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The availability of omic data produced from international consortia, as well as from
worldwide laboratories, is offering the possibility both to answer long-standing questions
in biomedicine/molecular biology and to formulate novel hypotheses to test. However,
the impact of such data is not fully exploited due to a limited availability of multi-omic
data integration tools and methods. In this paper, we discuss the interplay between
gene expression and epigenetic markers/transcription factors. We show how integrating
ChIP-seq and RNA-seq data can help to elucidate gene regulatory mechanisms. In
particular, we discuss the two following questions: (i) Can transcription factor occupancies
or histone modification data predict gene expression? (ii) Can ChIP-seq and RNA-seq data
be used to infer gene regulatory networks? We propose potential directions for statistical
data integration. We discuss the importance of incorporating underestimated aspects
(such as alternative splicing and long-range chromatin interactions). We also highlight the
lack of data benchmarks and the need to develop tools for data integration from a statistical
viewpoint, designed in the spirit of reproducible research.
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INTRODUCTION
High-throughput technologies have made the collection of
genome-wide data in cells, tissues and model organisms easier
and cheaper. These data allow one to investigate biological
aspects of cell functionality and to better understand previ-
ously unexplored disease etiologies. Nowadays, RNA-seq and
ChIP-seq are widely used to measure gene expression and to
obtain genome-wide maps of transcription factor (TF) occupan-
cies and epigenetic signatures (Park, 2009; Wang et al., 2009;
Costa et al., 2010; Ozsolak and Milos, 2011; Furey, 2012).
Several computational tools have been developed to indepen-
dently analyze these data, both for single sample character-
ization and differential analysis (Pepke et al., 2009; Garber
et al., 2011; Bailey et al., 2013). The interplay between tran-
scriptomics and epigenomics has been widely demonstrated.
Chromatin accessibility to the transcription machinery regu-
lates gene expression and, viceversa, some non-coding RNAs
can affect local chromatin states (Wang et al., 2011b). Such
interplay has significant biomedical implications in physio-
logical processes and pathologic states (Feng et al., 2014).
Therefore, integrating ChIP-seq and RNA-seq data is a com-
pelling need to predict gene expression during cell dif-
ferentiation and development (Comes et al., 2013; Lesch
et al., 2013; Malouf et al., 2013; Jiang et al., 2014; Kadaja
et al., 2014) and to study human diseases, including cancer
(Portela and Esteller, 2010).

The seminal work of Hawkins et al. (2010) explained
why integrative omic data analysis can provide unprecedented
opportunities to address some long-standing questions about
genome functions and diseases. To date, large-scale data pro-
duced by ENCODE/GENCODE (ENCODE Project Consortium.,
2012; Harrow et al., 2012), Cancer Genome Atlas (http://
cancergenome.nih.gov/), Roadmap Epigenomics (http://www.

roadmapepigenomics.org) offer the possibility to answer specific
questions, as well as to raise, formulate and test novel hypotheses
and questions in life science. However, despite the pros, multi-
omic data integration is still one of the most challenging problems
in modern science (Gomez-Cabrero et al., 2014).

In this paper we discuss the following questions: (i) how
to explain and predict gene expression (and differential expres-
sion) and (ii) how to define gene regulatory network (GRN) in
humans or model organisms using epigenetic data (Figure 1).
Section Gene regulation and its impact in biology and medicine
describes the biological context. Section An overview on ChIP-
seq and RNA-seq data integration approaches and tools con-
tains an overview of data visualization and integration tools.
Section Statistical solutions to some biological questions illus-
trates the most recent statistical advances for ChIP-seq and RNA-
seq data integration. Finally, Section Open biological questions
and future perspectives enlightens our perspective view on the
open biological questions and the tools that need to be developed
in the next years. Section Conclusions reports our conclusions.
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FIGURE 1 | (A) Schematic representation of the dynamic interactions among
chromatin modifications and TFs, and their impact on gene transcription in a
cell. Different cells share the same TF binding sites despite of differences in
functionality, shape and differentiation state. Transcriptional patterns are
controlled by differential TF bindings and other factors, such as local
chromatin states and epigenetic modifications. These factors can limit, or
promote, TF occupancies at specific loci, and regulate gene transcription. (B)

Each NGS coverage data track (bedgraph format) is representative of the
result of a single omic data analysis (i.e., ChIP-seq or RNA-seq experiments).
The visualization of several tracks allows qualitatively studying a specific gene
locus. The computational analysis of single omics allows investigating (on a
genome-wide scale) different epigenetic modifications (TFs, HMs, CpG
methylation, chromatin accessibility) and measuring gene expression. (C)

When a limited amount of ChIP-seq (TF binding and/or HMs) and RNA-seq
datasets are available, simple predictive models based on PCA and log-linear
or support vector regression are used to predict gene expression and to
reveal the most relevant epigenetic signatures able to explain the gene
expression. By plotting loading factors it is possible to reveal that epigenetic
signatures can act either as activators or repressors of transcription at
different loci (see Section Can TF occupancies or histone modification data
predict gene expression?). (D) In the presence of a large number of gene
expression datasets more sophisticated models can be used to infer complex
GRNs. This network allows visualizing TF-gene relations. In particular, it is
possible to show that a given TF can control several genes and that genes
are strongly interconnected (see Section Can ChIP-seq and RNA-seq data be
used to infer gene regulatory networks?).

GENE REGULATION AND ITS IMPACT IN BIOLOGY AND
MEDICINE
The sole nucleotide sequence of a gene does not explain its
functions nor its regulation. Gene transcription is specified by
DNA structure and by its accessibility to the basal transcription
machinery. A physical interaction of TFs, chromatin-modifying
enzymes (histone acetyl/methyltransferases and deacety-
lases/demethylases) and other accessory proteins with DNA is
needed to modulate transcription dynamics, determining cell
fate (Atkinson and Halfon, 2014). Local chromatin states and
epigenetic modifications can limit, or promote, TF occupancies
at specific loci. Several diseases can result from the alteration
of chromatin remodeling and gene transcription (Portela and
Esteller, 2010). Thus, understanding—and controlling—such

processes may help to define potential therapies, as well as to
drive cell differentiation toward specific directions.

Many efforts have been made to measure transcript levels, to
detect differential expression and to identify novel alternatively
spliced transcripts in various conditions (reviewed in Costa et al.,
2010, 2013; Steijger et al., 2013; Angelini et al., 2014). However,
regardless of the technology, a challenge is to explain and to
predict gene expression by means of the coordinated binding of
TFs, epigenetic marks and long-range interactions among distant
chromatin domains. Recent studies demonstrate that the bind-
ing of specific TFs and some histone modifications (HMs) can
be used to predict gene expression in vitro and to identify rel-
evant epigenetic actors (Ouyang et al., 2009; Karlić et al., 2010;
Cheng et al., 2011a, 2012; McLeay et al., 2012). Analogously, gene
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expression changes have been correlated to modification of TF
bindings and chromatin marks (Althammer et al., 2012; Klein
et al., 2014).

In general, gene expression can be predicted using a limited
number of samples (in specific conditions). On the opposite,
inferring large GRNs can be reached only using several high-
throughput datasets, as in Gerstein et al. (2012). However, some
networks can be less complicated than expected and can rely on
a low number of factors and interactions. Dunn et al. (2014)
recently identified a minimal set of components (12 TFs and 16
interactions) sufficient to explain the self-renewal of ES cells.

In terms of potential impact on human genetics, we highlight
the following considerations. Cell differentiation is accompanied
by global—and local—chromatin changes, leading to the silenc-
ing of pluripotency genes and lineage-specific gene activation
(Chen and Dent, 2014). In this regard, multi-omic integration
and single-cell omics can be used to explain and to potentially
control differentiation and to explore heterogeneity of cells in
development and disease (Comes et al., 2013; Macaulay and Voet,
2014).

Understanding such mechanisms will significantly improve
the treatment of human genetic diseases, particularly of cancer.
Indeed, epigenetic—unlike genetic—modifications are reversible,
and modulating epi-marks through up/down-regulation of
histone methyltransferases can affect gene expression and tissue-
specific alternative splicing (Luco et al., 2010, 2011). By cor-
recting the aberrant distribution of epi-marks, we may in turn
control pathologic changes in gene expression (Schenk et al.,
2012). In this regard, the proper identification of aberrant epi-
genetic regulators in tumors is of major interest. The final
objective is to identify new therapeutic targets and to develop
novel molecules (epi-drugs, inhibitors or activators of histone
acetyl/methyltransferases and deacetylases/demethylases) that are
able to correct or prevent aberrant epi-marks (Mai and Altucci,
2009). These interesting compounds promise to define more
efficient cancer treatment strategies.

AN OVERVIEW ON ChIP-seq AND RNA-seq DATA
INTEGRATION APPROACHES AND TOOLS
Data integration can be achieved with different methodologies.
Genome browsers and other multidimensional visualization tools
(Schroeder et al., 2013) provide integrated environments to nav-
igate and visualize heterogeneous experimental data. Multi-omic
data visualization in few loci of interest helps to formulate novel
functional hypotheses. However, this is not sufficient to fully
benefit from the genome-wide information that next-generation
sequencing (NGS) data can provide. Naive approaches, so far used
to integrate epigenetic signatures with gene expression, annotate
(by proximity) either peaks or enriched regions with genes. The
epigenetic profiles are displayed on the top of the gene struc-
tures. Then enriched regions are associated to pathways and gene
ontologies by means of gene names (McLean et al., 2010; Statham
et al., 2010; Zhu et al., 2010; Lawrence et al., 2013).

Nowadays, public repositories represent a relevant data source.
Few web-based resources provide integrated information at both
epigenetic and transcriptional levels, e.g., ChIP-Array (Qin et al.,
2011), EpiRegNet (Wang et al., 2011a), ISMARA (Balwierz et al.,

2014), and GeneProf (Halbritter et al., 2011, 2014). In particular,
the latter allows one retrieving data and results of already pro-
cessed ChIP-seq and RNA-seq studies; each result is connected
to the workflow used to generate it. Therefore, previous results
can be easily integrated with user data. Other computational plat-
forms, such as Galaxy (Goecks et al., 2010), constitute a general
framework for omic data integration.

All these approaches are very useful to summarize and visual-
ize global information or to identify associations among different
data types. However, they do not provide mathematical models
for explanatory and predictive inference, as methods described in
Section Statistical solutions to some biological questions.

STATISTICAL SOLUTIONS TO SOME BIOLOGICAL
QUESTIONS
The questions posed in Section Introduction and illustrated in
Figure 1 are discussed in the next subsections.

CAN TF OCCUPANCIES OR HISTONE MODIFICATION DATA PREDICT
GENE EXPRESSION?
The work of Ouyang et al. (2009) represents one of the first
attempts to address the question using ChIP-seq and RNA-seq
data and log-linear regression. In this framework, gene expression
is regarded as a response variable and different TF-related fea-
tures as predictors. The authors build the TF association strength
matrix X as a weighted sum of intensities of peaks surrounding
the genes of interest (Figure 2). They found that a remarkably
high proportion of gene expression variation can be explained
by the binding of 12 specific TFs. Principal component analysis
(PCA) revealed that these TFs may have a dual effect. They can
activate a subset of genes and repress other ones. Similarly, a sim-
ple model selection regression strategy shows that gene expression
can be accurately predicted using only a small number of HMs
(Karlić et al., 2010). The combined usage of different epigenetic
features and chromatin accessibility data (DNase I hypersensi-
tive sites from DNase-seq), within a log-linear regression and
PCA further improves gene expression prediction (McLeay et al.,
2012). More interestingly, McLeay and colleagues demonstrated
that in silico TF binding prediction could be used as surrogate
information, in absence of in vivo binding data.

Differently, Cheng and co-authors (Cheng et al., 2011a, 2012;
Cheng and Gerstein, 2012; Dong et al., 2012) mapped each epige-
netic feature into a vector of several components, measured both
at the transcription starting sites (TSSs) and at the transcription
termination sites (TTSs). They showed that TF binding achieves
the highest predictive power in a small region centered at the TSS,
whereas HMs have high predictive power in wider regions across
genes. Their approach differs both for the building of the feature
matrix and for the use of support vector regression. The latter
does not assume a linear relationship between gene expression
and signals for TFs or HMs, allowing one to capture more com-
plex relationships. Other supervised and unsupervised statistical
methods have been proposed in Xu et al. (2010); Hebenstreit et al.
(2011); Park and Nakai (2011); Gagliardi and Angelini (2013).
The advantage of the above-described statistical approaches is
that they allow carrying out both explanatory and predictive
inference.
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FIGURE 2 | One of the key-points in the integration process is the

way in which the epigenetic and transcriptional signals are

transformed into a statistical model that relates a response

vector Y (i.e., gene expression) with a set of predictors,

represented by a matrix X (i.e., epigenetic signatures). (A) A
scheme showing gene transcription, and the molecular factors
involved (TFs and HMs), is illustrated in the upper part. (B) Different
models have been proposed to build the so-called gene to
epigenetic signature matrix X. Naive models proposed to use a
binary matrix to integrate epigenetic signatures with gene expression.
Therefore, 0/1 values were used to annotate and associate a given
TF or HM to a specific gene according to a proximity measure
between the peak and/or the enriched region and TSS of the
corresponding gene. More advanced models, such as the one from
Ouyang et al. (2009), proposed to use a weighed sum of peaks
around the TSS. In this way it is possible to tune the strength of
the binding and the distance from the TSS in a continuous way.
Along the same direction, Sikora-Wohlfeld et al. (2013) compared

several other measures to build X. All such approaches share the
idea that matrix X is built with respect to the position of the TSSs
(or using reads in a window around the TSSs) by collapsing each
epigenetic feature into a single value per gene. A slightly different,
and more sophisticated, approach consists in mapping each
epigenetic feature into a vector of several components measured (in
several bins) both at the TSSs and TTSs, as proposed in the series
of papers by Cheng and colleagues. In this way, they showed that
the best predictive power for TFs is indeed achieved at TSSs,
however for HMs the information available at TTSs can provide
further improvement. Finally, a set of 13 features for each epigenetic
mark is used in Althammer et al. (2012) to classify genes as
up-regulated; down regulated and no-change between two
experimental conditions. The features are evaluated over the gene
body, on its upstream and downstream regions (including promoters,
TSSs, first exons, first introns, etc). (C) Gene expression Y (usually
measured in terms of Fragment per kilobase of exon per million
fragments mapped, FPKM) is obtained from RNA-seq data.

Previous methods focused on single biological systems for
which both RNA-seq and ChIP-seq data are available. In prin-
ciple, the same methods could be applied to correlate gene
expression variations and changes in epigenetic mark densi-
ties between two conditions. In this context, Althammer et al.
(2012) used 13 features for each epigenetic mark and a machine
learning approach (based on random forest) to classify genes as

up-, down-regulated or no-change when comparing two con-
ditions. The vectors of features are extracted from TFs and
HMs, and also DNase-seq and DNA methylation data. More
recently, approaches based on Bayesian mixture models have
been used to detect genes with differential expression and vari-
ations in the HM profiles between two experimental conditions
(Klein et al., 2014).
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Despite the differences in the statistical models, all the above-
mentioned approaches revealed that it is possible to predict gene
expression using genome-wide TF occupancies or HM data.

CAN ChIP-seq AND RNA-seq DATA BE USED TO INFER GENE
REGULATORY NETWORKS?
The availability of several gene expression datasets generated from
knock-out cells for one or few TFs has made possible to infer
GRNs. Reconstructing GRNs using gene expression data has been
one of the most widely studied problems in the last decade (Wang
and Huang, 2014). However, the integration of TF occupancies
data and mRNA expression values, as well as data from other
transcriptional and post-transcriptional regulators, can improve
methods for inferring GRNs. This task still constitutes a challenge
in system biology especially for complex organisms.

ChIP-seq data were first used to determine target genes and
miRNAs using data from modENCODE (Cheng et al., 2011b).
Then, a regulatory network was obtained by using the correlation
between TF binding and gene expression. A more comprehensive
study, involving hundreds of TFs from ENCODE disclosed sev-
eral structural properties of human regulatory networks (Gerstein
et al., 2012). Both studies are mainly descriptive (i.e., analysis of
how regulatory information is organized) and do not fully benefit
from the amount of information available in terms of improving
inferential approaches.

Under the assumption that network sparseness is higher in
complex than in small genomes, GRN inference can be turned
into a sparse optimization problem (LpRGNI, Qin et al., 2014).
The identification of a small TF set that controls the network is
obtained by solving a regularized lasso-type problem. The inte-
gration of ChIP-seq data improves the inference performance.
As an alternative, as proposed in CMGRN (Guan et al., 2014),
Bayesian network models can be first used to infer causal interre-
lationship among TFs and HMs (i.e., to understand how several
regulators influence or associate with each other) by analyzing
the sequences of regulators based on ChIP-seq read counts on
the promoter of target genes. Then, Bayesian hierarchical Gibbs
sampling allows integrating ChIP-based regulatory signals of TFs
and HMs, microRNA binding targets with differential expression
profile of genes, to construct GRN at different levels (epigenetic,
transcriptional and post-transcriptional).

In general, we are far from inferring realistic quantitative mod-
els of genome-wide regulatory networks. However, it is possible
to reveal the main interactions and the most relevant players.
Then, computational methods can refine sub-networks for spe-
cific functions. In this spirit, Dunn et al. (2014) first generated
all possible networks that could explain stem cell self-renewal.
Then, by using formal verification procedures and Boolean net-
work formalisms, they selected a core network of only 12 TFs and
16 interactions, showing that ES self-renewal relies on a relatively
low number of factors and interactions.

OPEN BIOLOGICAL QUESTIONS AND FUTURE
PERSPECTIVES
From a biological perspective, data integration is not an end
to answer fundamental questions, but a means to generate
new hypotheses. In this regard, genome-wide omic data are

fundamental to drive researchers into a deeper understanding of
many biological aspects (Hawkins et al., 2010).

To date, there is a limited use of multi-omic data. The associ-
ation between epigenetic features and genes is still mainly done
according to their proximity with respect to TSSs (with few
exceptions, Althammer et al., 2012) and the existing approaches
only account for local interactions. Moreover, genome-wide
maps (by ChIA-PET and Hi-C) of long-range chromatin inter-
actions and of chromatin nuclear organization have not been
fully integrated in the previously described inferential models.
Regression approaches in Section Can TF occupancies or his-
tone modification data predict gene expression? are based on
assumption of independence between genes, whereas the phys-
ical proximity of genes in the chromosomes in the nucleus
is evidence of physical interaction. Therefore, we suggest that
future computational methods for multi-omic data integration
include information from genome-wide long-range interaction
studies. To this aim, we propose the use of locus-by-locus inter-
action matrix, as a kind of correlation matrix within a regression
model.

Similarly, chromatin accessibility data (Thurman et al., 2012)
such as DNase-seq data, DNA regions associated with regulatory
activity (FAIRE-seq), and DNA methylation data (MeDip-seq
and BS-seq) should be used to better model DNA-binding back-
ground and reduce the number of false positive relations (as also
suggested by Cheng et al., 2012). In such cases, we believe that
the approaches described by Althammer et al. (2012) could be
useful. However, the choice of the initial set of features has to be
tuned according to the specific omic data at hand. Then, feature
selection strategies have to be applied.

In absence of in vivo data, surrogate data (based on com-
putational predictions or data from closely related cell lines or
conditions) could be used to decrease experimental costs. McLeay
et al. (2012) and Liò et al. (2012) showed in two different contexts
that such strategy is feasible and can improve the results. Further
studies should be devoted to investigate pros and cons of such
approaches.

Another interesting consideration comes from the evidence
that relatively few factors (TFs and/or HMs) are sufficient to
explain gene expression quite accurately. Such an apparent redun-
dancy for HMs (Cheng and Gerstein, 2012) opens the question
whether such factors have a causal function or only constitute a
regulatory code. Notably, such redundancy has been described
only with regard to gene expression levels, without taking into
account alternative splicing and differential isoform abundance.
We hypothesize that the observed redundancy could partially
account for a different layer of complexity, poorly explored till
now. Many recent evidences indicate that some epi-marks are
associated to tissue-specific alternative splicing (Luco et al., 2010,
2011; Ye et al., 2014). In this regard, the works from Chen and
Dent (2014) have tried to partially overcome this issue by achiev-
ing higher predictive accuracy. Although this approach led to a
higher predictive accuracy, it was not able to capture the differ-
ential expression of transcripts sharing the same TSS. We believe
that a more sophisticated analysis may reveal that different com-
binations of epigenetic patterns can tune isoform switching (e.g.,
controlling the type of alternative splicing) and determine their
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relative abundance. The answer to such a complex question is still
a challenge.

We want to underline that, despite the possibility to predict
gene expression using few epigenetic features, no causal relation-
ships can be directly inferred from such methods. The possibility
of determining whether causal relationships exist or markers only
constitute a code (Henikoff and Shilatifard, 2011; Cheng and
Gerstein, 2012) requires developing causal inference that till now
received only limited attention (Yu et al., 2008; Guan et al., 2014).
In this regard, we propose Bayesian models to carry on causal
inference.

Finally, while there exist several tools for data visualization (as
described in Section An overview on ChIP-seq and RNA-seq data
integration approaches and tools), only few tools implementing
the statistical algorithms (Section Statistical solutions to some
biological questions) are available. In addition, there are not gen-
eral tools that allow comparing the developed methods for gene
expression prediction and GRN on the same benchmarks. In light
of these considerations, it is now very difficult for biologists to
carry on data integration. Therefore, to facilitate biologists in
such a task we strongly emphasize the need to develop new and
intuitive explorative tools for the integration of ChIP-seq and
RNA-seq data from a statistical viewpoint. Moreover, we firmly
believe such tools should be designed in the spirit of reproducible
research (Goecks et al., 2010; Russo and Angelini, 2014) to allow
reproducibility and transparent verification of published results
and to improve transfer of knowledge.

CONCLUSIONS
The diffusion of high-throughput technologies has offered the
possibility to answer new questions, but has also posed new chal-
lenges to old problems in life science, such as data integration
(Gomez-Cabrero et al., 2014). Indeed, data integration is grad-
ually losing the merely descriptive function (as representation
of data from different sources) and it is quickly acquiring infer-
ential role. In this scenario, statistical methods can be used not
only to analyze specific types of omic data, but also to integrate
them within explanatory and predictive models. Such models can
be used for further inference and to simulate the effect of spe-
cific changes in silico. However, to fully exploit the data available
from international consortia, novel statistical methods and tools
are required. In this paper, we discussed the work carried out in
the last few years, and we provided our perspective about future
developments.
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