and fructose (Figures
5E, F). Collectively, these results showed a strong correlation
between gut microbiome disorders and metabolic alterations in
CRC patients, suggesting that CRC may cause gut microbiota
dysbiosis, which results in dramatic shifts in host metabolite
abundance.

DISCUSSION

The gut microbiome is essential for health, while dysbiosis is
related to various diseases, including metabolic syndrome,
diabetes, obesity, neurodegenerative disease, and cancers,
including colorectal carcinogenesis (Sheikh et al., 2021). A
healthy gut environment is characterized by a balance of
bacterial communities and their favorable metabolic action
(Nie et al., 2019). The effects of gut microbiota on health and
disease modulation are mainly through their metabolites, such as
secondary bile salts from primary bile salts, hydrogen sulfide,
TMAO, and indoxyl sulfate, which may promote chronic
inflammation and facilitate CRC (Han et al., 2020).
Specifically, the intricate interplay among the intestinal flora,
metabolites, chronic inflammation or immune responses, host
genetics, and essential environmental factors jointly contributes
to the development of colon tumors (Chen and Chen, 2021).
Bacterial metabolites may serve as nutrients harvested from
debris in the colon and may have protective roles in
maintaining the epithelial barrier and immune homeostasis.
For instance, SCFAs are well-known for their potential to
stimulate regulatory T cells to maintain the intestinal
tolerogenic state (Kim, 2021). In contrast, an unbalanced diet
and host intestinal transformation may produce detrimental gut
metabolites to promote cancer progression (Shock et al., 2021).

In this study, through a combination of 16S rDNA sequencing
and UPLC–MS/MS techniques, we investigated the correlation
between the microbiota and their metabolites in CRC patients
and NC controls. Through these approaches, we found that both
the diversity and richness of gut flora were reduced in CRC

patients, and we also identified specific bacteria in association
with CRC. In line with a previous report (Gagnière et al., 2016),
we also detected higher levels of Campylobacter, Bacteroidetes,
and Fusobacteria in CRC patients with local recruitment,
suggesting that common core microbes are associated with
CRC development. Moreover, the Prevotella genus and species
of Bacteroides fragilis are known for their roles in promoting
inflammation and CRC development (Bundgaard-Nielsen et al.,
2019), which was further confirmed in this study.We noticed that
decreased levels of monosaccharides are related to the production
of long-chain fatty acids in association with decreased levels of
Firmicutes in CRC patients. We, therefore, speculate that the
alteration in mucosal carbohydrate availability may be caused by
the disruption of the resident microbiota, which could be a
possible mechanism employed by the microbiota for tumor
growth (Rakoff-Nahoum et al., 2014). Conversely, Blautia and
Lachnospiracaea were significantly enriched in NC controls.
Blautia is a genus of anaerobic bacteria with probiotic
characteristics, which may be beneficial for host health and
alleviate metabolic syndrome. Conversely, Fusobacterium,
Bacteroides, Parvimonas, and Prevotella along with increased
Firmicutes were associated with CRC and hepatocellular
carcinoma patients, while the underlying mechanism remains
elusive (Chen T et al., 2021; Liu X et al., 2021). Lachnospiraceae is
the main producer of butyrate, which is known for its capacity to
suppress the motility of colorectal cancer cells by deactivating
Akt/ERK signaling in a histone deacetylase dependent manner (Li
et al., 2017; Zhang et al., 2019). In our study, the abundance of
Blautia and Lachnospiraceae was lower in CRC fecal samples,
which may reflect the unique environmental and genetic
background of our local recruitment.

Cancer cells have an altered metabolic state that supports their
growth, for example, aerobic glycolysis, known as the Warburg
effect. CRC cells were reported to exhibit the Warburg effect
leading to dysfunctional mitochondria (Ohshima et al., 2022). In
our study, the levels of many monosaccharides, such as xylose,
xylulose, ribulose, and N-cetyl-D-glucosamine, were relatively
low in CRC patients, which may reflect the enhanced glycolysis
and production of fatty acids, such as adipic acid, adrenic acid,
arachidonic acid, and azelaic acid. Similar results were found in
mouse liver cancer models, and one study showed that a switch
from oxidative phosphorylation to glycolysis in the Warburg
effect was invariably accompanied by a marked decline in fatty
acid oxidation and a reciprocal increase in the activity of pyruvate
dehydrogenase, which links glycolysis to the TCA cycle (Wang
et al., 2019). This study also found that the survival benefits of
high-fat diets in cancer patients are due to a reversal of the
Warburg effect and other tumor-associated metabolic and cell
cycle abnormalities. Thus, it is possible that fatty acid oxidation
may inhibit glycolysis in cancer cells. Tryptophan catabolism in
cancer is recognized as an important microenvironment
modulator that alleviates antitumor immune responses. It has
been reported that cancer cells create an immunosuppressive
milieu in tumors and tumor-draining lymph nodes by inducing
T cell anergy and apoptosis through depletion of tryptophan and
accumulation of immunosuppressive tryptophan catabolites
(Fiore and Murray, 2021). In our study, fecal tryptophan was
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significantly increased in CRC patients. It has been reported that
the fecal tryptophan indole pathway is impaired in colorectal
cancer and that indole-related bacteria may lead to
downregulation of the tryptophan indole metabolic pathway
(Sun XZ et al., 2020). We noticed a linkage of increased levels
of fecal tryptophan associated with Ruminococcus bicirculans and
Fusobacterium in our study for decreased production of indole.
Arachidonic acid is an important polyunsaturated fatty acid for
cell signaling, and cells metabolize arachidonic acid to adrenic
acid via 2-carbon elongation reactions. Similar to arachidonic
acid, adrenic acid can be converted into multiple oxygenated
metabolites, which are involved in various physiological and
pathophysiological processes (Galano et al., 2015), such as
iron-catalyzed necrosis, referred to as ferroptosis (Lee et al.,
2020). Iron-dependent cancer cells are more vulnerable to
ferroptosis (Hassannia et al., 2019). In this study, we observed
that arachidonic acid and adrenic acid were strongly upregulated
in CRC patients and were positively correlated with the
pathogenic bacteria (e.g., Parvimonas, Solobacterium moorei,
and Acinetobacter baumannii). These data may illustrate that
the metabolite changes that are modulated by the gut microbiota
could be involved in ferroptosis. Decanoic acid, an upregulated
metabolite, is a valuable diagnostic biomarker for early CRC
(Crotti et al., 2016; Uchiyama et al., 2017), which is in
concordance with our data.

Although we detected a disease-associated signature in
CRC fecal specimens, these findings must be viewed as
preliminary and limited, and the difference in metabolite
abundance needs to be validated in a larger independent
cohort. Another limitation is that we did not collect
detailed information on dietary intake, which may be an
additional confounder to our data. Despite these
limitations, we were able to describe the alterations of the
gut microbiome and fecal metabolome in CRC patients in
comparison with healthy volunteers, and further
documentation may have the potential for the prevention,
diagnosis, and treatment of CRC.

CONCLUSION

We present evidence showing altered metabolites and the
microbiome in CRC feces, and we also demonstrated the
correlation between gut microbial dysbiosis and altered fecal
metabolites. Specifically, we identified several bacterial species
(e.g., Bacteroides fragilis and Veillonella parvula) strongly
associated with colorectal cancer development and
hypothesized that fatty acid oxidation may inhibit glycolysis in
cancer cells. Meanwhile, we also noticed that the metabolite
changes that are modulated by the gut microbiota could be

involved in ferroptosis and a linkage of increased levels of
fecal tryptophan with Ruminococcus bicirculans and
Fusobacterium. In conclusion, our results support the notion
that fecal microbial and metabolic biomarkers have great
potential for clinical practice and that further studies are
needed to investigate the role of such biomarkers in CRC
diagnostics and management.
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