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Advent of Next Generation Sequencing has led to possibilities of de novo transcriptome assembly of organisms
without availability of complete genome sequence. Among various sequencing platforms available, Illumina is
the most widely used platform based on data quality, quantity and cost. Various de novo transcriptome assem-
blers are also available today for construction of de novo transcriptome.
In this study,we aimed at obtaining an amelioratedde novo transcriptome assemblywith sequence reads obtain-
ed from Illumina platform and assembled using Trinity Assembler.We found that, primary transcriptome assem-
bly obtained as a result of Trinity can be ameliorated on the basis of transcript length, coverage, and depth and
protein homology. Our approach to ameliorate is reproducible and could enhance the sensitivity and specificity
of the assembled transcriptome which could be critical for validation of the assembled transcripts and for plan-
ning various downstream biological assays.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Data files

Accession Title Source
name

Organism Treatment
SRR1238087 Mixed-feeding
5th instar-
antennae

SRX516834 Helicoverpa
armigera

Cultured on artificial
diet containing the
Cry1Ac protoxin of
Bacillus thuringiensis

SRR1238089 Mixed-feeding
5th instar-
mouthpart

SRX516871 Helicoverpa
armigera

Cultured on artificial
diet containing the
Cry1Ac protoxin of
Bacillus thuringiensis

SRR1238090 Male-adult-
tarsus

SRX516872 Helicoverpa
armigera

Cultured on artificial
diet containing the
Cry1Ac protoxin of
Bacillus thuringiensis

SRR1239328 Female-adult-
tarsus

SRX518085 Helicoverpa
armigera

Cultured on artificial
diet containing the
Cry1Ac protoxin of
Bacillus thuringiensis

SRR1239329 Mixed feeding
5th instar
fat body

SRX518086 Helicoverpa
armigera

Cultured on artificial
diet containing the
Cry1Ac protoxin of
Bacillus thuringiensis

SRR1239330 Female adult
abdomen

SRX518087 Helicoverpa
armigera

Cultured on artificial
diet containing the
Cry1Ac protoxin of
Bacillus thuringiensis
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(continued)

Accession Title Source
name

Organism Treatment

SRR1239331 Female adult
head wei

SRX518088 Helicoverpa
armigera

Cultured on artificial
diet containing the
Cry1Ac protoxin of
Bacillus thuringiensis

SRR1239333 Female adult
head wei DSN

SRX518089 Helicoverpa
armigera

Cultured on artificial
diet containing the
Cry1Ac protoxin of
Bacillus thuringiensis

SRR1239334 Male adult
head wei

SRX518090 Helicoverpa
armigera

Cultured on artificial
diet containing the
Cry1Ac protoxin of
Bacillus thuringiensis

SRR1239335 Male adult
head wei
DSN

SRX518091 Helicoverpa
armigera

Cultured on artificial
diet containing the
Cry1Ac protoxin of
Bacillus thuringiensis

Table 1
Distribution of reads based onquality score fromeach library indicatingpercentage of high
quality and low quality reads.

Sample ID HQ reads Low quality reads

SRR1238087 47,523,826 (99.69%) 148,556 (0.31%)
SRR1238089 49,202,920 (99.68%) 160,166 (0.32%)
SRR1238090 49,791,084 (99.68%) 160,610 (0.32%)
SRR1239328 46,376,028 (99.76%) 113,622 (0.24%)
SRR1239329 48,642,138 (93.75%) 3,244,266 (6.25%)
SRR1239330 31,475,588 (91.96%) 2,753,084 (8.04%)
SRR1239331 66,399,420 (94.23%) 4,065,716 (5.77%)
SRR1239333 32,605,304 (93.83%) 2,142,264 (6.17%)
SRR1239334 56,840,276 (91.69%) 5,151,868 (8.31%)
SRR1239335 42,943,308 (94.27%) 2,612,200 (5.73%)
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2. Material and methods

Deep sequencing based whole transcriptome data for reanalysis
was obtained from NCBI SRA (Sequence Read Archive) with the link
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByStudy/sra/SRP/
SRP041/SRP041166 [1]. Raw data was obtained in SRA format and fur-
ther converted to FASTq format using SRA Tool kit (version 2.4)
(http://www.ncbi.nlm.nih.gov/Traces/sra/) [2].

2.1. Raw data summarization

Paired End FASTq files were subjected to standard quality control
using NGSQC Tool Kit [3] with the following command:

perl IlluQC_PRLL.pl -c 10 -pe SRR1238087_R1.fastq SRR1238087_R2.fastq
Adapter.txt A –o “Output Folder Name”.

For each paired end data 10 core threads of processing with 2.4 GHz
speed with default memory allocation were provided.

2.2. Transcriptome assembly

All the 10 HQ filtered paired end libraries were subjected to pooled
de-novo transcriptome assembly as followed in the original manuscript
[1]. Evaluation ofmultiple assemblers for de novo transcriptome assem-
bly was already done and results are available [4,5,6]. For this study we
chose to gowithDe brijn graph based Trinity Assembler [7] based on the
criteria of a) default K-mer, b) less memory foot print, c) optimized for
Illumina paired end data, d) reproducibility and e) configurable for all
computing capacities. The following command was used to initiate the
pooled assembly using Trinity.

Trinity\

– seqType fq\
– JM 600G\
– left/data/Projects/RNASeq/Pooled_Reads/R1.fastq\
– right/data/Projects/RNASeq/Pooled_Reads/R2.fastq\
– CPU 50\
– min_contig_length 200\
– output/data/Projects/RNASeq/Pooled_Reads/Helicoverpa\
– min_kmer_cov 2\
– bflyHeapSpaceMax 50G\
– bflyHeapSpaceInit 10G

For the pooled assembly 50 core threads of processing with 2.4 GHz
speed and a maximum Heap Space of 50 GB were allotted.
2.3. Assembly validation

Since de novo transcriptome assemblers are capable of producing in
fragmented/mis-assembly, validation of the assembled transcriptome is
done bymapping back the HQ filtered reads to the ESTs. Bowtie [8] was
used to map the HQ filtered reads from each library to the assembled
transcriptome using the following parameters.

perl TRINITY_HOME/util/align_and_estimate_abundance.pl \
– transcripts TrinityMergedAssembly.fasta \
– seqType fq \
– left SRR1238087_R1.fastq_filtered \
– right SRR1238087_R2.fastq_filtered \
– est_method RSEM \
– aln_method bowtie \
– thread_count 10

2.4. Transcript quantitation, coverage and depth analysis

Assembly validated .bam(Binary SequenceAlignment/Map)filewas
processed using bedtools [9] and samtools [10] for quantitation (read
count estimation) for each transcript in a library and also to calculate
the total coverage and average depth of the transcriptome in each
library.

For quantitation the following parameters/command was used.

samtools idxstats SRR1238087.bowtie.csorted.bam N SRR1238087.
bowtie.csorted.bam.idxstats

For calculating each transcript coverage and its average depth corre-
sponding bedGraph file was generated using the following the parame-
ters/command.

genomeCoverageBed -ibam SRR1238087.bowtie.csorted.bam -bga N

SRR1238087.bedgraph

From the resultant bedGraph file, the following formulae were used
to calculate coverage and average depth.

Average Depth ¼ Number of Reads Mapped½ � � Read Length½ �
Length of Transcript

Coverage ¼ Mappapalbe Transcript Length
Length of Transcript

� �
� 100

2.5. Analysis of transcriptome integrity

While doing merged assembly multiple transcripts might arise due
to errors in assembly. In our approach, we performed transcriptome in-
tegrity analysis based on read count, coverage and average depth on an
intra- and inter-library specific manner. Correlation coefficient graphs

ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByStudy/sra/SRP/SRP041/SRP041166
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByStudy/sra/SRP/SRP041/SRP041166
http://www.ncbi.nlm.nih.gov/Traces/sra/


Fig. 1. Histogram representation of high quality and low quality reads from each individual library.

Table 2
Statistics of merged de novo transcriptome sequence assembly using
Illumina paired end reads using Trinity Assembler 2014 release.

Number of transcripts 74,966
Transcriptome size (Mb) 78.61
Mean (bp) 1049
Stdev (bp) 1319
Median (bp) 472
Smallest (bp) 201
Largest (bp) 29,186
N50 length (bp) 2123

Fig. 2. Histogram representation of abundance of putativ
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were plotted to understand the variations between the libraries that
could be indicative of whole transcriptome integrity. Isotig analysis of
validated transcriptome based on length was also done to estimate
the transcriptome integrity.

2.6. Transcript annotation

Homology based annotation for each transcript was done against
NCBI nrdb (Dec 2014) protein database using Blastx. Annotation and
statistical ranking of the results were done using Blast2GO [11]. Also
e assembled transcripts based on their length range.



Table 3
Alignment statistics indicative of reads aligned to the assembled transcriptome as a result
of standard parameters used in Trinity Assembler.

Sample ID Aligned reads Unaligned reads

SRR1238087 34,972,638 (73.36%) 12,551,188 (26.33%)
SRR1238089 36,915,066 (74.78%) 12,448,020 (25.22%)
SRR1238090 37,346,712 (74.77%) 12,604,982 (25.23%)
SRR1239328 33,406,742 (71.86%) 13,082,908 (28.14%)
SRR1239329 32,489,850 (62.62%) 19,396,554 (37.38%)
SRR1239330 23,811,380 (69.57%) 10,417,292 (30.43%)
SRR1239331 53,009,538 (75.23%) 17,455,598 (24.77%)
SRR1239333 25,688,662 (73.93%) 9,058,906 (26.07%)
SRR1239334 45,313,564 (73.1%) 16,678,580 (26.9%)
SRR1239335 34,384,314 (75.48%) 11,171,194 (24.52%)
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domain level annotation was performed using the Online InterProScan
tool [7] RunIprScan-1.1.0 (http://michaelrthon.com/runiprscan/).

Blastx and Blast2GO parameters used are

e-Value b= 10−e4
Similarity ≥ 35%
Annotation cutoff ≥ 55
GO weight cutoff ≥ 5.

2.7. Normalization and expression profiling

Primary advantage of using NGS based transcriptome profiling is to
identify sample/condition specific expressed transcripts which is not
easy with earlier hybridization methods. Transcripts with a read count
≥10 in any one of the library was considered to be as likely expressed.
A sub .bam file was created from the master .bam file based on the
Fig. 3. HQ read alignment to
above criteria. The sub .bam file was subjected to normalization and ex-
pression profiling using RSEM software [12]. The following parameters/
commands were used to normalize each library.

rsem-prepare-reference\

–no-polyA\
–no-bowtie\
ValidTranscripts.fasta\
Harmigera_RSEM

/data/Program/rsem-1.2.12/rsem-calculate-expression\
–paired-end\
-p 8\
–bam\
SRR1238087.bowtie.csorted.bam\
Harmigera_RSEM\
SRR1238087

RSEM software provides an output for each library with expected
normalized read count, TPM (tags per million) and FPKM (fragments
per kilobase per million). Log to the base 2 of FPKM was considered as
absolute expression or Delta CT equivalent value.

3. Results

3.1. Raw data summarization and transcriptome assembly

Quality control of individual libraries usingNGSQC tool kit revealed an
average of 95.85% HQ reads based on Q20 score. Total number of HQ
reads on an average per library was ~47 million, indicating significant
amount of reads to proceed with transcriptome assembly (Table 1,
Fig. 1). HQ paired reads from all the libraries were merged and provided
putative transcriptome.

http://michaelrthon.com/runiprscan/
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as input to Trinity Assembler V2014. Transcriptome assembly performed
with parameters as outlined resulted in assembly of 74,966 putative tran-
scripts with an overall size of 78.61 Mb. N50 of the assembled tran-
scriptome was 2.12 kb. Transcript length distribution analysis revealed
51.79% of the transcript length less than 500 bases. This is a typical obser-
vation of most of the de novo transcriptome assemblies using Illumina
short read deep sequencing approach [13,14,15] (Table 2, Fig. 2).

3.2. Validation of putative assembled transcriptome and quantitation

A merged de novo assembly is expected to provide representative
transcriptome of transcripts from individual libraries. This would be ev-
ident from mapping the reads from each library to the putative tran-
scriptome to validate the build. In our approach too, we mapped/
aligned the reads back to the putative transcripts from the assembly
to understand if there is any library specific bias (enrichment or deple-
tion). Copy number of each transcript from each library was also mea-
sured to understand any copy number specific bias that could arise
due to upstream sample preparation artifacts. We observed on an
Table 4
Matrix representation of depth vs coverage of individual libraries with highlight on transcripts

SRR1238087 Transcript coverage

Avg depth 0 % to 10 % 20% to 60% ≥70%

<5 27,744 13,012 10,519

5–10 0 1268 4465

>10 0 1065 16,893

SRR1238089 Transcript coverage

Avg depth 0 % to 10 % 20% to 60% ≥70%

<5 30,065 13,728 9757

5–10 0 1165 3697

>10 0 1108 15,446

SRR1238090 Transcript coverage

Avg depth 0 % to 10 % 20% to 60% ≥70%

<5 25,995 16,601 10,750

5–10 0 1305 4260

>10 0 1282 14,773

SRR1239328 Transcript coverage

Avg depth 0 % to 10 % 20% to 60% ≥70%

<5 26,990 17,107 9547

5–10 0 1284 4397

>10 0 1158 14,483

SRR1239329 Transcript coverage

Avg depth 0 % to 10 % 20% to 60% ≥70%

<5 37,003 14,329 7282

5–10 0 304 4470

>10 1 253 11,324
average of 72% of HQ reads from each library mapped to the putative
transcriptome (Table 3, Fig. 3).

3.3. Analysis of transcriptome integrity and refinement

HQ aligned reads were subjected to integrity analysis with reference
to coverage and average depth ratio in each library. Coveragewas calcu-
lated as percentage of the transcript length supported by aligned reads
and average depth was calculated as number of bases supporting each
nucleotide in a transcript. We found that a total of 37,930 transcripts
(50.59%) were covered at ≥70% with an average depth of 5× in one or
more of the libraries (Table 4). Further, we subjected the 37,930 tran-
scripts to length and annotation analysis to establish the integrity and
refinement. We observed the minimal transcript length of 201 bases
and maximum to be 29.18 kb with an average length of 1.19 kb. A
total of 15,197 out of 37,930 transcripts got assigned to a protein
based on homology at protein level (Fig. 4). Comparative analysis of as-
sembled and ameliorated transcriptome on the basis of length, cover-
age, depth and annotation showed clear improvement in the assembly
with ≥70% coverage and ≥5× depth.

SRR1239330 Transcript coverage

Avg depth 0 % to 10 % 20% to 60% >=70%

<5 31,602 15,157 7484

5–10 1 287 4713

>10 0 223 15,499

SRR1239331 Transcript coverage

Avg depth 0 % to 10 % 20% to 60% ≥70%

<5 22,098 14,629 11,828

5–10 0 256 6240

>10 0 225 19,690

SRR1239333 Transcript coverage

Avg depth 0 % to 10 % 20% to 60% ≥70%

<5 38,465 19,646 4166

5–10 0 680 3728

>10 0 498 7783

SRR1239334 Transcript coverage

Avg depth 0 % to 10 % 20% to 60% ≥70%

<5 33,607 17,915 7333

5–10 0 445 4438

>10 0 381 10,847

SRR1239335 Transcript coverage

Avg depth 0 % to 10 % 20% to 60% ≥70%

<5 25,890 16,703 10,583

5–10 0 281 5897

>10 0 222 15,390



Fig. 4. a — Distribution of assembled transcripts with reference to length and their annotation with NRDB representing noise of smaller transcripts. b— Distribution of ameliorated tran-
scripts with reference to length and their annotation with NRDB shows nice correlation by reducing noise of smaller length transcripts.
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process (Fig. 5). Isotig analysis of assembled transcriptome and amelio-
rated transcriptome also showed significant improvement in the quality
of the transcriptome build (Fig. 6).
3.4. Expression profiling, Gene Ontology and Pathway enrichment of
ameliorated transcriptome

Normalization of assembled transcriptome and ameliorated tran-
scriptome was done as per the discussed method. Box plot representa-
tion of both the transcriptome showed significant difference in the
ameliorated global expression profile in comparison to assembled tran-
scriptome (Fig. 7). Ameliorated transcriptome was subjected to Gene
Ontology and Pathway analysis as discussed in the methods to identify
key enriched gene ontology categories and pathways. Top 10 GO cate-
gories were found to represent essential biological processes (Fig. 8).
Complete assembled and annotated transcriptome along with tran-
script length, read count, depth and coverage is provided along with
the transcriptome sequence (Supplementary Files 1 and 2).
4. Discussion

Next Generation Sequencing based gene expression studies enable
faster and cheaper data generation. Illumina is thewidely used sequenc-
ing platform for whole transcriptome studies. Since the advent of novel
sequencing methodologies, de novo transcriptome sequencing is the
method of choice for conducting spatial, temporal and condition specific
gene expression profiling in both non-model and model organisms.

With hundreds of de novo transcriptomes published with majority
using Illumina sequencing platform, the integrity and resolution of
the assembled transcriptome remain un-addressed. The choice of the
platform, assembler and sample size and study design largely determines
the sensitivity and specificity of the assembled transcriptome. The most
important step in de novo RNA-seq analysis is the assembly of the se-
quencer generated short reads into full-length transcripts. Among the
well-known, publicly available software's for de novo transcriptome se-
quence assembly are: Trinity, Velvet-Oases, SOAPdenovo-trans assem-
bler and the Trans-ABySS. Trans-ABySS, SOAPdenovo-trans and Velvet-
Oases are extensions of the pre-developed genome assembler programs.



Fig. 5. Species distribution of assembled transcriptome and ameliorated transcriptome [Top 10].
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The Illumina based Trinity Assembler is the most widely used tool that
was developed primarily for de novo RNA-seq data assembly.

In case of a multiple sample study involving analysis of the differen-
tially expressed genes it is recommended to combine all the reads from
independent samples and obtain a merged assembly [16]. Thus obtain-
ed merged assembly has a representation of all the transcripts in the
given set of samples allowing for a true differential expression analysis.
Although Trinity is among the most efficient tools for reconstructing
transcripts in the absence of a reference sequence yet number of
Fig. 6. Isotig analysis with respect to assembled tr
limitations has been encountered with this assembler. The first among
them is the lack of reproducibility. Second are the high rate of false pos-
itives in the assembly ranging from 20 to 30% and the presence of large
number of fusion transcripts as well as partial transcripts. Third, the
number of obtained transcripts is too high compared to the expected
number in the particular organism in the study. As a result the number
of annotated transcripts is observed to be very hugely different in every
experiment in the range of 40–90%. The high degree of variability in the
results is evidenced by a low validation score.
anscriptome and ameliorated transcriptome.



Fig. 8. Top 10 GO categories were found to represent essential biological processes.

Fig. 7. Global expression profiling of ameliorated transcriptome (post-amelioration) in comparison to complete expression profile (pre-amelioration) represented in Box Plot.
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In this study we attempted to benchmark various parameters when
taken into consideration, could result in enhancing the sensitivity and
specificity of the assembled transcriptome, considering Illumina as the
sequencing platform of choice and Trinity as the assembler of choice.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2015.07.012.
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