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Atherosclerosis is the leading cause of death worldwide and leukocyte recruitment is

a key element of this phenomenon, thus allowing immune cells to enter the arterial

wall. There, in concert with accumulating lipids, the invading leukocytes trigger a

plethora of inflammatory responses which promote the influx of additional leukocytes

and lead to the continued growth of atherosclerotic plaques. The recruitment process

follows a precise scheme of tethering, rolling, firm arrest, crawling and transmigration

and involves multiple cellular and subcellular players. This review aims to provide a

comprehensive up-to-date insight into the process of leukocyte recruitment relevant

to atherosclerosis, each from the perspective of endothelial cells, monocytes and

macrophages, neutrophils, T lymphocytes and platelets. In addition, therapeutic options

targeting leukocyte recruitment into atherosclerotic lesions—or potentially arising from

the growing body of insights into its precise mechanisms—are highlighted.

Keywords: atherosclerosis, vascular inflammation, leukocyte recruitment, adhesion molecules, integrin,

transendothelial migration

INTRODUCTION

Atherosclerosis is a chronic disease characterized by the accumulation of lipoprotein particles
and inflammatory cells inside the arterial vessel wall of large- and medium-sized arteries.
Atherosclerotic plaques may destabilize during the progression of the disease leading to plaque
rupture/erosion ultimately resulting in partial or complete vessel obstruction which may cause
cardiovascular events such as myocardial infarction (MI) or stroke (1). Altogether, cardiovascular
diseases represent the leading cause of death worldwide (2). Mechanistically, atherosclerosis has
long been considered a solely metabolic-driven disease; a result of high plasma lipid levels and
passive uptake of cholesterol into the vessel wall at atherosclerosis-prone regions marked by
disturbed blood flow patterns (3, 4). Over the past decades, however, evidence accumulated
highlighting the contribution of immune cells in the etiology of atherosclerosis (4). Leukocytes,
the effector cells of the immune system, contribute to all stages of the disease. Specifically,
monocyte-derived macrophages, neutrophils and T lymphocytes are involved in inflammatory
processes inside the vessel wall during lesion initiation, progression and rupture (5, 6). Thus,
leukocyte recruitment to the vessel represents an essential early step in initiation and progression
of atherosclerosis preceding local actions of intimal leukocytes. In this review, we aim to
summarize basic concepts of leukocyte recruitment and highlight novel findings in the context
of atherosclerosis.
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BASIC CONCEPTS OF LEUKOCYTE
RECRUITMENT IN VESSELS

Leukocyte recruitment from blood to distinct tissues is essential
in both non-sterile and sterile inflammation but also under
steady-state conditions (7). For simplicity, this review will focus
on leukocyte recruitment to diseased vessels in the context of
atherosclerosis. Classically, the major players in the recruitment
process are the endothelium and different leukocyte subsets
including monocytes, neutrophils and lymphocytes. To achieve
selective recruitment, all players interact in a strictly orchestrated
manner (8). The traditional model of the leukocyte recruitment
cascade describes three major steps following tissue/endothelial
cell (EC) activation: rolling, activation, and arrest (9). However,
recent experimental evidence has expanded our knowledge on
the leukocyte recruitment process, suggested additional steps,
and refined the molecular principles underlying different stages
(10). Within the next paragraph, we aim to outline basic and
novel concepts of leukocyte recruitment from the circulation.

Inflammatory Tissue Activation
Inflammatory tissue activation is the initial step in the leukocyte
recruitment cascade in both non-sterile (infectious) and sterile
(non-infectious) diseases. It occurs as a physiological response
of the immune system to various stimuli including tissue
damage and cell death, pathogens, or toxic compounds (11).
While some responses are shared between non-sterile and sterile
diseases, some are specific to certain pathologies. In this context,
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atherosclerosis-specific mechanisms will be further outlined in
later sections.

Classically, acute inflammation is triggered by conserved
pathogen-associated molecular patterns (PAMPs) and
endogenous stress signals [damage-associated molecular
patterns (DAMPs)] that are recognized by respective receptors
on tissue-resident immune cells and non-immune cells (12, 13).
Activation of these receptors results in the release of pro-
inflammatory cytokines and chemokines (14–16). ECs are one
of the main targets of pro-inflammatory cytokines (17, 18). As
a result, they upregulate adhesion molecule and chemokine
expression. Some cytokines such as histamine activate ECs
by binding to G-protein-coupled receptors (GPCRs; = type I
activation) and induce intracellular signaling cascades that lead
to rapid translocation of preformed molecules (19). In contrast,
type II activation of ECs is slower but longer lasting (20). It can
be triggered by various inflammatory cytokines, such as tumor
necrosis factor alpha (TNFα) and interleukin (IL)1-β, and leads
to de novo synthesis of adhesion molecules and chemokines
(20, 21). The expression and extracellular secretion of various
chemokines such as C-C motif chemokine ligand (CCL)2 and
C-X-C motif chemokine ligand (CXCL)1 leads to—among other
functions—attraction of leukocytes (=chemotaxis) (22–24).
Moreover, activated tissue-resident leukocytes, specifically
macrophages, can also secrete chemotactic molecules such
as CCL3 (23). In addition, activated platelets can deposit
chemokines such as CCL5 and CXCL4 on ECs contributing to
the chemotaxis of leukocytes to sites of inflammation (25, 26).
Of note, differential recruitment of leukocyte subsets is favored
by the specificity of certain chemotactic molecules and their
respective receptors on leukocytes (27, 28).

In summary, inflammatory tissue activation precedes
actual leukocyte recruitment by priming ECs and inducing
leukocyte chemotaxis.

Leukocyte Tethering and (Slow) Rolling
Leukocyte tethering (=capture) and subsequent rolling is the
first interaction step between ECs and leukocytes. It is mainly
mediated by platelet (P)-selectin, endothelial (E)-selectin and
leukocyte (L)-selectin (29). Although first described in platelets,
P-selectin is also expressed on activated ECs. Selectins consist
of an extracellular N-terminal lectin domain, an epidermal
growth factor-like domain, a series of repetitive complement
control proteins, a transmembrane domain and a C-terminal
intracellular domain (20). With their N-terminal lectin domain,
they are able to bind to glycosylated ligands in a calcium-
dependent manner on the cell surface of opposite cells (30).
Of note, selectin binding is highly dependent on correct
glycosylation involving modifications by several enzymes that
link various types of saccharide molecules (10, 31).

In vessels, leukocyte rolling is predominantly achieved by
the interaction of endothelial E- and P-selectin with P-selectin
glycoprotein ligand-1 (PSGL-1) and other glycosylated ligands
[e.g., CD44 and ESL-1 (E-selectin ligand 1, specifically binding to
E-selectin)] on leukocytes (32–36). In ECs, P-selectin is prestored
in vesicles called “Weibel-Palade bodies” and translocated to
the luminal membrane as a response to inflammatory stimuli,
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while E-selectin is synthesized de novo upon cell activation (19).
L-selectin also interacts with PSGL-1 but is mainly expressed
on leukocytes and thus important specifically in secondary
leukocyte capture (37, 38). L-selectin on leukocytes was also
shown to interact with glycosylated ligands on the endothelial
membrane (39–41). However, these experiments were mainly
performed in the context of lymph node homing. Still, PSGL-
1 is expressed on both leukocytes and vascular ECs (42), which
suggests a relevant contribution of L-selectin-mediated rolling in
vessels. Additional to leukocyte-leukocyte interactions, platelet-
leukocyte interactions are involved in secondary leukocyte
capture processes (43, 44). Platelet P-selectin can engage with
both endothelial and leukocyte PSGL-1, thereby acting as
a bridge between the two cell types. Recent studies have
identified further relevant players, such as the interaction of
leukocyte macrophage receptor 1 (Mac-1) with platelet CD147
(45) in platelet-mediated leukocyte recruitment. In addition to
membrane-bound selectins, extracellular matrix proteins, such
as galectins, are likely to be involved in the leukocyte adhesion
cascade including rolling (46). Here, extracellular galectins
might bind glycosylated ligands on both ECs and leukocytes
thus facilitating further interactions. Indeed, slow rolling was
impaired in Galectin-3 knockout mice (47). Taken together,
leukocyte rolling on ECs ismediated by the interplay ofmolecules
on both cell types. Regarding the important role of endothelial
P- and E-selectin, prior EC activation and subsequent selectin
expression is key to initiate the leukocyte rolling process.

Recent experimental evidence indicated so-called “integrin-
mediated rolling” and “slow rolling” as intermediate steps
between rolling and firm arrest (10, 48). Integrin-mediated
rolling is achieved by a transient interaction of leukocyte
integrins in an intermediate conformational state with their
respective adhesion molecules on ECs (10). To some extent,
integrin-mediated rolling is also selectin-dependent (49, 50).
Although selectins do not bind to leukocyte integrins directly,
they can induce integrin activation via an intracellular signaling
cascade, for example via leukocyte PSGL-1 (51–53). As
a consequence, leukocyte integrins undergo conformational
changes that result in increased binding to respective endothelial
adhesion molecules (54). Of note, also soluble selectins, known
biomarkers for inflammation (55, 56), can induce integrin
activation (57). Slow rolling can be viewed as a specific type
of integrin-mediated rolling: It is induced by pro-inflammatory
cytokine exposure, and mediated mainly by the subsequent
upregulation of endothelial E-selectin which induces integrin
activation (10, 58).

As described above, myeloid cells, namely
monocytes/macrophages and neutrophils, exert key functions
in atherosclerosis. Recent evidence suggests that neutrophils
are among the first cells recruited to inflamed tissues, thereby
facilitating subsequent monocyte uptake (59, 60). This suggests
underlying differences in the recruitment cascade of neutrophils
and monocytes. Indeed, differences in integrin-mediated rolling
and slow rolling have been described. In monocytes, integrin-
mediated rolling is mainly conveyed via ß1-integrins such as
very late antigen 4 (VLA-4) (10, 61). In contrast, ß2-integrins
such as lymphocyte function-associated antigen 1 (LFA-1) and

Mac-1 seem to be crucial for integrin-mediated rolling and slow
rolling in neutrophils (49, 58, 62).

Taken together, initial leukocyte tethering and subsequent
rolling and slow rolling is essential to enable leukocyte contact
with ECs.

Leukocyte Activation and Arrest
Following leukocyte rolling, leukocytes need to firmly adhere to
the endothelium for further transmigration. This is achieved by
stable interactions between leukocyte integrins and endothelial
adhesion molecules (19). However, this process requires prior
activation of leukocyte integrins (63). Integrin activation is
mainly mediated via so-called “inside-out signaling”; that means
the activation of intracellular signaling cascades in response
to chemokine binding to dedicated receptors on leukocytes
(19). Concretely, secreted chemokines that are present in the
extracellular glycocalyx bind to GPCRs on leukocytes, which
results in conformational (=affinity) and expression density
(=avidity/valency) changes (8, 64). Traditionally, chemokines
were supposed to be presented by EC-bound glycosaminoglycans
(65, 66). This is contrasted by new experimental studies
indicating only transient interactions between chemokines and
glycosaminoglycans, which allows retention of chemokines
in the glycocalyx space close to the endothelium. However,
most likely mainly free chemokines have the ability to bind
to GPCRs on leukocytes (67). Chemokines inducing integrin
activation are often the same molecules relevant for chemotaxis
but quantitative differences in receptor expression and ligand
binding may explain the differences in chemoattractant and
pro-adhesive response (68).

Upon chemokine binding to GPCRs, complex intracellular
signaling cascades get activated which are reviewed in detail
elsewhere and are still not deciphered completely (8, 69).
One major downstream effect, as mentioned above, are
conformational changes in the extracellular domains of leukocyte
integrins (from a bent, low-affinity conformation to an extended,
high-affinity conformation) (69). Recently, talin and kindlin-3
have been identified as two intracellular molecules that bind to
the cytoplasmic tail of integrins and, independent of each other,
increase integrin affinity via conformational changes (8, 70–73).

Following activation, heterodimeric leukocyte integrins
engage with their counterreceptors on ECs and consequently,
leukocytes firmly adhere to the endothelium. Classical integrin-
adhesion molecule combinations include interactions between
VLA-4 with vascular cell adhesion molecule 1 (VCAM-1), LFA-1
with intercellular adhesion molecule (ICAM)-1, ICAM-2 and
ICAM-3, and Mac-1—which is specifically described in human
neutrophil arrest (74)—with ICAM-1 (75–79). Additionally,
Mac-1 binding to CD40 ligand (CD40L) has been recently
identified to contribute to the leukocyte arrest process (80–82).

In contrast to “inside-out signaling,” “outside-in signaling”
describes the process in which signals are transduced into
leukocytes upon integrin engagement (83). Several studies
suggest that this mechanism is specifically important in
post-arrest adhesion strengthening and further leukocyte
activation (83–85).
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Firm arrest is crucial for leukocyte emigration into inflamed
tissues as it paves the way for final transmigration through the
vascular endothelium.

Crawling and Leukocyte Transmigration
Compared to the preceding steps of the leukocyte recruitment
cascade, detailed understanding of the final step, leukocyte
transmigration, has been achieved fairly recently. Intraluminal
crawling is essential to later leukocyte transmigration as cells
can thereby migrate to preferred sites of transmigration (86).
Leukocyte Mac-1 and LFA-1 binding to endothelial ICAM-1
play a key role in the process of crawling (87–90). Crawling
and subsequent leukocyte transmigration is promoted by various
stimuli (10). In particular, binding of leukocyte integrins to
adhesion molecules was shown to induce EC activation (91),
comparable to the outside-in-signaling as observed during firm
arrest in leukocytes. Concretely, integrin-adhesion molecule
interactions result in the clustering of adhesion molecules
in specific EC regions yielding ICAM-1- and VCAM-1-rich
domains (10, 92, 93).

Leukocyte transmigration can happen via two different routes:
the classical, paracellular route (migration between two EC
bodies) or a transcellular route (migration through thin parts
of an EC body) (89). If migration happens via the paracellular
route, EC junctions need to be modified transiently to reduce
contact between adjacent ECs. This is achieved, for example, by
active squeezing of leukocyte nuclei to disassemble endothelial
actin filaments (94), by EC contraction mediated by cytoplasmic
structural proteins and by reduced expression of EC adherens
junctions such as vascular endothelial cadherin (VE-cadherin)
(51, 95). Mechanistically, this is supposed to be triggered
by intracellular signaling cascades as a response to LFA-1
and VLA-4 binding and subsequent ICAM-1 and VCAM-1
clustering on EC, which results in increased cytosolic calcium
levels leading to enhanced myosin light chain kinase activity,
dissociation of vascular endothelial protein tyrosine phosphatase
(VE-PTP) from VE-Cadherin and phosphorylation as well as
dephosphorylation of distinct tyrosine residues on VE-cadherin
(96–98). As a result, VE-cadherin, which is linked to the actin-
cytoskeleton via catenins, dissociates from this connection and is
internalized, thus contributing to loosening of endothelial tight
junctions (99). By contrast, other adherens junction molecules,
such as platelet/endothelial cell-adhesion molecule 1 (PECAM-
1/CD31) and CD99, but also tight junction molecules, such as
junctional adhesion molecule (JAM)-A, are actively transported
to the site of diapedesis in so-called lateral border recycling
compartments (LBRC) (8, 100). By both homophilic (leukocytes
express identical molecules) and heterophilic (leukocytes express
non-identical ligands) interactions, endothelial adhesion and
junctional proteins achieve shuffling of the migrating leukocyte
through the lateral border (91, 101, 102).

A second route using transcellular migration has been
described, specifically at thin parts of ECs (93, 103). In
this case, tight junctions between ECs remain intact (103).
Instead, leukocytes are transported through the EC body by
caveolin 1-rich and adhesion molecule-rich (specifically ICAM-
1) transcellular pores (95).

However, despite our increasing knowledge on the molecular
processes of para- and transcellular leukocyte migration, the
mechanisms that decide on the actual migration route have
not yet been deciphered completely. The decision is most
likely based on a combination of factors including vessel
type (macrovascular vs. microvascular), leukocyte subset, tight
junctional organization, inflammatory activation and other, yet
unidentified aspects (89, 104).

LEUKOCYTE RECRUITMENT IN
ATHEROSCLEROSIS

Whereas the molecular mechanisms of leukocyte recruitment
are being elucidated in increasing detail, our knowledge of
the specific processes that drive leukocyte migration into
atherosclerotic plaques is still rather incomplete. It is likely that
there are many shared steps, although some players appear
to be more important in atherosclerosis than in recruitment
cascades in other tissues. While the involvement of different
leukocyte populations in atherosclerosis is known since long
on an observational level from histological specimens, most
of our current understanding in this field is derived from
experiments with induced atherosclerosis in genetically altered
mice. Important models for this are mouse lines lacking the genes
for apolipoprotein E (Apoe) or low density lipoprotein receptor
(Ldlr) fed a cholesterol-enriched diet (in the following referred to
as Apoe−/− and Ldlr−/− mice, respectively).

Increasingly, these findings may also be supported by the
results of genetic or proteomic association studies in humans:
Single nucleotide polymorphisms (SNPs), for example, are used
to compare the individual genetic profile of coronary artery
disease (CAD) patients and healthy controls, and the enrichment
of certain SNPs in the patient cohort can accordingly be linked
to CAD in so-called genome-wide association studies (GWAS).
Thus, with increasing numbers of SNPs and individuals included,
a large number of variants associated with CAD have already
been identified (105, 106). Althoughmany of these SNPs reside in
areas of unknown function in the genome, some of the associated
genes have already been linked to leukocyte recruitment
processes (107). Bringing together knowledge derived from these
different approaches, we aim to summarize and discuss the
currently known important players in immune cell recruitment
into atherosclerotic plaques below (Figure 1).

Endothelial Cell Priming
Keep It Flowing
The endothelium is permanently exposed to blood flow-induced
shear stress and adapts to changes in flow by several immediate
responses, e.g., conformational remodeling of the glycocalyx,
opening of ion channels, and activation of different membrane
receptors such as GPCRs and integrins (108). A central role
in these mechanotransduced responses can be attributed to
the mechanosensory PECAM-1, VE-cadherin and vascular
endothelial growth factor receptor (VEGFR) complex: Acute
onset of laminar flow promotes PECAM-1 phosphorylation
followed by Src-dependent phosphorylation of VEGFR-2 and−3,
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FIGURE 1 | Key factors in atherosclerosis-specific leukocyte recruitment. Leukocyte recruitment into atherosclerotic plaques is multifaceted and involves several

players. Endothelial activation through disturbed flow patterns and oxidized lipoproteins, but possibly also via hyperglycemia or local sympathetic innervation, forms

the basis for subsequent leukocyte-endothelial interactions. Of note, specific leukocyte populations respond differently to atherogenic triggers and use unique

molecules and receptors to achieve leukocyte rolling, arrest, crawling and transmigration. Additionally, platelets strongly contribute to leukocyte recruitment by

secondary leukocyte capture and activation of endothelial cells and leukocytes. AEG = advanced glycosylation end products; CCL, C-C motif chemokine ligand;

CCR, C-C motif chemokine receptor; CD99, cluster of differentiation 99; cGMP, cyclic guanosine monophosphate; CXCL, C-X-C motif chemokine ligand; CX(3)CR,

C-X(3)-C motif chemokine receptor; EC, endothelial cell; eNOS, endothelial nitric oxide synthase; E-selectin, endothelial selectin; ICAM-1/2, intracellular adhesion

molecule 1/2; Klf2, Krüppel-like factor 2; NLRP3, NOD-, LRR- and pyrin domain-containing protein 3; L-selectin, leukocyte selectin; Mac-1, macrophage receptor 1;

NO, nitric oxide; (ox)LDL, (oxidized) lipoprotein; PECAM-1, platelet endothelial cell adhesion molecule 1; P-selectin, platelet selectin; PSGL-1, P-selectin glycoprotein

ligand 1; ROS, reactive oxygen species; TLR, toll-like receptor; VCAM-1, vascular adhesion molecule 1; VE-cadherin, vascular endothelial cadherin; VLA-4, very late

antigen 4; vWF, von Willebrand factor, YAP, yes-associated protein.

proteins which are both linked to PECAM-1 via VE-cadherin and
subsequently activate multiple intracellular pathways (109–111).
Many downstream functions of this complex are transmitted
via phosphatidylinositol 3-kinase/Akt signaling, e.g., leading to
global activation of β1-integrins and the small GTPase RhoA
which finally triggers promotion of focal adhesions, cytoskeletal
adaption and alignment of the cell in the direction of flow
(112, 113), or activation of endothelial nitric oxide (NO) synthase
(eNOS) leading to NO-mediated vasodilation (114–116). Lastly,
these processes stimulate the activation of transcription factors
such as Krüppel-like factor 2 (Klf2) (117) and inhibit pro-
inflammatory action of the Hippo pathway effectors yes-
associated protein (YAP) and transcriptional coactivator with
PDZ-binding motif (TAZ), which have been identified as key
mechanotransducers in response to disturbed flow (118). In
summary, initial pro-inflammatory activity triggered by flow
onset is followed by alignment of the cell in the direction of
flow, enhanced NO production and inhibition of inflammatory
pathways, maintaining an anti-inflammatory status of the
endothelium in response to laminar shear.

In contrast, disturbed flow, which preferentially occurs in
branches, bifurcations and curvatures of the vessel—regions,
where atherosclerotic plaques aremainly found—has been shown
to lead to different responses: impaired NO release (119, 120),
reactive oxygen species (ROS) production (121), deposition
of fibronectin and fibrinogen to the subendothelial basement
membrane (122, 123), and activation of pro-inflammatory
transcription factors such as nuclear factor (NF)-κB and the
aforementioned transcription cofactors YAP/TAZ, inducing the
expression of several pro-inflammatory proteins such as VCAM-
1, ICAM-1, CCL2, IL-6, and CXCL8 (111, 118, 124). Additionally,
shear stress response regulatory elements have been found in the
promoter of NOS3—the gene encoding eNOS—downregulating
its expression in response to flow (125). Apart from that, evidence
also suggests a flow-dependent expression of Toll-like receptor
(TLR) 2 on EC (126, 127). Therefore, permanent changes in
shear stress hinder the cell from adapting to the direction of
flow and from overcoming the initial pro-inflammatory response
phase, rendering these areas prone to leukocyte influx. This is
also mirrored by the role of PECAM-1: While loss of PECAM1 is
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associated with reducedNOproduction in EC exposed to laminar
flow (115, 128) and was shown to accelerate the onset of collagen-
induced arthritis in mice (129, 130), in regions of disturbed flow,
PECAM-1 elicits pro-inflammatory effects in the vasculature via
increased NF-κB activation and VCAM-1 expression as shown
in Pecam1-knockout mouse models (111, 131). Accordingly,
more recent findings led to the conclusion that PECAM-1 exerts
both pro- and anti-atherosclerotic properties in EC depending
on the type of flow (132, 133). Moreover, common variants
assigned to PECAM1 in humans have been associated with CAD
in a large GWAS (134), highlighting the role of PECAM-1
in atherosclerosis beyond its known effects in cell culture and
mouse models.

Another striking role in the abovementioned process of flow-
induced EC priming can be attributed to NO, a gas produced
mainly by eNOS that diffuses across cell membranes and, via
soluble guanylyl cyclase (sGC), promotes the formation of the
second messenger cyclic guanosine monophosphate (cGMP)
in various neighboring cells. Among its several important
downstream functions are smooth muscle cell relaxation, thus
regulating the vascular tone, and platelet aggregation (135).
Recently, it was shown that not only NO production in EC
but also cGMP formation in one of its effector cells, namely
platelets, is strongly shear-dependent (136). Insufficient NO
availability, as it may be caused by impaired blood flow, is the
major cause of endothelial dysfunction and leads to several pro-
atherogenic responses in the vasculature by directly impacting
leukocyte recruitment, e.g., increasing NF-κB activation and
enhancing endothelial expression of VCAM-1, E-Selectin, and
ICAM-1 (137). Furthermore, common polymorphisms in NOS3,
but strikingly also several other genes of this pathway—among
them GUCY1A1 encoding for the α1-subunit of sGC and PDE5A
for a cGMP degrading enzyme—have been linked to coronary
artery disease susceptibility in GWAS (138–140) and once again
highlight the role of this pathway in atherogenesis.

oxLDL and Other Evildoers
The second important pillar for atherosclerotic EC priming is
attributed to inflammatory mediators. While the role of PAMPs
in atherogenesis is not investigated to a large extent, although the
role of viruses and bacteria on plaque progression or rupture has
been increasingly recognized (141), most research refers to the
sterile character of atherosclerotic inflammation. In this context,
modified low density lipoprotein (LDL) plays a fundamental role.

LDL from the circulation can be incorporated by EC either by
receptor-mediated endocytosis or caveolae mediated transcytosis
(142, 143), whereby the latter one is generally regarded as the
more relevant way of atherogenic LDL accumulation (144).
In the subendothelial space, LDL is retained by extracellular
matrix proteoglycans (145) and, catalyzed by enzymes such
as lipoxygenases or myeloperoxidases, metal ions and free
radicals, chemically modified to various degrees. This leads to
the formation of strongly pro-atherogenic LDL variants such as
oxidized LDL (oxLDL) (137). The exact process of LDL oxidation
is not fully elucidated but is supposed to be linked to oxidative
stress resulting from a disbalance between ROS production and
antioxidant defense mechanisms (146), as triggered, for example,

by aging (147) or smoking (148). As a consequence, LDL loses its
ability to bind the LDL receptor but strongly enhances affinity
for scavenger receptors such as CD36 and lectin-like oxidized
LDL receptor-1 (LOX-1) on EC, vascular smooth muscle cells,
and macrophages (149). Intriguingly, a degradation product of
LOX-1 can also be found in plasma [soluble Lox-1 (sLox-1)] and
has recently emerged as a potential biomarker for cardiovascular
disease incidence (150).

Ultimately, among the myriad pro-atherogenic responses of
EC to such modified LDL are inhibition of NO production
(151, 152), regulation of microRNAs (153), enhanced expression
of E- and P-selectin, VCAM-1, ICAM-1 (154, 155), CCL2,
CXCL2, 3 and 8 (156), and redistribution of JAM-A to facilitate
transmigration (157)—thus paving the way for leukocyte
infiltration. Therefore, oxidation of LDL is without doubt
a central aspect of atherogenesis (149). However, while
oxLDL is the best-studied form of modified LDL, there
are several other modifications of LDL with pro-atherogenic
properties, such as desialylation (158) or sphingomyosinase-
induced aggregation (159).

Strikingly, these processes appear to begin already very early
in life in genetically predisposed individuals (160), highlighting
the influence of heritable factors on atherogenesis, most of
which remain unexplored (161). Among the known contributors
to atherogenic EC priming, however, is also hyperglycaemia.
For example, hyperglycaemia driven accumulation of advanced
glycosylation end products (AGEs) in vessels promotes ROS
formation and adhesion molecule expression in EC, and
release of pro-inflammatory cytokines such as IL-1β, IL-
6, CCL2 and CXCL8 from leukocytes (162). Moreover, it
impairs eNOS function and promotes the expression of
proteoglycans, associated with increased LDL retention in
the vascular wall (137, 163). Another important driver of
atherogenesis is psychological stress (164, 165). Just recently,
we showed that acute mental stress promotes atherosclerosis-
related recruitment of leukocytes in mice by increasing the
expression of endothelial adhesion molecules and the release of
chemokines (166), adding to the knowledge of neuroimmune
linkages in atherosclerosis.

Stage Free for Leukocytes
In response to upregulated adhesion molecules on EC and an
increased chemokine gradient, leukocyte adhesion is initiated.
However, this is not a static “one after the other” process. Several
inflammatory stimuli emanating from vascular cells, platelets
and leukocytes—as a response to the flow and lipid-driven
EC priming, but also interlocking from the very beginning—
continuously contribute to EC activation. Therefore, this section
will focus on the role of the second important player in the
atherosclerotic recruitment process: leukocytes.

The Classic: Monocytes
Monocytes and macrophages are the central figures in the
history of atherosclerosis research. Once migrated, monocytes
differentiate into macrophages, the major leukocyte population
within atherosclerotic plaques (167), which strongly engulf
modified LDL and fulfill several proatherogenic functions. There
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are three main subsets of monocyte populations in humans,
that is classical CD14++ CD16− and non-classical CD14+

CD16++ monocytes and a small, less investigated group of
intermediate CD14+ CD16+ monocytes (168, 169). In mice, C-
C motif chemokine receptor (CCR)2+ C-X3-C motif chemokine
receptor (CX3CR)1+ lymphocyte antigen 6 complex, locus C
(Ly6C)high monocytes are closely related to the classical cells
in humans and CCR2− CX3CR1++ Ly6Clow monocytes to
the non-classical population (170). Although fate mapping and
adoptive transfer experiments suggest that Ly6Clow monocytes
are derived from Ly6Chigh cells, hypercholesterolaemia is
associated with impaired Ly6Clow formation, despite a strong
expansion of the Ly6Chigh population leading to systemic
monocytosis (171–173). Importantly, both monocyte subsets
fulfill different roles in monocyte recruitment. In steady state,
Ly6Clow monocytes are dependent on CX3CL1 (fractalkine)
stimulation via CX3CR1 and are constantly patrolling the
vessel by communicating with endothelial ICAM-1 and−2
via LFA-1, but scarcely transmigrate (174). Although in the
setting of tissue damage it has been suggested that they are
among the first cells to extravasate and to promote recruitment
of other leukocytes by release of inflammatory cytokines
(175), Ly6Clow monocytes were associated with markedly less
recruitment to atherosclerotic plaques than Ly6Chigh monocytes
(176). However, under atherosclerotic conditions their patrolling
behavior is strongly upregulated in a CX3CR1-independent
manner, and genetic depletion of Ly6Clow monocytes was
associated with pronounced endothelial apoptosis, suggesting an
important role for endothelial maintenance in atherosclerosis
(177). Nonetheless, in the following, we focus on the recruitment
of inflammatory monocytes.

An initial trigger for leukocyte extravasation are local
chemotactic gradients. For monocytes, CCL2 is a key
chemokine that targets the CCR2 receptor highly expressed
on classical/ Ly6Chigh monocytes (28). Both Ccr2 and Ccl2
knockout in atherosclerosis-prone mice (178, 179) as well as
Ccr2 targeted siRNA treatment (180) significantly reduced
atherosclerotic plaque formation, whereas in contrast, leukocyte-
specific overexpression of Ccl2 in Apoe−/− mice promoted
atherosclerosis progression (181). In humans, CCL2 levels
in atherosclerotic lesions have only recently emerged as a
potential indicator of plaque vulnerability (182). Interestingly,
individuals with familiar hypercholesterolemia—a strong
genetic predisposition to atherosclerosis—were found to have
a 3-fold higher CCR2 expression on classical monocytes than
healthy subjects, whereas cholesterol lowering therapy with a
proprotein convertase subtilisin/kexin type 9 (PCSK9) antibody
reduced monocyte CCR2 surface expression by 60% in these
patients (183). This is further evidence that lipid-related
and inflammatory processes strongly interact. Yet, despite the
striking role of CCR2, also CCR5 is crucially involved in Ly6Chigh

monocyte chemotaxis. While Ccr5 deficiency resulted in reduced
mononuclear cell infiltration and lesion formation as well as
decreased neointima formation (184–186), combined inhibition
of CCL2, CX3CR1, and CCR5 resulted in as much as a 90 %
reduction in atherosclerotic plaque formation in Apoe−/− mice,
in spite of persistent hypercholesterolaemia (187). However,

rather than having chemotactic functions, the CX3CR1/CX3CL1
interaction may impact cell survival (188).

Following attraction to atherosclerosis-prone endothelium,
pro-inflammatory monocytes initiate rolling particularly by
interaction of PSGL-1 with P- and E-selectin expressed on
activated EC. Apoe−/− mice with a functional knockout
of the gene encoding for PSGL-1 were shown to develop
smaller atherosclerotic plaques (189) and in a similar way, P-
selectin deficiency was associated with less leukocyte recruitment
in atherosclerosis (190–192). Plaque leukocyte recruitment
and consequently plaque size were also decreased when
atherosclerotic mice were treated with EC-avid nanoparticles
inducing endothelial silencing of P- and E-selectin, in parallel
with ICAM-1, ICAM-2 and VCAM-1 (193). While lack of E-
selectin alone reduced the progression of atherosclerotic plaque
formation only to a minor extent (194), the combined genetic
silencing of P-and E-selectin in Ldlr−/− mice even led to an
80% reduction in lesion formation (195). An inhibitory peptide
preventing monocyte binding to selectins was shown to decrease
monocyte recruitment and subsequently atherosclerotic lesion
size, particularly by inhibiting monocyte activation via NF-κB
(196). Moreover, intravital microscopy experiments in inflamed
cremasteric veins indicated that E-selectin selectively affects the
rolling velocity of inflammatory monocytes, whereas the flux
of rolling neutrophils is regulated by P- and L-selectin (197).
However, it is open whether this is also true for atherosclerotic
arteries. As described above, transition of rolling to slow rolling
and eventually to firm arrest requires integrin activation on
the surface of leukocytes (102). Intravital microscopy in carotid
arteries revealed a crucial function of CCR1 and CCR5 in this
step for classical monocytes, but not of CCR2 (198). Although
monocytes, in common with neutrophils, express the integrins
LFA-1 and Mac-1, monocyte arrest seems to depend particularly
on the VLA-4-VCAM-1 interaction (199–201). In line, blocking
VLA-4 decreased leukocyte recruitment in atherosclerotic mice
(202, 203) and functional downregulation of Vcam1 significantly
reduced atherosclerotic lesion formation in mice in a gene-
dose dependent manner (204, 205), while similarly, treatment
with a VCAM-1 blocking antibody attenuated atherosclerosis in
Apoe−/− mice (206). Of note, it has been shown that rolling
of monocytes may also be mediated by platelets bound to the
extracellular membrane, but rather in a ß2-integrin dependent
way (207).

When firmly attached to the endothelium, monocytes engage
in crawling behavior in search of ideal sites for extravasation.
Thereby, using the intracellular actomyosin machinery for
directed movement, they develop integrin-rich protrusions that
scan the endothelial lumen for chemotactic directionality (102)
mainly by interacting with ICAM-1 or ICAM-2 on EC via
both LFA-1 and Mac-1 (208). Experiments in mice could
partly confirm the involvement of these adhesion molecules
in atherosclerosis: Apoe−/− Icam1−/− mice displayed reduced
atherosclerotic lesions (209) and similarly, fatty streak lesion
area was smaller in mice deficient for either ICAM-1 or ß2-
integrin (the common subunit of LFA-1 and Mac-1), but most
distinctly for mice with a double knockout of both encoding
genes (210). Also, Icam1−/− Apoe−/− mice were shown to
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have significantly reduced atherosclerotic lesions, and soluble
levels of ICAM-1 paralleled atherosclerosis progression in
Apoe−/− mice with significantly elevated plasma concentrations
compared to experiment onset (211). However, other studies
could not confirm a substantial involvement of ICAM-1 loss on
atherogenesis (204, 212). While the participation of LFA-1, on
the other hand, was associated with atherosclerosis progression in
rats (213), a study in Ldlr−/− mice could not endorse significant
influence of Mac-1 on atherosclerotic lesion formation (214).
Interestingly, a recent publication proposes a divergent influence
of ß2-integrin on different stages of atherosclerosis—being
protective in the initial phase, but pro-atherogenic in later stages,
which could be partly driven by chronic dyslipidaemia (215).

Transmigration, the final step of the recruitment cascade,
is facilitated by the redistribution of adhesion molecules such
as JAM-A and VE-cadherin and formation of transmigratory
cups characterized by local clustering of ICAM-1 and VCAM-
1, actin remodeling and the formation of endothelial protrusions
developing around the penetrating leukocyte (86). Thereby, also
several effectors of the Rho-GTPase family are activated in EC,
such as triple functional domain protein (Trio), Ras-related C3
botulinum toxin substrate 1 (Rac1), RhoG and its exchange factor
SH3-containing guanine nucleotide exchange factor (SGEF)
(216), stimulating the formation of the cup-like structures during
transmigration of leukocytes but also promoting ROS production
and subsequent activation of matrix metalloproteinases (MMP).
In a later step, also RhoA and its effector Rho-associated protein
kinase (ROCK) are activated, enlarging the transmigratory
gap through enhanced actin-myosin contractility (217). Indeed,
SGEF-deficient mice displayed decreased atherosclerotic plaque
formation supposedly via reduced formation of endothelial
docking structures (218) and similarly, inhibition of ROCK
reduces atherosclerosis in mice (219, 220). Strikingly, the genes
encoding for RhoA, Rac1 and SGEF were also associated with
CAD by GWAS (139, 221–223).

Further, VE-cadherin plays a crucial role in leukocyte
transmigration. It is linked to the actin-cytoskeleton via
catenins and constitutively associated with the phosphatase
VE-PTP, which stabilizes VE-cadherin junctions both by
dephosphorylation and inhibition of Rho GTPase signaling (96,
224, 225). Beyond its previously described effects, oxLDLwas also
shown to directly promote monocyte transmigration by down-
regulating VE-cadherin and upregulating PECAM-1 (226).
Besides, PECAM-1 deficiency or blocking antibodies have been
shown to specifically inhibit transmigration in vitro and in vivo
in various inflammatory disease models in mice (99). Together
with CD99, but also JAM-A, PECAM-1 is actively transported
to the transmigration site via LBRCs and likely required for
leukocyte diapedesis, as blocking of this targeted process resulted
in considerably lower monocyte transmigration in vitro (227).
In line, impaired JAM-A expression in EC or blocking JAM-
A by a peptide antagonist inhibited leukocyte recruitment
and atherosclerotic plaque formation in hyperlipidemic mice
(228, 229). Remarkably, also the expression and distribution
of JAM-A appears to respond to changes in flow (230). Given
that CD99 also exerts an important influence on monocyte
transmigration (231), in an interesting experiment, vaccination

directed against CD99 was shown to reduce leukocyte numbers
in atherosclerotic plaques and attenuate atherosclerotic lesion
formation in mice (232). However, the role of PECAM-1—
although quite obviously promoting leukocyte transmigration in
vitro—seems to be more complex in atherosclerosis in general, as
it exerts different influences on atherogenesis partly depending
on the hemodynamic environment (see section Keep it Flowing).

Following their recruitment into plaques, monocytes
massively differentiate into macrophages and, to a lesser
extent, presumably also into dendritic cells (233). However,
accumulation of macrophages in atherosclerotic lesions is
likely a complex interplay of monocyte recruitment and local
macrophage proliferation which also involves tissue-resident
macrophages (234, 235). Within plaques, macrophages strongly
engulf modified LDL particularly via scavenger receptor A1
(SRA1), LOX-1 and CD36, which is supported by TLR2, 4
and 6 signaling and promoting their phenotypic change to
cholesterol-rich foam cells (236). Subsequently, foam cells
can induce the release of pro-inflammatory cytokines (237)
and Vcam1 expression in early aortic fatty streaks in mice
(238). Excessive cholesterol accumulation may also lead to the
formation of cholesterol crystals which trigger activation of the
NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3)
inflammasome, a huge cytosolic oligomer inducing cleavage and
secretion of IL-1ß and IL-18 (239). However, the inflammatory
role of foam cells has been challenged by recent findings, which
support a more diverse function in atherosclerosis (240) and
suggest non-foamy macrophages to be the actual contributors of
pro-inflammatory signaling in atherosclerotic plaques (241). As
such, monocyte-derived macrophages again strongly promote
endothelial activation and subsequent invasion of additional
leukocytes, so permitting the plaque to grow and grow under
continuous LDL supply (242).

The Newcomer: Neutrophils
Neutrophils are the most abundant leukocyte population in
human blood and it has been just in the course of the last decades
that they emerged from more or less neglected bystanders in
atherogenesis to forerunners of monocyte infiltration (243). In
infection, they are among the first cells to invade into inflamed
tissues and promptly release cytotoxic ROS and proteases or
form neutrophil extracellular traps (NET) targeted to rapidly
eliminate pathogens (77). However, such behavior has also
been observed in sterile inflammation as in atherosclerosis,
making neutrophils furthermore an important contributor to
atherosclerosis progression and complications such as stroke or
acute coronary syndrome (244). While many steps of neutrophil
recruitment into inflamed tissues are shared with monocytes
and therefore close to the mechanisms described above, below,
we focus on specific differences in the recruitment behavior
of neutrophils.

Comparable to atherosclerotic monocytosis, also neutrophil
levels in the blood are frequently increased in atherosclerosis
(245) and related to future major adverse cardiovascular events
in patients with acute coronary syndrome (246). Neutrophils
circulating in the bloodstream are highly sensitive to various
chemotactic signals. The traditional view that monocyte
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chemotaxis rather depends on CC-chemokines and neutrophil
chemotaxis rather on CXC-chemokines is supported by
predominant expression of CXC-chemokine receptors in
neutrophils (247, 248) and fueled by a recent study concluding
that CCR1, CCR2, CCR3, and CCR5 are not involved in
neutrophil recruitment in acute inflammation in mice (28).
However, several other studies have also demonstrated an
important role for CC-chemokines in neutrophil attraction
(249), suggesting that a strict separation of monocyte and
neutrophil relevant chemokines does likely not represent the
whole picture. As follows, important chemokines to trigger
neutrophil activation in mice are CXCL1, CXCL2, and CXCL5
(presumably also representing CXCL8 in humans) as well as
CCL5. Evasin-3, a pharmacological inhibitor of CXCL1 and
CXCL2, reduced intraplaque neutrophil and MMP9 content
(250). Similarly, the nicotinamide phosphoribosyltransferase
inhibitor FK866, which was shown to strongly inhibit CXCL1
production in EC in vitro, reduced neutrophil infiltration and
MMP-9 content in atherosclerotic lesions (251). Moreover,
neutrophil recruitment to large arteries was shown to depend
on CCR1, CCR2, CCR5, and C-X-C motif chemokine receptor
(CXCR)2 in early stages of atherosclerosis, thus being particularly
dependent on platelet-derived CCL5 stimulation (243). Another
important role in neutrophil chemotaxis was also shown
for CCL3, as leukocyte-specific CCL3 depletion inhibited
atherosclerotic lesion formation particularly by affecting
neutrophil accumulation (252).

Importantly, neutrophils also contribute to monocyte
recruitment by depositing chemotactic proteins on the
endothelium (244). One such example is cathelicidin. Mice
lacking the corresponding gene developed significantly
smaller atherosclerotic lesions with lower numbers of plaque
macrophages (253). Similarly, it was reported that neutrophil-
derived α-defensin can complex with CCL5 and be presented
on EC, causing enhanced monocyte adhesion and vascular
inflammation (254); while cathepsin G—also released from
granules of neutrophils—is specifically deposited on the arterial
endothelium of arteries but not on venule EC, promoting
adhesion and extravasation of myeloid cells specifically in
atherosclerosis-susceptible areas of vessels (255).

Neutrophils can facilitate their way to the endothelium
through the dense network of endothelial glycocalyx by releasing
proteolytic proteins, MMPs and ROS, thus locally breaking this
physical barrier down (256). At the endothelium, neutrophil
tethering and rolling is mainly mediated by PSGL-1 binding to P-
selectin and CD44, but not to E-selectin, which is thus assumed to
be selectively used by inflammatory monocytes (197). This is an
important observation, as preformed P-selectin is available much
quicker upon activation of EC than E-selectin which requires
de novo synthesis, and which could therefore partly explain
the delayed secondary recruitment of inflammatory monocytes
compared to neutrophils in inflammation. CD44 has been
studied quite extensively for its involvement in atherosclerosis,
but depletion in atherosclerotic mice tended to yield conflicting
results (257). Depletion of L-selectin, which might be specifically
important in secondary capture, was consensually shown to
promote atherosclerosis, accompanied by a drop of aortic B cells

(258, 259). In vivo, however, the rolling behavior of monocytes
and neutrophils on carotid artery bifurcations of Apoe−/− mice
appears to be quite different: While the number of rolling
neutrophils, in contrast to monocytes, increased during high-
fat diet, the rolling rate of monocytes decreased during the
same period (260). Another striking observation is that under
high shear stress, by cytoskeletal reorganization during rolling
neutrophils can form slings out of their membrane which are
characterized by surface expression of distinct sticky PSGL-1
clusters and LFA-1, thus facilitating contact with the endothelium
(261). During rolling, neutrophils were also shown to secrete
S100 calcium-binding protein (S100)A8 and S100A9, calcium-
binding proteins constitutively expressed in myeloid cells that
account for ∼45% of the cytoplasmic proteins in neutrophils
(262). Interestingly, apart from their numerous functions in
inflammation, these proteins were also associated with leukocyte
chemotaxis, inducing VCAM-1 and ICAM-1 expression in EC
while upregulating Mac-1 expression in leukocytes, subsequently
resulting in increased TLR4-mediated Mac-1/ICAM-1 binding,
decelerated leukocyte rolling and enhanced firm adhesion on
the endothelium (263, 264). In line, blocking antibodies or
genetic depletion of S100A9 reduced leukocyte recruitment in
several murine inflammatory disease models (262), making these
proteins a promising pharmacological target in inflammation-
related diseases.

Transition from slow rolling to neutrophil arrest seems to
particularly depend on LFA-1 binding to endothelial ICAM-
1, which is in contrast to monocytes requiring VLA-4/VCAM-
1 interactions. Hereby, CXCR2 is assumed to be of central
importance for “inside-out” activation of LFA-1 (265). And while
monocyte crawling is dependent on both Mac-1 and LFA-1,
neutrophils seem to exclusively crawl via Mac-1, interacting with
ICAM-1 and ICAM-2 (88, 208, 266). Remarkably, when Mac-
1 is blocked, neutrophils can also crawl against the direction of
flow in vitro by engaging LFA-1, whileMac-1 favors flow-directed
crawling behavior (87). During crawling, neutrophils flatten and
form protrusions reaching into the endothelial surface similar to
monocytes, while on the front of the moving cell, filamentous
actin (F-actin) and on the end, the so-called uropod, myosin
filaments aid the cell in directed movement on the endothelium
(267). Lack of the actin cytoskeleton transcription factor MKL1
in neutrophils almost completely abrogated migration in vitro
(268). Importantly, neutrophils were recently found to actively
scan for activated platelets via protruding PSGL-1 clusters at
the uropod, and such interactions with platelets were crucial for
intravascular migration of neutrophils (269). Also EC derived
CXCL1 was shown to support neutrophil crawling, while CXCL2,
mainly produced by neutrophils themselves, particularly aided
in breaching of endothelial junctions together with its atypical
chemokine receptor 1 which was found to be enriched in
endothelial junctions (270).

Following firm arrest, neutrophil interaction with EC via
β2-integrin/ICAM-1 triggers VE-cadherin phosphorylation and
subsequent loosening of endothelial adherent junctions to
promote the favored paracellular route for diapedesis (97). This
is quite similar to the process described for monocytes above,
and requires the formation of transmigratory cups which were
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reported to form around neutrophils specifically in a “dome”
shaped manner (271), involving RhoA and leukocyte-specific
protein 1 mediated formation of contractile F-actin structures
that tightly surround the invading cell in order to prevent
vascular leakage during transmigration (272, 273). Strikingly,
neutrophils were also observed to return to the circulation by
reverse transendothelial migration in the context of low JAM-
C expression in mice (274). Mechanistically, local proteolytic
cleavage of JAM-C, driven by neutrophil-derived elastase, was
shown to promote this behavior (275).

After infiltrating the plaque, neutrophils have a plethora
of possibilities to further promote leukocyte recruitment
and subsequent progression of atherosclerosis. They can
release granula proteins such as cathelicidin, cathepsin G,
elastases, MMPs and ROS, or activate NET formation, thus
attracting further leukocytes, promoting oxidative stress, LDL
modification, EC activation, activation of macrophages and
cellular damage (244).

The Player With the Many Faces: T Cells
While myeloid cells form the first line of defense and respond
rapidly but uniformly to a broad spectrum of identified threats,
cells of the adaptive immune system perform highly specific
tasks that are individually tailored to the particular profile of
their target, resulting in a delayed but finely matched immune
response. Thus, it is not surprising that T cells—a highly
abundant population in human atherosclerotic plaques—are
divided into multiple different subpopulations. This includes
naïve, memory and effector CD4+ and CD8+ T cells, but also
regulatory T cells (Treg) (276). CD4+ T cells are generally
associated with increased atherosclerotic plaque growth (277–
280). Following antigen-presentation, CD4+ T cells are activated
and differentiate into T helper (Th)1, Th2, Th17 cells or other
subsets and resemble, together with memory T cells, the major
proportion of T cells to be found within atherosclerotic plaques
(281). However, they can also give rise to Tregs in the periphery
(282). Among the CD4+ T cells, Th1 cells are the most
abundant T-subtype in human atherosclerotic lesions (283) and
can generally be attributed as pro-atherosclerotic (284, 285),
while the role of the other T cell subsets is still a matter of debate
and discussed in detail elsewhere (286). Tregs, on the other hand,
which express the characteristic transcription factor forkhead
box protein P3 (FOXP3) and CD25, are clearly associated with
an anti-inflammatory role by suppressing the proliferation of
pro-inflammatory effector T cells and influencing macrophage
function toward an anti-inflammatory phenotype (287, 288).
Depletion of Treg cells in mice aggravates atherosclerosis (289–
291) and Tregs express IL-10 and transforming growth factor
(TGF)-β, both associated with anti-atherosclerotic effects in
atherosclerosis (292). Interestingly, however, just recently an
autoreactive phenotype in Tregs directed against apolipoprotein
B-100 (ApoB-100), the core protein of LDL, in late-stage
atherosclerosis was identified (293), questioning the classical
view of Tregs as solely beneficial cells. Moreover, a recent study
showed that dyslipidaemia reprograms the metabolic footprint of
Tregs toward an effector-like migratory phenotype, challenging
the classical hypothesis that Treg migration into plaques might

be reduced (294). Finally, CD8+ T cells are more frequent
in blood of CAD patients than in healthy individuals (295,
296) and generally associated with pro-atherosclerotic effects
in preclinical studies (297–299), but, in contrast, inhibiting
CD8+ cells in advanced lesions also resulted in less stable
lesions (300).

T cells can use both classical myeloid cell like and antigen-
dependent patterns for migration into tissues (256). While most
of the T cells found within plaques are antigen-experienced
T cells (286) and T cells targeting ApoB-100 were shown to
circulate in human blood (301), a recent study suggests that naïve
T cells can also be primed directly in the vessel wall (302). Of
note, this was not related to tertiary lymphoid organs which can
be found in later stages of atherosclerosis within the adventitia
and promote Treg expansion (303). However, the antigens to
which T cells respond in atherosclerosis are mostly unknown
which renders it difficult to study antigen-dependent effects in
T cell migration. Therefore, the precise mechanism of T cell
recruitment to atherosclerotic plaques, albeit of great interest, is
still subject of basic research, andmany of the subsequent insights
are derived from in vitro findings.

To migrate into murine atherosclerosis-prone vessels,
circulating T cells roll on endothelial P-selectin using PSGL-1
in vivo (302), with a potential role for its co-factors CD44 and
CD43 (304, 305). In contrast to monocytes, however, to be
fully active, PSGL-1 in T cells requires prior glycosylation (35).
Mac-1 has not been described to participate in T cell recruitment
but L-selectin, which is important for lymphocyte trafficking
into lymph nodes (256), was shown to play a role in T cell
migration into peripheral tissues, especially in recruitment into
the adventitia of healthy, non-inflamed arteries in mice (306).
This again suggests a role for naïve T cell recruitment, as T cells
generally lose L-selectin expression upon antigen-presentation.
Notably, in a study using intravital microscopy, rolling of T cells
on carotid artery bifurcations could not be observed in early
atherosclerosis, but was induced on pronounced atherosclerotic
lesions in mice (260), indicating a more pronounced role for T
cells in late atherosclerosis.

Induction of firm adhesion requires integrin activation, which
is accomplished by chemokines in a similar way as in myeloid
cells. Different T cell subsets react to different cytokines, but
CCR1 and CCR5 have been shown to be expressed on most
atherosclerosis relevant T cells and thus are supposed to play
a major role in T cell recruitment in response to CCL5 (307).
However, CCR1 and CCR5 appear to exhibit opposing effects,
as CCR1 seems to be anti-atherosclerotic in the context of
T cell recruitment in murine atherosclerosis (308), whereas
CCR5 rather has a pro-atherogenic role (section The Classic:
Monocytes). Another chemokine receptor to be found on Th1
cells is CXCR3, which is required for Th1 differentiation (309). It
requires binding of CXCL10, which, when inhibited, decreases
atherosclerotic lesion size and specifically T cell accumulation
in murine atherosclerotic lesions (310). Interestingly, CXCL10
levels were suggested to be higher in obese compared to non-
obese subjects, functionally promoting adhesion capacity of
leukocytes in vitro (311). Similarly, genetic depletion of Cxcr3
or antagonizing CXCR3 pharmacologically in mice reduced
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atherosclerosis progression and infiltration of inflammatory T
cells, while Treg numbers rised (312, 313). CXCR6 has been
described as a marker of polarized Th1 cells (314) important
for T cell homing, as absence of CXCR6 inhibited recruitment
of T cells, diminished IFNγ production and atherosclerotic
lesion formation in Apoe−/− mice (315). CXCL16 is the ligand
for CXCR6 and chemoattractive when expressed and deposited
on EC, but also functions as a scavenger receptor for oxLDL
on monocytes and macrophages (316). In contrast to other
oxLDL scavenger receptors, CXCL16 depletion was associated
with reduced plaque formation in Ldlr−/− mice (317), thus acting
in both pro- and anti-atherosclerotic ways, depending on the
context. Last but not least, CCR7, which mediates T cell homing
to lymph nodes, and its ligands CCL19 and CCL21 have also
been identified within atherosclerotic lesions of humans and
mice (318). However, studies on atherosclerosis in Ccr7−/− mice
achieved controversial findings (281).

To summarize, several chemokines and respective
receptors are involved in T cell attraction and inside-
out signaling. However, Th1 cells are also able to bypass
extracellular chemokine signals by absorbing chemokines stored
intraendothelially in vesicles via dense lymphocyte-endothelial
synapses (319). Moreover, EC also seem to be able to act in an
APC like manner, presenting antigens specifically to memory T
cells via their T cell receptor (TCR) and thereby activating them
toward tissue migration (320). Whether these scenarios are also
relevant for recruitment into atherosclerotic vessels is thus far
not known.

Adhesion of the now activated T lymphocytes occurs
presumably via the β2-integrin LFA-1, whereby VLA-4 and
CD47 are also thought to play a role (79, 321). Similar to
monocytes, crawling T cells interact with ICAM-1 via LFA-
1 (322), polarize into a leading edge and tailing uropod and
probe the endothelium by invasive protrusions (323) which is
controlled by RhoA and continuous actin reorganization (324).
The transmigration process of T cells in atherosclerotic arteries
to date is mostly unknown, but according to T cell migration
into other peripheral inflamed tissues likely similar to other
leukocytes, favoring paracellular migration involving ICAM-
1-mediated signaling and VE-cadherin dissociation from VE-
PTP (325, 326). In contrast, TCR-activated effector memory
CD4+ cells can also transmigrate in an alternative way involving
CX3CL1 and LBRC adhesion proteins in vitro (327). Again, if this
also happens in transmigration through atherosclerotic arteries,
is not known.

Platelets: Small but Effective Partners in
Crime
Although far from giving a full picture, the role of platelets in
atherosclerosis is becoming increasingly clear, revealing that their
involvement extends well-beyond thrombus formation. In fact,
thrombocytes also contribute to leukocyte recruitment in early
atherogenesis, as will be elucidated in the following.

While shear stress can trigger endothelial activation, leading to
upregulation of adhesion molecules and chemokines (see section
Keep it Flowing), shear stress is also known to directly trigger

platelet activation and aggregation in atherosclerotic vessels, thus
promoting thrombotic arterial occlusion (328). However, shear
stress or shear activated EC can stimulate platelets also in earlier
phases of atherogenesis and promote platelet adhesion to the EC
surface via enhanced adhesion molecule expression or decreased
release of NO and prostacyclin (329), thus shifting the balance
between inhibitory and activating pathways in platelets in favor
of platelet activation. Of interest, impaired function of the ATP-
binding cassette transporter G4 in bone marrow megakaryocyte
progenitors giving rise to platelets has been shown to inhibit
cholesterol efflux from these cells, thus promoting platelet
production and accelerating atherosclerosis (330). Additionally,
oxLDL was also shown to directly activate platelets via binding
to CD36, thereby impairing cGMP mediated anti-inflammatory
effects (331), while the traditional risk factors hyperlipidaemia,
hyperglycaemia and hypertension were likewise associated with
increased platelet reactivity (332).

Upon activation, platelets undergo shape change and increase
surface expression of P-selectin and CD40L, while integrin
αIIbβ3 adopts its active conformation (333). Such activated
circulating platelets were shown to readily bind to EC and
monocytes, deposit the chemokines CCL5 and CXCL4 (also
known as PF4) on both EC and monocytes and subsequently
promote leukocyte accumulation and atherosclerotic lesion
formation in the arterial intima, notably already prior to
the development of manifest atherosclerotic lesions (25, 334).
Moreover, atherosclerotic plaques also suggest presence of
macrophage-platelet aggregates, indicating that platelet-binding
to monocytes persists beyond the recruitment process (335). In
this interplay, platelets induce a pro-inflammatory phenotype
in macrophages characterized by increased production of the
cytokines IL-6 and IL-1β and impaired capability to phagocytose
dying cells, which in turn results in increased necrotic core area
in atherosclerotic plaques of Ldlr−/− mice. In line, the amount
of circulating monocyte-platelet aggregates was significantly
increased in CAD patients (336, 337). Mechanistically, platelet
binding to EC is a two-step process initiated by platelet rolling
on the glycoprotein von Willebrand factor (vWF) released and
bound by the endothelium, which involves platelet glycoprotein
(GP)Ibα and P-selectin. Subsequently, firm adhesion of platelets
is mediated via integrin αIIbβ3 which binds to endothelial αvβ3
and ICAM-1 (338), and involves PECAM-1 signaling (339).
The interaction between activated platelets and leukocytes is
conveyed by P-selectin interaction with leukocyte PSGL-1, which
is supported by platelet glycoprotein Ibα (GPIbα), JAM-A, and
JAM-C binding to leukocyte Mac-1 (340–342). In this context,
the role of JAM-A is striking, as it seems to act as a brake on
platelet activation: not only do knockout mice deficient for JAM-
A display enlarged thrombi (343) and accelerated early-stage
neointima formation (342), but also a hyperreactive phenotype
significantly aggravating atherosclerotic lesion formation (344).
However, in sharp contrast to these previous findings, a peptide
antagonist intended to inhibit JAM-A function was shown
to exert beneficial effects in atherosclerotic Apoe−/− mice by
inhibiting platelet adhesion to the endothelium (228). Therefore,
further studies are warranted to clarify a possible correlation of
these findings.
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Strikingly, endothelium-adherent platelets were observed
to form exceptionally long, flow-induced protrusions (FLIPR)
from their membrane under high shear stress. Mediated by
P-selectin/PSGL-1-interaction, such FLIPR can deliver platelet
microvesicles to rolling monocytes and neutrophils which
promotes their activation, as demonstrated by increased CD11b
expression and L-selectin shedding (345). Another interesting
observation is that, although platelets can adhere to EC at
various shear rates in vitro, their ability to capture leukocytes
may be limited to regions of disturbed flow (346). Moreover,
the absence of platelets in mice markedly suppresses neutrophil
crawling, whereas depletion of their neutrophil ligand PSGL-
1 significantly alters neutrophil surface distribution of Mac-1
and CXCR2, thereby impairing directed intravascular motility
and transmigration (269). On the other hand, platelets were
also shown to recruit to atherosclerotic plaques by interacting
with previously adhered monocytes and neutrophils in form of
secondary capture (260).

Apart from favoring leukocyte recruitment by direct binding,
several pro-inflammatory mediators released from activated
platelets also promote leukocyte recruitment (332). One such
platelet-derived chemokine of pivotal relevance to leukocyte
recruitment is CCL5. It is deposited on activated EC in arteries
mainly by platelets and significantly involved in monocyte and
neutrophil adhesion to EC, as shown by in vitro and in vivo
experiments (243, 347). Antagonizing CCL5, in turn, reduced
neointima formation, leukocyte infiltration and atherosclerotic
plaque formation in mice (348–350). CCL5 was also shown
to form complexes with CXCL4 which synergistically enhances
the capacity of CCL5 to recruit monocytes (351). Strikingly,
this interaction could be selectively disrupted by the peptidic
inhibitor CKEY2 and its mouse ortholog MKEY, thus decreasing
monocyte recruitment and atherosclerotic plaque formation in
mice (352). Another such liaison was found between CCL5
and the neutrophil-derived protein human neutrophil peptide
1 (HNP1), also facilitating monocyte recruitment to sites of
inflammation. This could likewise be inhibited by application of
the peptide antagonist RRYGTSKYQ (254).

A further important platelet derived chemokine is CXCL4
which is highly abundant in platelet α-granules and plays
a critical role in coagulation. Importantly, CXCL4 could be
localized in human atherosclerotic lesions and its presence
on EC and macrophages positively correlated with clinical
parameters for atherosclerosis (353). Moreover, CXCL4 was
shown to directly bind oxLDL and to increase its uptake in
vascular cells and macrophages (354), which is supported by
histological findings in human atherosclerotic lesions (355). Also,
upon stimulation with CXCL4, macrophages abolish expression
of the atheroprotective scavenger receptor CD163 (356) and,
as suggested by a recent study, give rise to a new macrophage
phenotype called M4, characterized by the simultaneous
expression of MMP7 and S100A8 (357). Additionally, CXCL4
appears to prompt differentiation of monocytes to macrophages
(358). In line with these observations, depletion of CXCL4 in
mice significantly reduced atherosclerotic lesion formation (359).

Another platelet derived factor is CXCL12. Interestingly,
polymorphisms within the gene encoding for CXCL12 in

humans have been genome-wide significantly associated with
CAD (360, 361). CXCL12 can signal both via CXCR4—relevant
for neutrophil retention in the bone marrow—and CXCR7.
While CXCR7 is barely detectable on blood leukocytes, it
appears to be upregulated during monocyte-to-macrophage
differentiation. This was accompanied by a switch in intracellular
signaling in response to CXCL12 toward more pro-inflammatory
pathways and subsequently enhanced phagocytotic activity
of macrophages (362). While CXCL12 promotes monocyte
chemotaxis in a CXCR4-dependent manner, monocyte adhesion
to platelet-bound CXCL12 is rather mediated by CXCR7
(363). Furthermore, in a paracrine manner, CXCL12 was
also shown to regulate platelet activation (364, 365). In line,
Cxcl12 overexpression increased, while endothelial-cell specific
Cxcl12 depletion reduced atherosclerotic lesion area in mice
(366, 367) and platelet surface CXCL12 expression correlated
with the risk of adverse cardiac events in symptomatic CAD
patients undergoing percutaneous coronary intervention (PCI)
(368). To the several other mediators released from platelets
upon activation belong CXCL3, CXCL5, CXCL7, CXCL16,
CCL3, and macrophage migration inhibitory factor (MIF).
Noteworthy, platelets also release several angiogenesis-related
proteins such as vascular endothelial growth factor (VEGF)
or platelet derived growth factor (PDGF) with important
influence on atherosclerosis. While angiogenic factors do not
necessarily appear to influence leukocyte recruitment directly,
neovascularization within atherosclerotic plaques is a hallmark
of progressive atherosclerosis exponentially expanding the area
over which leukocytes can penetrate, hence further promoting
leukocyte infiltration and plaque destabilization (369).

Lessons Learned: Clinical Implications and
Therapeutic Options
Plasma levels of cholesterol, which circulates in the blood
via LDL and strongly stimulates atherogenesis, can be
successfully lowered by treatment with statins—an approach
representing the mainstay of atherosclerosis therapy today.
Further pharmacological strategies to prevent cardiovascular
events include antihypertensive and antihyperglycemic agents,
if applicable (370). However, according to a 2010 meta-analysis,
average statin therapy in randomized, controlled trials (RCT) still
leaves a mean residual risk of over 75% for major cardiovascular
events in these patients (371). Intensified statin treatment
and additional use of ezetimibe or PCSK9 inhibitors, which
reduce levels of circulating LDL by a different mechanism,
further strongly reduces this risk but, again, far from completely
abolishing it (372, 373). Therefore, it becomes clear that
fighting only the traditional risk factors is not sufficient to
eliminate atherosclerosis.

At this point, anti-inflammatory treatment strategies come to
play (Figure 2). The IL-1β neutralizing antibody canakinumab
was one of the first solely anti-inflammatory drugs shown to
reduce the recurrence of cardiovascular events in high-risk
CAD patients (374), and as suggested from mouse experiments,
particularly does so by reducing leukocyte production in the bone
marrow and deactivating EC toward less leukocyte recruitment
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FIGURE 2 | Pharmacological targets in atherosclerotic leukocyte recruitment. Simplified overview of approved (black) or potential (gray) targets in the process of

leukocyte recruitment into atherosclerotic plaques. Substances with an incompletely clarified mechanism of action are marked with (?). CXCL2, C-X-C motif

chemokine ligand 2; ICAM-1, intracellular adhesion molecule 1; ICAM-2, intracellular adhesion molecule 2; NO, nitric oxide; (ox)LDL, (oxidized) lipoprotein; PCSK9,

proprotein convertase subtilisin/kexin type 9; VCAM-1, vascular adhesion molecule 1.

(375). Moreover, another such highly anti-inflammatory drug,
colchicine, was proven to reduce the risk of myocardial
infarction, ischemic stroke, or cardiovascular death by over 25%,
of note in addition to baseline treatment with lipid-lowering
agents in 97% of enrolled patients (376). Colchicine’s mechanism
of action is not fully understood, but suggested to inhibit
inflammasome activation, neutrophil recruitment and leukocyte-
platelet interactions (377), thus directly affecting leukocyte
migration into atherosclerotic plaques.

Of great interest, statins exert anti-inflammatory effects
beyond their action on LDL (378), which may partly explain
their superiority in cardiovascular risk reduction compared
with other lipid-lowering agents. Mechanistically, in absence
of hypercholesterolaemia, statins were shown to improve
endothelial function, particularly by improving NO availability,
stability of adherens junctions and reducing ROS formation
(379–381), to inhibit neovascularization (382, 383), and,
importantly, to selectively block LFA-1 and subsequent
lymphocyte adhesion (384). Similarly, antithrombotic agents—a
major pillar of secondary prevention—do not only reduce
aggregation, but also platelet activation. Aspirin, for example,
inhibits GPIIb/IIIa and P-selectin expression and release of
chemokines (385, 386), clopidogrel was shown to improve
systemic NO bioavailability and reduce soluble CD40L and
CCL5 release (387) and thrombin inhibitors reduce formation of
platelet-leukocyte aggregates and atherosclerotic plaques in mice
(388, 389). Also some anti-hyperglycaemic agents have shown
to exert beneficial effects on cardiovascular outcomes, both in
diabetic and non-diabetic patients with heart failure (390, 391).

Of note, the mechanism of action of some of these agents may
affect NLRP3 inflammasome function in macrophages (392).

Up until now, strategies aimed at reducing vascular oxidative
stress have not been shown beneficial in atherosclerosis patients
(137). Interestingly, however, the Rho kinase inhibitor fasudil
was associated with enhanced NO bioavailability, thus improving
endothelial function in atherosclerotic patients (393). When
regarding chemokine receptors, CXCR2 antagonists have been
or are currently investigated in pilot or phase II studies in
inflammatory diseases and COPD, while the CoronAry heart
DiseAse (CICADA) study is specifically testing the cardiovascular
effects of such agent (394). The CCR5 inhibitor maraviroc was
shown to reduce aortic plaque size when treating atherosclerotic
mice (395) but also to decrease atherosclerosis progression in
HIV patients (396) and thus represents another interesting target
for further studies.

A major fly in the ointment, however, is that large-
scale inhibition of adhesion molecules or chemokines is often
a double-edged sword, as several key players in leukocyte
recruitment act differently in different tissues or have different,
sometimes conflicting effects on atherosclerosis, as is the case
with PECAM-1 (397). Another drawback is the importance
of leukocyte recruitment for fighting infections. This limits
therapeutical benefits of canakinumab, e.g., (374). Therefore, in
contrast to targeting LDL, ubiquitous inhibition of adhesion
molecules or chemokines is often not feasible. However, chrono-
pharmacological treatment is one example for a more targeted
approach: In mice, CCL2-dependent myeloid cell recruitment
to atherosclerotic plaques peaks in the early morning and
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could be effectively targeted by time-adjusted treatment—
importantly, without affecting cell adhesion in the cremasteric
microcirculation at the same time (398). Another nascent
concept is vaccination in atherosclerosis, aiming at inducing
antigen-specific regulatory T cells to suppress deleterious effector
T cell expansion and thus inhibit atherosclerosis. However, it is
left open whether this strategy is feasible and beneficial (286).

Thus, it remains exciting to see what new therapeutics or
therapeutic concepts will emerge in the future that prove helpful
in curbing the inflammatory aspect of atherosclerosis and, in
particular, leukocyte recruitment into the vessel walls.

CONCLUSIONS

By following leukocytes step by step on their way into
atherosclerotic plaques, it became clear that all leukocytes,
although differing in their affinity for specific adhesion molecules
or chemokines, use the same overall concept of tethering and
rolling, adhesion, crawling and transmigration. Rolling is mainly
mediated by PSGL-1 and during rolling, chemokine-chemokine
receptor interactions activate the high affinity conformation
of leukocyte integrins in a process called inside-out signaling,
paving the way for firm adhesion via VLA-4 or LFA-1. Many
chemokines have different affinities for different leukocytes,
e.g., CCL2 rather favors classical monocytes and CXCL1 and
2 neutrophils, which may allow for targeted recruitment of
a particular cell type. Other chemokines such as CCL5 are
similarly important for monocytes, neutrophils and T cells, and
are partially derived from platelets, which also directly contribute
to leukocyte migration by binding to ECs and leukocytes. The
concept of crawling and transmigration, however, appears to
be very similar between leukocytes, involving cup formation
and breaking of endothelial junctions. An important part of the
recruitment process is EC priming, which enables expression
or upregulation of adhesion factors such as P-selectin, ICAM-1
or VCAM-1 on ECs as binding partners for leukocyte ligands.
ECs are mainly activated by two mechanisms: Disturbed flow
and inflammatory mediators, most importantly oxLDL. Recent
research shows important and divergent contributions of the
different leukocyte subsets on plaque formation, with neutrophils
being among the first cells to invade, paving the way for
monocyte migration which, inside the plaque, differentiate to
macrophages, ingest oxLDL, and promote further recruitment
of leukocytes. T cells, on the other side, might contribute

to atherosclerosis by targeting specific—mainly unidentified—
antigens within the plaque.

Therapeutically targeting recruitment related processes is
mainly drawn back by the multitude of important functions that
most involved factors have in the immune system. Nevertheless,
canakinumab and colchicine, two anti-inflammatory agents
contributing to recruitment-related processes, were already
proven beneficial in CAD patients. And surprisingly, statins,
the mainstay of current atherosclerosis therapy, appear to not
only lower LDL levels but also to inhibit leukocyte migration by
affecting endothelial and leukocyte function. The same holds true
for antithrombotic agents, which affect leukocyte recruitment in
multiple ways. Many ongoing studies are investigating the effect
of potential additional treatment strategies that mainly target the
inflammatory nature of atherosclerosis. However, several open
questions show that there is still a long way to go in basic research
and on the road from bench to bedside, before we can control the
excess inflammatory recruitment of leukocytes in atherosclerotic
plaques in patients.
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