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Abstract: This paper investigates solutions of hyperbolic diffusion equations in R3 with random
initial conditions. The solutions are given as spatial-temporal random fields. Their restrictions to the
unit sphere S2 are studied. All assumptions are formulated in terms of the angular power spectrum
or the spectral measure of the random initial conditions. Approximations to the exact solutions are
given. Upper bounds for the mean-square convergence rates of the approximation fields are obtained.
The smoothness properties of the exact solution and its approximation are also investigated. It is
demonstrated that the Hölder-type continuity of the solution depends on the decay of the angular
power spectrum. Conditions on the spectral measure of initial conditions that guarantee short- or
long-range dependence of the solutions are given. Numerical studies are presented to verify the
theoretical findings.

Keywords: stochastic partial differential equations; hyperbolic diffusion equation; spherical
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1. Introduction

Numerous environmental, biological and astrophysical applications require the modelling of
changes in data on the unit sphere S2 or in the 3D space R3 [1–6]. One of the conventional tools for
such modelling is stochastic partial differential equations (SPDEs)—see, for example [1,5,7,8], and the
references therein. Random fields that are solutions of such SPDEs often exhibit dynamics dependent
on initial conditions. Investigating the properties of these random fields is important for theoretical
insight and practical applications.

SPDEs on surfaces and Riemannian manifolds have found numerous applications to problems in
cosmology, physics, biology, fluid dynamics and pattern formation on surfaces, just to mention a few.
See [7,9–11] and the references therein.

Random fields on a sphere, one of the simplest two-dimensional manifolds, have been used as a
standard model in the astrophysical and cosmological literature in the last several decades [3,4,8,12].
NASA and ESA space missions [4] obtained very detailed measurements of Cosmic Microwave
Background radiation (CMB), which are interpreted as a realisation of a spherical random field
superimposed on an underlying signal of large-scale acoustic waves in plasma near the time of
recombination. The theory of the standard inflation scenario uses a Gaussian model for the density
fluctuation of this field [3,4,6]. Several new cosmological models were proposed using non-Gaussian
assumptions and employed sophisticated statistical tests to justify possible departures from Gaussianity.

Entropy 2020, 22, 217; doi:10.3390/e22020217 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0003-1784-5344
https://orcid.org/0000-0002-7078-0116
https://orcid.org/0000-0003-1932-4091
https://orcid.org/0000-0002-0917-7000
https://orcid.org/0000-0003-3712-8449
http://dx.doi.org/10.3390/e22020217
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/22/2/217?type=check_update&version=4


Entropy 2020, 22, 217 2 of 31

The understanding of changes in CMB temperature fluctuations is important to predict future
cosmological evolution and accurately reconstruct past states of the Universe. It also can help in
the estimation and statistical inference of physical parameters obtained from the CMB data. SPDEs on
the sphere can be used to model changes in CMB temperature fluctuations; see [7,8].

The pronounced spectral peaks at very large wavelengths in CMB temperature data are evidence
of acoustic waves that were seeded by earlier superluminal inflation, with remnant coherent waves
remaining until last scattering of photons and recombination of atoms around 340,000 years after the
big bang [6,13]. In the plasma Universe there was chaotic mixing, but it is problematic to represent the
underlying particle kinematics as standard Brownian motion, which leads to the standard diffusion
equation for particle densities. Under standard diffusion, density disturbances have unbounded
propagation speeds, which is unacceptable in relativistic cosmological contexts wherein remnant
structures that are coherent over space-like domains have not been smeared away by diffusion.
Reimberg [14] has directly modelled a sequence of photon–electron collisions backwards in time
from the last scattering, with random changes of direction, and with the same distance travelled
over equal time steps—unlike in usual random flight theory. Giona has developed a Feynman–Kac
stochastic dynamics by which a particle undergoes a succession of collisions with speed-limited jumps.
Consequently, the diffusion coefficients decrease as a power of the Lorentz–Fitzgerald contraction factor
of an inertial observer. This has the interesting consequence that different observers may disagree on
whether a process is deterministic or stochastic. Non-trivial continuous relativistic Markov processes
on position space are simply not possible [15]. A simpler alternative phenomenological model is
effected by replacing the standard diffusion equation by the simplest hyperbolic diffusion equation
that has a variable but bounded speed of propagation. Ali and Zhang [16] recast the hyperbolic
diffusion equation as a Lorentz-invariant Liouville conservation equation in one time and four space
dimensions, before restricting x4 to be ict. Ali and Zhang then retain the second law of thermodynamics
but only as a reaction-diffusion equation in 1+4 dimensions. Section 8 shows how information entropy
may decrease by a small amount during the propagation of a point source by hyperbolic diffusion,
whereas the overall increase is much larger.

The so-called Cattaneo hyperbolic diffusion equation [17,18] has been used to explain outcomes of
heat conduction experiments in liquid He4 in the super-fluid state [19,20], and solid He3 and solid He4

at very low temperatures. In these materials, and in some nanotubes and other graphite structures [21],
heat energy propagates as a “second sound” wave mediated by phonons, at a propagation speed of
around one-tenth the normal speed of sound. Since the experiments on graphite have been conducted
on nano-scale samples, we expect that waves of second sound could likewise be detected in the
spherical surface of a C60 or larger fullerene ball, as formulated in our previous paper on hyperbolic
diffusion on a spherical surface [8].

SPDEs on R3 have been extensively studied. However, SPDEs on manifolds have only recently
attracted a great deal of attention [7,8,22,23]. The results in these papers demonstrate that the continuity
properties of solutions and the convergence rates of approximations to solutions are determined by
decay rates of the angular power spectrum of initial random conditions. This article continues studies
of solutions of SPDEs on the sphere. However, in contrast to the above publications that directly
model spherical random fields using Laplace or Laplace–Beltrami operators on the sphere, we employ
another approach. Namely, we consider the restriction of the stochastic hyperbolic diffusion in R3 to
the unit sphere. Compared to the available literature this approach is more consistent with real CMB
observations that exist in 3D space but are measured only on S2. From a mathematical point of view,
additional investigations are required to show that solutions of known models on the sphere admit
physically meaningful extensions to R3 that are consistent with 3D observations. By its construction,
our model directly provides this consistency. The proposed model may find new applications for
the next generation of CMB experiments, CMB-S4, which will be collecting 3D observations. A very
detailed discussion of SPDEs on manifolds and their physical and mathematical justification for
CMB problems can be found in [8]. The hyperbolic diffusion equation prohibits the superluminal
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propagation of density disturbances, which is an unwanted feature of pure diffusion models over
super-galactic distances. In addition, the linear hyperbolic diffusion equation, expressed in terms of
co-moving material space coordinates and conformal time coordinate, is a good approximation to
the field equation of a scalar field minimally coupled to an expanding Robertson–Walker space-time.
However, speed-limited diffusion raises some interesting questions about the dynamics of Shannon
entropy. For physical concentrations governed by linear or nonlinear heat diffusion equations of
parabolic type, Shannon entropy is fully analogous to thermodynamic entropy and it increases
monotonically [24]. It will be explained that at low wave numbers, the hyperbolic diffusion equation
behaves as a dissipative diffusion equation. However, above some cut-off wave number it behaves
as a bi-directional wave equation which has increasing entropy when twin pulses separate but has
decreasing entropy when pulses approach each other constructively.

This paper is organised as follows. Section 2 presents definitions and results about
spatial-temporal random fields in R3. It also introduces hyperbolic diffusion equations with random
initial conditions and their solutions. Section 3 investigates the spatial-temporal hyperbolic diffusion
field on the unit sphere. The Hölder-type continuity of the exact solution of the spatial-temporal
hyperbolic diffusion field on the sphere is investigated in Section 4. In Section 5 we study the
dependence structures of the spherical hyperbolic diffusion random fields. Section 6 obtains the
mean-square convergence rate to the diffusion field in terms of the angular power spectrum. Section 7
provides some numerical results. Finally, Shannon entropy behaviour is discussed in Section 8,
followed by some conclusions.

In the following sections we will use the symbol C to denote constants that are not important for
our exposition. The same symbol may be used for different constants appearing in the same proof.

2. Spatial Random Hyperbolic Diffusion

This section reviews the basic theory of random fields in R3 and introduces a hyperbolic diffusion
with random initial conditions. Then, the solution of the diffusion equation is derived and analysed.

We consider the hyperbolic diffusion equation

1
c2

∂2q(x, t)
∂t2 +

1
D

∂q(x, t)
∂t

= ∆q(x, t), (1)

x = (x1, x2, x3) ∈ R3, t ≥ 0, D > 0, c > 0,

where q(x, t) = q(x, t, ω), ω ∈ Ω, is a random field satisfying the random initial conditions:

q(x, t)|t=0 = η(x),
∂q(x, t)

∂t

∣∣∣∣
t=0

= 0, (2)

where ∆ is the Laplacian in R3 and the random field η(x) = η(x, ω), x ∈ R3, ω ∈ Ω, defined on a
suitable complete probability space (Ω,F , P), is assumed to be measurable, mean-square continuous,
wide-sense homogeneous and isotropic with zero mean and the covariance function B(‖x− y‖) =
Cov(η(x), η(y)).

The covariance function has the following representation:

B(‖x− y‖) =
∫
R3

cos(〈κ, x− y〉) F(dκ) =
∫ ∞

0

sin(µ‖x− y‖)
µ‖x− y‖ G(dµ),

for some bounded, non-negative measures F(·) on (R3,B(R3)) and G(·) on (R1
+,B(R1

+)), such that

F(R3) = G([0, ∞)) = B(0), G(µ) =
∫

{‖κ‖<µ}

F(dκ).
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See [25], pp. 1–5 and [26], pp. 10–15 for more details.
Then, there exists a complex-valued orthogonally scattered random measure Z(·) such that for

every x ∈ R3, the field η(x) itself has the spectral representation

η(x) =
∫
R3

ei〈κ,x〉 Z(dκ), E|Z(∆)|2 = F(∆), ∆ ∈ B(R3). (3)

Let Ylm(θ, ϕ), θ ∈ [0, π], ϕ ∈ [0, 2π), l = 0, 1, . . . , m = −l, . . . , l, be complex spherical harmonics
defined by the relation

Ylm(θ, ϕ) = (−1)m
(
(2l + 1)(l −m)!

4π(l + m)!

)1/2

exp(imϕ)Pm
l (cos(θ)),

where Pm
l (·) are the associated Legendre polynomials with indices l and m. For spherical harmonics it

holds that

Yl0(0, 0) =

√
2l + 1

4π
, Yl0(θ, ϕ) =

√
2l + 1

4π
Pl0(cos θ),

Y∗lm(θ, ϕ) = (−1)mYl(−m)(θ, ϕ),

Ylm(π − θ, ϕ + π) = (−1)lYlm(θ, ϕ),∫ π

0

∫ 2π

0
Y∗lm(θ, ϕ)Yl′m′(θ, ϕ) sin θdϕdθ = δl′

l δm′
m ,

where the symbol * denotes the complex conjugation and δl′
l is the Kronecker delta function.

The addition formula for spherical harmonics gives

l

∑
m=−l

Ylm(θ, ϕ)Y∗lm(θ, ϕ) =
2l + 1

4π
.

The Bessel function Jν(·) of the first kind of order ν is defined by

Jν(µ) =
∞

∑
n=0

(−1)n

n!Γ(n + ν + 1)

(
µ

2

)2n+ν

,

where Γ(·) is the Gamma function.
It admits the following representation by the Poisson integral, see (10.9.4) in [27]:

Jν(µ) =
2(µ/2)ν

√
πΓ(ν + 1

2 )

∫ 1

0
(1− t2)ν− 1

2 cos(µt)dt, ν > −1
2

.

By the addition theorem for Bessel functions(e.g., [26], p. 14),

η(x) = η̃(θ, ϕ, r) = π
√

2
∞

∑
l=0

l

∑
m=−l

Ylm(θ, ϕ)
∫ ∞

0

Jl+1/2(µr)
(µr)1/2 Zlm(dµ), (4)

where Zlm(·) is a family of random measures on (R1
+,B(R1

+)), such that

EZlm(∆1)Zl′m′(∆2) = δl′
l δm′

m G(∆1 ∩ ∆2), ∆i ∈ B(R1
+), i = 1, 2. (5)

The stochastic integrals in (3) and (4) are viewed as L2(Ω) integrals with the structural measures F and
G, correspondingly.
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Let us consider the initial conditions of the form:

q(x, t)|t=0 = δ(x),
∂q(x, t)

∂t

∣∣∣∣
t=0

= 0, (6)

where δ(x) is the Dirac delta function.
Let Q(x, t), x ∈ R3, t ≥ 0, be the fundamental solution (or the Green’s function) of the

initial-value problem (1) and (6), and let

H(κ, t) =
∫
R3

ei〈κ,x〉 Q(x, t) dx, κ ∈ R3, t ≥ 0 (7)

be its Fourier transform.
The following theorem derives the Fourier transform H(κ, t). Contrary to many models in the

literature, for the initial-value problem (1) and (2) it can be explicitly written in terms of elementary
functions. Later, this result will be used to obtain the solution q(x, t, ω), x ∈ R3, t ≥ 0, ω ∈ Ω, and its
covariance function.

Theorem 1. The Fourier transform (7) of the initial-value problem (1) and (6) is given by the formula

H(κ, t) = exp
(
− c2

2D
t
)

(8)

×
{[

cosh

(
ct

√
c2

4D2 − ‖κ‖2

)
+

c

2D
√

c2

4D2 − ‖κ‖2
sinh

(
ct

√
c2

4D2 − ‖κ‖2

)]
I{‖κ‖≤ c

2D } (9)

+

[
cos

(
ct

√
‖κ‖2 − c2

4D2

)
+

c

2D
√
‖κ‖2 − c2

4D2

sin

(
ct

√
‖κ‖2 − c2

4D2

)]
I{‖κ‖> c

2D }

}
, (10)

where I{·} denotes the indicator function.

Proof of Theorem 1. The Fourier transform (7) is the solution of the initial-value problem

1
c2

d2H(κ, t)
dt2 +

1
D

dH(κ, t)
dt

+ ‖κ‖2H(κ, t) = 0,

H(κ, t)|t=0 = 1,
∂H(κ, t)

∂t

∣∣∣∣
t=0

= 0, κ ∈ R3.
(11)

The characteristic equation for the ordinary differential equation in (11) is

1
c2 z2 +

1
D

z + ‖κ‖2 = 0,

with the roots

z1(κ) = −
c2

2D
−
√

c4

4D2 − c2‖κ‖2, z2(κ) = −
c2

2D
+

√
c4

4D2 − c2‖κ‖2. (12)

Therefore, the general solution of the ordinary differential equation in (11) has the form

H(κ, t) = K1(κ)ez1(κ)t + K2(κ)ez2(κ)t, (13)

where K1(κ), K2(κ) are some functions that do not depend on t and z1(κ), z2(κ) are given by (12).
From the initial conditions in (11) we obtain the system of equations to find these functions

K1(κ) + K2(κ) = 1, z1(κ)K1(κ) + z2(κ)K2(κ) = 0, (14)
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which results in

K1(κ) =
1
2
− c

4D
√

c2

4D2 − ‖κ‖2
, K2(κ) =

1
2
+

c

4D
√

c2

4D2 − ‖κ‖2
. (15)

Thus, by (12) and (13) the solution of the initial-value problem (11) is

H(κ, t) =

1
2
− c

4D
√

c2

4D2 − ‖κ‖2

 exp

[
t

(
− c2

2D
−
√

c4

4D2 − c2‖κ‖2

)]

+

1
2
+

c

4D
√

c2

4D2 − ‖κ‖2

 exp

[
t

(
− c2

2D
+

√
c4

4D2 − c2‖κ‖2

)]

= exp
(
− c2

2D
t
)(

1
2

[
exp

(
t

√
c4

4D2 − c2‖κ‖2

)
+ exp

(
−t

√
c4

4D2 − c2‖κ‖2

)]

+
c

2D
√

c2

4D2 − ‖κ‖2

1
2

[
exp

(
t

√
c4

4D2 − c2‖κ‖2

)
− exp

(
−t

√
c4

4D2 − c2‖κ‖2

)])

= exp
(
− c2

2D
t
){

cosh

(
t

√
c4

4D2 − c2‖κ‖2

)
+

c

2D
√

c2

4D2 − ‖κ‖2

× sinh

(
t

√
c4

4D2 − c2‖κ‖2

)}
= exp

(
− c2

2D
t
){[

cosh

(
ct

√
c2

4D2 − ‖κ‖2

)

+
c

2D
√

c2

4D2 − ‖κ‖2
sinh

(
ct

√
c2

4D2 − ‖κ‖2

)]
I{‖κ‖≤ c

2D } +

[
cos

(
ct

√
‖κ‖2 − c2

4D2

)

+
c

2D
√
‖κ‖2 − c2

4D2

sin

(
ct

√
‖κ‖2 − c2

4D2

)]
I{‖κ‖> c

2D }

}
.

The theorem is proved.

Remark 1. The function H(κ, t) given by (8) is radial. That is, there exists a function H̃(·, ·) defined on
(0, ∞)× (0, ∞) such that H(κ, t) = H̃(‖κ‖, t).

Remark 2. c/2D is a cut-off wave number below which the Fourier modes decay exponentially and are
non-travelling as in standard heat conduction. At low wave numbers, the governing PDE may be regarded as a
delayed diffusion equation, as in Cattaneo’s theory of heat propagation [17]. At higher wave numbers, it can
easily be seen from the one-dimensional solutions that the Fourier components may be viewed as travelling waves
but with exponentially decaying amplitude. At high wave numbers, the governing PDE may be regarded as a
damped wave equation.

Let us denote H̃(µ, t) = H̃1(µ, t) + H̃2(µ, t), such that

H̃1(µ, t) = exp
(
− c2

2D
t
) [

cosh

(
ct

√
c2

4D2 − µ2

)

+
c

2D
√

c2

4D2 − µ2
sinh

(
ct

√
c2

4D2 − µ2

)]
I{|µ|≤ c

2D }, (16)
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H̃2(µ, t) = exp
(
− c2

2D
t
) [

cos

(
ct

√
µ2 − c2

4D2

)

+
c

2D
√

µ2 − c2

4D2

sin

(
ct

√
µ2 − c2

4D2

)]
I{|µ|> c

2D }. (17)

Lemma 1. It holds that

0 ≤ H̃1(µ, t) ≤ 1, (18)

and

|H̃2(µ, t)| ≤ exp
(
− c2

2D
t
)[

1 +
c2

2D
t
]

. (19)

Proof of Lemma 1. It follows from (13)–(15) that for |µ| ≤ c
2D it holds

H̃1(µ, t) = ez2(µ)t(K2(µ) + K1(µ)e(z1(µ)−z2(µ))t) = ez2(µ)t
(

1 + (e(z1(µ)−z2(µ))t − 1)K1(µ)

)
= ez2(µ)t

(
1 + (e

− z2(µ)
K1(µ)

t − 1)K1(µ)

)
= (1− K1(µ))ez2(µ)t + K1(µ)e

(
z2(µ)−

z2(µ)
K1(µ)

)
t
.

Note that H̃1(µ, 0) = 1 for |µ| ≤ c
2D and

∂H̃1(µ, t)
∂t

= (1− K1(µ))z2(µ)ez2(µ)t + K1(µ)

(
z2(µ)−

z2(µ)

K1(µ)

)
e

z2(µ)−
z2(µ)
K1(µ)

t

= (1− K1(µ))z2(µ)ez2(µ)t
(

1− e
− z2(µ)

K1(µ)
t
)
≤ 0,

because z2(µ) ≤ 0 and K1(µ) ≤ 0 if |µ| ≤ c
2D . Thus, H̃1(µ, t) ≤ H̃1(µ, 0) = 1.

As
∣∣ sin(x)

x

∣∣ ≤ 1, one obtains the upper bound (19) from the representation (17) for H̃2(·, ·).

The following theorem provides the solution of the initial-value problem and its covariance
function in terms of the Fourier transform H(κ, t). As the explicit expression of H(κ, t) in terms of
elementary functions is given in Theorem 1, it can be used to obtain an explicit expression for the
solution and then easily investigate various properties of q(x, t).

Theorem 2. The solution q(x, t) = q(x, t, ω), x ∈ R3, t ≥ 0, ω ∈ Ω, of the initial-value problem (1) and (2)
can be written as the convolution

q(x, t) =
∫
R3

ei(κ,x)H(κ, t)Z(dκ). (20)

The covariance function of the spatio-temporal random field (20) is

Cov(q(x, t), q(x′, t′)) =
∫
R3

e〈κ,x−x′〉 H(κ, t) H(κ, t′) F(dκ). (21)

Proof of Theorem 2. Notice that

q(x, t) =
∫
R3

η(y) Q(x− y, t) dy =
∫
R3

η(x− z) Q(z, t) d z

=
∫
R3

ei〈κ,x〉
[∫

R3
ei〈κ,−z〉Q(z, t)dz

]
Z(dκ) =

∫
R3

ei〈κ,x〉 H(κ, t) Z(dκ),
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where H(κ, t) is given by (8), assuming that the random initial condition has the spectral measure F,
such that ∫

R3
|H(κ, t)|2 F(dκ) < ∞. (22)

Under the condition (22), the stochastic integral (20) exists in the L2(Ω)-sense.
By Lemma 1 the function |H(κ, t)| can be bounded by a constant C(t) which depends only on

t. Noting that
∫
R3 |H(κ, t)|2F(dκ) ≤ C(t)B(0) we obtain (22). The representation (21) immediately

follows from (20) and the orthogonality of Z(·).

3. Spherical Random Hyperbolic Diffusion

In this section we investigate a restriction of the spatial-temporal hyperbolic diffusion field from
Section 2 to the unit sphere.

Consider the sphere S2 = {x ∈ R3 : ‖x‖ = 1} in the three-dimensional Euclidean space R3 with
the Lebesgue measure

σ̃(dx) = σ(dθ, dϕ) = sin θ dθ dϕ, θ ∈ [0, π], ϕ ∈ [0, 2π).

A spatio-temporal spherical random field defined on a probability space (Ω,F , P) is a
stochastic function

T(x, t) = T(x, t, ω) = T̃(θ, ϕ, t), x ∈ S2, t ≥ 0.

We consider a real-valued spatio-temporal spherical random field T with zero mean and finite
second-order moments and being continuous in the mean-square sense (see, e.g., Marinucci and
Peccati [3] for definitions and other details). Under these conditions, the zero-mean random field T
can be expanded in the mean-square sense as the Laplace series [25]:

T̃(θ, ϕ, t) =
∞

∑
l=0

l

∑
m=−l

Ylm(θ, ϕ) alm(t),

where the functions Ylm(θ, ϕ) represent the spherical harmonics and the coefficients alm(t) are given
by the formula

alm(t) =
∫ π

0

∫ 2π

0
T̃(θ, ϕ, t) Y∗lm(θ, ϕ) sin θ dθ dϕ.

We assume that the field T is isotropic (in the weak sense), that is, ET2(x, t) < ∞, and ET(x, t)T(y, t′) =
ET(gx, t)T(gy, t′) for every g ∈ SO(3), the group of rotations in R3. This is equivalent to the condition
that the covariance function ET̃(θ, ϕ, t)T̃(θ′, ϕ′, t′) depends only on the angular distance γ = γPQ
between the points P = (θ, ϕ) and Q = (θ′, ϕ′) on S2 for every t, t′ ≥ 0.

The field is isotropic if and only if

Ealm(t)al′m′(t
′) = δl′

l δm′
m Cl(t, t′), −l ≤ m ≤ l, −l′ ≤ m′ ≤ l′. (23)

Hence,
Ealm(t)alm(t′) = Cl(t, t′), m = 0,±1, . . . ,±l.

The functional series {Cl(t, t′), l = 0, 1, . . . } is called the angular time-dependent power spectrum of
the isotropic random field T̃(θ, ϕ, t).

We can define a covariance function between two locations with the angular distance γ at times t
and t′ by

R(cos γ, t, t′) = ET(θ, ϕ, t)T(θ′, ϕ′, t′) =
1

4π

∞

∑
l=0

(2l + 1) Cl(t, t′) Pl(cos γ), (24)

where Pl(x) = 1
2l l!

dl

dxl (x2 − 1)l is the l-th Legendre polynomial.
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If T̃(θ, ϕ, t) is a zero-mean isotropic Gaussian field, then the coefficients alm(t), m = −l, . . . , l,
l ≥ 1, are complex-valued Gaussian stochastic processes with

Ealm(t) = 0, Ealm(t)al′m′(t
′) = δl′

l δm′
m Cl(t, t′).

By Remark 1, the random field q(x, t), x ∈ R3 given by (20) is homogeneous and isotropic in x,
and hence its covariance function (21) can be written in the form:

Cov(q(x, t), q(x′, t′)) =
∫ ∞

0

sin(µ‖x− x′‖)
µ‖x− x′‖ H̃(µ, t) H̃(µ, t′) G(dµ)

= 2π2
∞

∑
l=0

l

∑
m=−l

Ylm(θ, ϕ) Y∗lm(θ
′, ϕ′)

×
∫ ∞

0

Jl+1/2(µr)
(µr)1/2

Jl+1/2(µr′)
(µr′)1/2 H̃(µ, t) H̃(µ, t′) G(dµ),

where (r, θ, ϕ) and (r′, θ′, ϕ′) are spherical coordinates of x and x′ respectively.
Using the Karhunen theorem we obtain the following spectral representation of the random field:

q(x, t) = q̃(r, θ, ϕ, t) = π
√

2
∞

∑
l=0

l

∑
m=−l

Ylm(θ, ϕ)
∫ ∞

0

Jl+1/2(rµ)

(rµ)1/2 H̃(µ, t) Zlm(dµ), (25)

where the random measures Zlm(·) are given in (5).
Similarly to the condition (22) the isotropic measure G(·) satisfies the following condition if the

field has a finite variance: ∫ ∞

0
µ2 |H̃(µ, t)|2 G(dµ) < ∞.

Subclasses of covariance functions of the isotropic fields on the sphere can be obtained from
covariance functions of homogeneous isotropic random fields in Euclidean space, since a restriction
of the homogeneous and isotropic random field to the sphere yields an isotropic spherical field
(e.g., [25], p. 76).

Consider two locations x and x′ on the unit sphere S2 with the angle γ ∈ [0, π] between them.
Then, the Euclidean distance between these two points is 2 sin γ

2 , the inner product is 〈x, x′〉 = cos γ,
which gives a direct correspondence between the covariance function R0(‖x− x′‖, t, t′) in the Euclidean
space and the covariance function R(cos γ, t, t′) = R0(2 sin γ

2 , t, t′) on the sphere for every fixed t, t′ ≥ 0.
Thus, the restriction of the homogeneous and isotropic hyperbolic diffusion field (25) to S2 is an
isotropic spherical random field for every fixed t, t′ ≥ 0. We will call it the spherical hyperbolic
diffusion isotropic random field TH(x, t), x ∈ S2, t ≥ 0.

Its covariance function is of the form:

Cov(TH(x, t), TH(x′, t′)) = R(cos γ, t, t′) =
∫ ∞

0

sin(2µ sin γ
2 )

2µ sin γ
2

H̃(µ, t) H̃(µ, t′) G(dµ). (26)

By the addition theorem for Bessel functions, the random field TH(x, t) = T̃H(θ, ϕ, t) has the following
spectral representation:

T̃H(θ, ϕ, t) =
∞

∑
l=0

l

∑
m=−l

Ylm(θ, ϕ) alm(t), (27)

where

alm(t) = π
√

2
∫ ∞

0

Jl+1/2(µ)√
µ

H̃(µ, t) Zlm(dµ) (28)

and the random measure Zlm(·) satisfies (5).
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Thus, the angular spectrum of the isotropic spherical random field TH(x, t) is given by the formula

Cl(t, t′) = 2π2
∫ ∞

0

J2
l+1/2(µ)

µ
H̃(µ, t) H̃(µ, t′) G(dµ). (29)

Therefore, we obtained the following result.

Theorem 3. Consider the random initial-value problem (1) and (2), in which η(x), x ∈ R3, is a homogeneous
isotropic random field with the isotropic spectral measure G(·) given by (5).

Then, the restriction of the spatio-temporal hyperbolic-diffusion random field (25) to the sphere S2 is an
isotropic spatio-temporal spherical random field with the following angular spectrum:

Cl(t, t′) = 2π2
[∫ c

2D

0

J2
l+1/2(µ)

µ
H̃1(µ, t) H̃1(µ, t′) G(dµ)

+
∫ ∞

c
2D

J2
l+1/2(µ)

µ
H̃2(µ, t) H̃2(µ, t′) G(dµ)

]
.

The field and its covariance functions are given by (27) and (26), respectively.

This result investigates the restriction of the spatio-temporal hyperbolic-diffusion random field
to the sphere S2. It shows how the angular power spectrum Cl(t, t′) of the restriction depends on
the Fourier transform H̃(µ, t). Hence, one can explicitly compute coefficients Cl(t, t′) and study the
contributions of different spherical harmonics to the spatial-temporal field TH(x, t).

Notice that TH(x, 0) = η(x), x ∈ S2. The angular power spectrum of η(x), x ∈ S2, will be denoted
by Cl , l = 0, 1, . . . For spherical random fields with finite variances, it holds

∞

∑
l=0

(2l + 1)Cl < ∞. (30)

Lemma 2. If (30) holds true, then
∞

∑
l=0

(2l + 1)Cl(t, t′) < ∞.

Proof of Lemma 2. By Theorem 3

∞

∑
l=0

(2l + 1)Cl(t, t′) = 2π2
∞

∑
l=0

(2l + 1)
∫ c/2D

0

J2
l+ 1

2
(µ)

µ
H̃1(µ, t)H̃1(µ, t′)G(dµ)

+ 2π2
∞

∑
l=0

(2l + 1)
∫ ∞

c/2D

J2
l+ 1

2
(µ)

µ
H̃2(µ, t)H̃2(µ, t′)G(dµ)

≤ 2π2 · sup
µ< c

2D

∣∣H̃1(µ, t)H̃1(µ, t′)
∣∣ · ∞

∑
l=0

(2l + 1)
∫ c/2D

0
J2
l+ 1

2
(µ)G(dµ)

+ 2π2 · sup
µ≥ c

2D

∣∣H̃2(µ, t)H̃2(µ, t′)
∣∣ · ∞

∑
l=0

(2l + 1)
∫ ∞

c/2D

J2
l+ 1

2
(µ)

µ
G(dµ). (31)
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Now, combining (31) and Lemma 1, one gets

∞

∑
l=0

(2l + 1)Cl(t, t′) ≤ 2π2
∫ c/2D

0

∞

∑
l=0

(2l + 1)
J2
l+ 1

2
(µ)

µ
G(dµ) + exp

(
− c2

D
t
)(

1 +
c2

2D
t
)2

× 2π2
∫ ∞

c/2D

∞

∑
l=0

(2l + 1)
J2
l+ 1

2
(µ)

µ
G(dµ) ≤

∞

∑
l=0

(2l + 1)Cl , (32)

as supx≥0(x + 1)e−x = 1, H̃1(µ, 0) = H̃2(µ, 0) = 1, and Cl(0, 0) = Cl . This completes the proof.

Remark 3. It follows from Lemma 2 and the estimate |Pl(cos θ)| ≤ 1 that the solution’s covariance function
given by (24) is finite if the initial condition η(x), x ∈ S2, has a finite variance.

4. Smoothness of Solutions

Numerous problems in mathematical physics and geosciences require studying the regularity
properties of solutions of differential equations. Smoothness, boundedness of derivatives or Hölder
continuity conditions are often used to describe and investigate local changes and growth rates of
solutions. Knowing regularity properties is also essential for an adequate approximation of SPDE
solutions. In those cases where solutions are given by infinite series, it is a rather difficult mathematical
problem, as the tail terms of such series can accumulate.

In this section, we investigate the Hölder-type continuity of the solution T̃(θ, ϕ, t) given by (27) on
the sphere. Estimations of the closeness of T̃ values at spherical points (θ, ϕ) and (θ′, ϕ′) are obtained.
We demonstrate how they depend on the decay of the angular power spectrum and provide some
specifications in terms of the spectral measure G(·).

First, we obtain the continuity of the solution with respect to the geodesic distance on the sphere.
To prove this we use the approach from Corollary 5 in [8].

Theorem 4. Let T̃H(θ, ϕ, t) be the solution of the initial value problem (1) and (2) and the random initial
condition η(x), x ∈ S2, has the angular power spectrum {Cl , l = 0, 1, 2, . . . } satisfying the assumption

∞

∑
l=0

(2l + 1)1+2αCl < ∞, α ∈ (0, 1]. (33)

(a) Then, for t > 0

MSE
(
T̃H(θ, ϕ, t)− T̃H(θ

′, ϕ′, t)
)
≤ C

∞

∑
l=0

(2l + 1)1+2αCl(1− cos γ)α,

where γ is the angle between directions (θ, ϕ) and (θ′, ϕ′).
(b) If the measure G(·) has its support in

[ c
2D , ∞

)
, then

MSE
(
T̃H(θ, ϕ, t)− T̃H(θ

′, ϕ′, t)
)
≤ C exp

(
− c2

D
t
)(

1 +
c2

2D
t
)2 ∞

∑
l=0

(2l + 1)1+2αCl(1− cos γ)α.
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Proof of Theorem 4. (a) It follows from (23), (24), (27) and (32) that

MSE
(
T̃H(θ, ϕ, t)− T̃H(θ

′, ϕ′, t)
)
= 2Var(T̃H(θ, ϕ, t))− 2Cov(T̃H(θ, ϕ, t)T̃H(θ

′, ϕ′, t))

=
1

2π

∞

∑
l=0

(2l + 1)Cl(t, t)(1− Pl(cos γ))

≤ 1
2π

∞

∑
l=0

(2l + 1)Cl(1− Pl(cos γ)).

Applying the property of Legendre polynomials, [23], p. 16,

|1− Pl(cos γ)| ≤ 2(1− cos γ)α(l(l + 1))α, α ∈ (0, 1],

one obtains the statement (a) of the theorem.
(b) It follows from the proof of (32) that in the case of G([0, c

2D ]) = 0 it holds

Cl(t, t) ≤ exp
(
− c2

D
t
)(

1 +
c2

2D
t
)2

Cl .

The remaining steps are similar to the proof in (a).

When the geodesic distance γ vanishes (i.e., γ → 0), it is easy to see that (1− cos γ)α → 0 and,
therefore, MSE

(
T̃H(θ, ϕ, t)− T̃H(θ

′, ϕ′, t)
)
→ 0 as well.

The next two results provide conditions on the field’s spectrum that guarantee the Hölder-type
regularity of T̃H(θ, ϕ, t).

Theorem 5. If the measure G(·) has a bounded support [0, δ], δ > 0, then

MSE
(
T̃H(θ, ϕ, t)− T̃H(θ

′, ϕ′, t)
)
≤ C(1− cos γ), when γ→ 0+, (34)

even for the case of α = 0 in (33).

Proof of Theorem 5. Indeed, by (26) we get

MSE
(
T̃H(θ, ϕ, t)− T̃H(θ

′, ϕ′, t)
)
= 2

∫ ∞

0

(
1−

sin(2µ sin γ
2 )

2µ sin γ
2

)
H2(µ, t) G(dµ)

= 2
∫ δ

0

(
1−

sin(2µ sin γ
2 )

2µ sin γ
2

)
H2(µ, t) G(dµ).

For µ ∈ [0, δ] it holds 2µ sin γ
2 → 0, when γ→ 0+, and therefore

∣∣∣∣1− sin(2µ sin γ
2 )

2µ sin γ
2

∣∣∣∣ = ∣∣∣∣ ∞

∑
k=1

(−1)k

(2k + 1)!

(
2µ sin

γ

2

)2k+1∣∣∣∣ ≤
(

2µ sin
γ

2

)2

3!
.

Hence,

MSE
(
T̃H(θ, ϕ, t)− T̃H(θ

′, ϕ′, t)
)
≤ C sin2 γ

2

∫ δ

0
µ2H2(µ, t)G(dµ)

and (34) follows from Lemma 1.

The next result gives sufficient conditions to guarantee (33).

Theorem 6. Suppose that
∫ ∞

0 eµ2/4G(dµ) < ∞. Then, (33) holds true.
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Proof of Theorem 6. By the Poisson integral representation of the Bessel function it follows that

∞

∑
l=0

(2l + 1)1+2αCl = 2π2
∫ ∞

0

∞

∑
l=0

(2l + 1)1+2α J2
l+ 1

2
(µ)

G(dµ)

µ

≤ C
∫ ∞

0

∞

∑
l=0

(2l + 1)1+2α µ2l+1

22l+1Γ2(l + 1)
G(dµ)

µ

≤ C
∫ ∞

0
µ

∞

∑
l=0

(µ2/4)l

l!
(2l + 1)1+2α

l!
G(dµ)

µ
≤ C

∫ ∞

0
e

µ2
4 G(dµ),

as 1 + 2α ≤ 3.

5. Short and Long Memory

Investigating statistical dependence between measurements at two points with increasing time
or spatial distance between them is an important issue for practical temporal or spatial predictions.
The spatial domain of the considered random fields is restricted to the sphere S2 with the geodesic
distance γ. Note that this distance is bounded to the interval [0, π], but time t can unboundedly increase
and takes values in [0,+∞). Hence, this section investigates only temporal statistical dependencies,
namely, slow or fast decays of covariance functions in time. The corresponding cases represent long or
short memory scenarios.

In this section we use the representation (26) of covariance functions to investigate the structure of
dependences of TH(x, t) over time. We demonstrate that conditional on the spectral isotropic measure
G(·) of the initial random condition η(x), x ∈ R3, the random field TH(x, t) can exhibit short- or
long-range dependence.

The random field TH(x, t) will be called short-range dependent if

∫ +∞

0
|R(cos γ, t + h, t)|dh < +∞, (35)

for all t ≥ 0 and γ ∈ [0, π]. If the integral in (35) is divergent, the field is called long-range dependent.
Results that link behaviours of covariance functions at infinity and spectral measures at the origin

are called Abelian–Tauberian theorems. A very detailed overview of such results for random fields
can be found in [28].

First we investigate the case of x = x′ in (26) (i.e., the behaviour of R(1, t + h, t)).

Theorem 7. For x = x′ the random field TH(x, t) exhibits short-range dependence if and only if µ−2G(dµ) is
integrable in a neighbourhood of zero.

Proof of Theorem 7. It follows from (16), (17) and (26) that

∫ +∞

0
|R(1, t + h, t)|dh =

∫ +∞

0

∣∣∣∣ ∫ c/2D

0
H̃1(µ, t + h)H̃1(µ, t)G(dµ)

+
∫ +∞

c/2D
H̃2(µ, t + h)H̃2(µ, t)G(dµ)

∣∣∣∣dh.

Using the upper bound from (19) we get

∫ +∞

0

∣∣∣∣ ∫ +∞

c/2D
H̃2(µ, t + h)H̃2(µ, t)G(dµ)

∣∣∣∣dh ≤ exp
(
− c2

2D
t
)[

1 +
c2

2D
t
]
· G
([ c

2D
,+∞

))

×
∫ +∞

0
exp

(
− c2

2D
h
)[

1 +
c2

2D
(t + h)

]
dh < +∞. (36)
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Hence, to study the integrability of the covariance function |R(1, t + h, t)| one has to investigate
the integral ∫ +∞

0

∣∣∣∣ ∫ c/2D

0
H̃1(µ, t + h)H̃1(µ, t)G(dµ)

∣∣∣∣dh. (37)

As H̃1(µ, t) > 0 for |µ| ≤ c
2D

, t ≥ 0, it is equivalent to studying the integral

∫ c/2D

0

∫ +∞

0
H̃1(µ, t + h)H̃1(µ, t)dh G(dµ),

or, by (16) and cosh
( c2t

2D

√
1− 4D2

c2 µ2
)
∈
[
1, cosh c2t

2D
]

for µ ∈
[
0, c

2D
]
, to investigating the finiteness of

the integral

∫ c/2D

0

∫ +∞

0

exp
(
− c2

2D
h
(

1−
√

1− 4D2

c2 µ2
))[

1 +
1√

1− 4D2

c2 µ2

]

− exp

(
− c2

2D
h
(

1 +

√
1− 4D2

c2 µ2
))

1√
1− 4D2

c2 µ2


1 +

sinh
(

c2t
2D

√
1− 4D2

c2 µ2
)

√
1− 4D2

c2 µ2

 dh G(dµ)

=
2D
c2

∫ c/2D

0

 1

1−
√

1− 4D2

c2 µ2
+

 1

1−
√

1− 4D2

c2 µ2
− 1

1 +
√

1− 4D2

c2 µ2

 1√
1− 4D2

c2 µ2



×

1 +
sinh

(
c2t
2D

√
1− 4D2

c2 µ2
)

√
1− 4D2

c2 µ2

G(dµ).

Noting that
sin(h)

h
∈
[

0,
sinh(A)

A

]
on [0, A], A > 0, we obtain that (37) is finite if and only if the

following integral converges:

∫ c/2D

0

 1

1−
√

1− 4D2

c2 µ2
+

c2

2D2µ2

G(dµ) =
c2

4D2

∫ c/2D

0

3 +
√

1− 4D2

c2 µ2

µ2 G(dµ).

The last integral is finite only if
∫ ε

0
G(dµ)

µ2 < ∞, ε > 0, which completes the proof.

Now we extend Theorem 7 to the case of arbitrary x and x′ from S2.

Theorem 8. The random field TH(x, t) is short-range dependent if and only if µ−2G(dµ) is integrable in the
neighbourhood of the origin.

Proof of Theorem 8. Note that by (26) the integrators in R(cos γ, t′, t) and R(1, t′, t) differ only by a

multiplier
sin(2µ sin γ

2 )
2µ sin γ

2
.

Thus,

∫ +∞

0
|R(cos γ, t + h, t)|dh =

∫ +∞

0

∣∣∣∣ ∫ c/2D

0

sin
(
2µ sin γ

2
)

2µ sin γ
2

H̃1(µ, t + h)H̃1(µ, t)G(dµ)
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+
∫ +∞

c/2D

sin
(
2µ sin γ

2
)

2µ sin γ
2

H̃2(µ, t + h)H̃2(µ, t)G(dµ)

∣∣∣∣dh.

It follows from the estimates (19), (36) and the inequality
∣∣ sin(x)

x

∣∣ ≤ 1 that

∫ +∞

0

∣∣∣∣ ∫ +∞

c/2D

sin
(
2µ sin γ

2
)

2µ sin γ
2

H̃2(µ, t + h)H̃2(µ, t)G(dµ)

∣∣∣∣dh < +∞.

Now, note that for γ ∈ (0, π) the interval [0, c/2D) can be split into a finite number of subintervals

[0, c/2D) =
K⋃

k=1

[
π

2 sin γ
2
(k− 1),

π

2 sin γ
2

k

)⋃ [
π

2 sin γ
2

K,
c

2D

)
,

where K =
[

c sin γ
2

πD

]
and [a] denotes the integer part of a. The ratio

sin(2µ sin γ
2 )

2µ sin γ
2

has the same sign on

each of these subintervals. Therefore, similar to the proof of Theorem 7 we obtain the sufficient and
necessary condition for the integrability of |R(cos γ, t′, t)|

∫ π

2 sin γ
2

0

sin
(
2µ sin γ

2
)

2µ sin γ
2

G(dµ)

µ2 < ∞.

Note that by limµ→0
sin(µ)

µ = 1 this condition is equivalent to the one in Theorem 7. This completes
the proof.

6. Approximations to Solutions

The results in the previous sections were based on the series representation of the random field
T̃H(θ, ϕ, t). In applications and numerical studies, only a finite number of series terms are available.
Hence, one has to investigate the behaviours of finite cumulative sums. This section provides an
analysis of truncated series expansions of the solution field T̃H(θ, ϕ, t) and shows the role of the decay
rate of the angular power spectrum. These results can be used to determine the number of terms for a
given accuracy of approximate solutions.

This section introduces and studies approximate solutions of the initial value problem (1) and (2).
A mean-square convergence rate to the diffusion field in terms of the angular power spectrum Cl is
obtained. Then, several specifications in terms of the measure G(·) are discussed.

We define the approximation T̃H,L(θ, ϕ, t) of the truncation degree L ∈ N to the solution T̃H(θ, ϕ, t)
given by (27) as

T̃H,L(θ, ϕ, t) =
L−1

∑
l=0

Ylm(θ, ϕ) alm(t), θ ∈ [0, π], ϕ ∈ [0, 2π), t ≥ 0.

The next result provides the convergence rate of T̃H,L(θ, ϕ, t) to T̃H(θ, ϕ, t) when L→ ∞.

Theorem 9. Let T̃H(θ, ϕ, t) be the solution to the initial value problem (1) and (2) and T̃H,L(θ, ϕ, t) the
corresponding approximation of truncation degree L ∈ N. Then,

sup
t≥0
‖T̃H(θ, ϕ, t)− T̃H,L(θ, ϕ, t)‖L2(Ω×S2) ≤

1
2
√

π

( ∞

∑
l=L

(2l + 1)Cl

)1/2

.

Proof of Theorem 9. Note that by properties of alm(t) we get

E(T̃H(θ, ϕ, t)− T̃H,L(θ, ϕ, t)) = 0
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for all L ∈ N, θ ∈ [0, π], ϕ ∈ [0, 2π) and t ≥ 0.
Then, by (23) and (27) it follows that

‖T̃H(θ, ϕ, t)− T̃H,L(θ, ϕ, t)‖L2(Ω×S2) =

( ∞

∑
l=L

l

∑
m=−l

Ylm(θ, ϕ)Y∗lm(θ, ϕ)E(alm(t)a∗lm(t))
)1/2

=

( ∞

∑
l=L

l

∑
m=−l

Ylm(θ, ϕ)Y∗lm(θ, ϕ)Cl(t, t)
)1/2

.

Using the addition formula for spherical harmonics one gets

‖T̃H(θ, ϕ, t)− T̃H,L(θ, ϕ, t)‖L2(Ω×S2) =
1

2
√

π

( ∞

∑
l=L

(2l + 1)Cl(t, t)
)1/2

. (38)

Finally, by (32)

‖T̃H(θ, ϕ, t)− T̃H,L(θ, ϕ, t)‖L2(Ω×S2) ≤
1

2
√

π

( ∞

∑
l=L

(2l + 1)Cl

)1/2

.

For the SPDE model studied in [8] it was shown that its solution has an exponential decay in t
and the corresponding approximation error can be bounded as

‖u(θ, ϕ, t)− uL(θ, ϕ, t)‖L2(Ω×S2) ≤ C exp
(
− c2t

2D

)( ∞

∑
l=L

(2l + 1)Cl

)1/2

, (39)

see (36) in [8].
The following result shows that the considered model is more complex. In the general case of an

arbitrary measure G(·) it is impossible to get a bound similar to (39) even for a sufficiently large L.

Theorem 10. For any fixed C > 0 and L ∈ N there exist t > 0 and an initial random condition η(x), x ∈ R3,
such that the norm of the approximation error T̃H(θ, ϕ, t)− T̃H,L(θ, ϕ, t) does not satisfy (39).

Proof of Theorem 10. Indeed, let us consider some ε ∈ (0, 1).

Then,
√

1− 4D2

c2 µ2 ≥ 1− ε if µ ∈ Iε :=
[
0,
√

c2

4D2 (1− (1− ε)2)
]
.

Let the measure G(·) be concentrated on the interval Iε. By (16), if µ ∈ Iε then

H̃1(µ, t) ≥ exp
(
− c2

2D
t
(

1−
√

1− 4D2

c2 µ2
))
≥ exp

(
− c2

2D
tε
)

.

Hence, by (38) and Theorem 3 for any C, L > 0, there exists t, ε > 0, and the measure G(·) such
that for the corresponding T̃H(θ, ϕ, t) and T̃H,L(θ, ϕ, t) it holds

‖T̃H(θ, ϕ, t)− T̃H,L(θ, ϕ, t)‖L2(Ω×S2) ≥
1

2
√

π
exp

(
− c2

2D
tε
)( ∞

∑
l=L

(2l + 1)Cl

)1/2

≥ C exp
(
− c2

2D
t
)( ∞

∑
l=L

(2l + 1)Cl

)1/2

.

However, it is possible to obtain a rate of convergence that is exponential in t if the measure G(·)
has a bounded support.
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Theorem 11. Let η(x), x ∈ R3, have the measure G(·) such that G([0, δ]) = 0 for some δ ∈ (0, c
2D ). Then,

for the solution T̃H(θ, ϕ, t) of the initial value problem (1)–(2) and its approximation T̃H,L(θ, ϕ, t) it holds that

‖T̃H(θ, ϕ, t)− T̃H,L(θ, ϕ, t)‖L2(Ω×S2) ≤ C exp
(
− Dδ2t

)( ∞

∑
l=L

(2l + 1)Cl

)1/2

.

Proof of Theorem 11. As sinh(x)
x is an increasing function on (0, ∞) it follows from (16) that for µ ≥ δ

H̃1(µ, t) ≤ exp
(
− c2

2D
t
)(

exp
(

c2

2D
t

√
1− 4D2

c2 δ2
)
+ exp

(
c2

2D
t

√
1− 4D2

c2 δ2
)

1√
1− 4D2

c2 δ2

)

≤ exp
(
− c2

2D
t
(

1−
√

1− 4D2

c2 δ2
))(

1 +
1√

1− 4D2

c2 δ2

)

=

(
1 +

1√
1− 4D2

c2 δ2

)
exp

(
− c2

2D
t× 4D2δ2

c2
(

1 +
√

1− 4D2

c2 δ2
))

≤
(

1 +
1√

1− 4D2

c2 δ2

)
exp(−Dδ2t).

Notice that for x ≥ 0 and a ∈ (0, 1) it holds that 1 + x ≤ 1
a exp(xa).

Then, using the definition of H̃2(µ, t) in (17) we get for t ≥ 0

H̃2(µ, t) ≤ exp
(
− c2

2D
t
)(

1 +
c2

2D
t
)
≤ exp

(
− c2

2D
t
)

1√
1− 4D2

c2 δ2
exp

(
c2

2D
t

√
1− 4D2

c2 δ2
)

≤ 1√
1− 4D2

c2 δ2
exp

(
− Dδ2t

)
.

Hence, if G([0, δ]) = 0 it follows from Theorem 3 that

Cl(t, t) ≤
(

1 +
1√

1− 4D2

c2 δ2

)2

exp
(
− 2Dδ2t

)
Cl .

Applying this bound to (38) we obtain the statement of the theorem.

The next result follows from (38) and the upper bound (19) for H̃2(µ, t).

Corollary 1. If G
(
[0, c

2D ]
)
= 0, then

‖T̃H(θ, ϕ, t)− T̃H,L(θ, ϕ, t)‖L2(Ω×S2) ≤
1

2
√

π

(
1 +

c2

2D
t
)

exp
(
− c2

2D
t
)( ∞

∑
l=L

(2l + 1)Cl

)1/2

.
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Remark 4. The rates of convergence in Theorems 9, 11 and Corollary 1 are sharp. Indeed, for t = 0 one obtains

‖T̃H(θ, ϕ, 0)− T̃H,L(θ, ϕ, 0)‖L2(Ω×S2) =

( ∞

∑
l=L

l

∑
m=−l

Ylm(θ, ϕ)Y∗lm(θ, ϕ)Cl(0, 0)
)1/2

=
1

2
√

π

( ∞

∑
l=L

(2l + 1)Cl

)1/2

.

The angular power spectrum {Cl , l = 0, 1, . . . } of the initial random field η(x) is determined by
the measure G(·). The following results provide some insight into the behaviour of ∑∞

l=L(2l + 1)Cl in
terms of the spectral measure G(·).

Theorem 12. Let the angular power spectrum of η(x) be {Cl , l = 0, 1, . . . }.

(a) Then, it holds that

∞

∑
l=L

(2l + 1)Cl = 2π2
∫ ∞

0
µ

(
JL− 1

2
(µ)J

′

L+ 1
2
(µ)− JL+ 1

2
(µ)J

′

L− 1
2
(µ)

)
G(dµ). (40)

(b) If
∫ ∞

0 µ1/3G(dµ) < ∞, then

∞

∑
l=L

(2l + 1)Cl ≤ C
∫ ∞

0

µG(dµ)

(1 + (L− 3
2 )

2 + µ2)1/3
, L ≥ 2. (41)

(c) If the measure G(·) has a bounded support [0, δ], δ > 0, then

∞

∑
l=L

(2l + 1)Cl ≤
C

Γ2(L− 1
2 )

(
δ

2

)2L

, L ≥ 2. (42)

Proof of Theorem 12. (a) It follows from the representation

Cl = 2π2
∫ ∞

0

J2
l+ 1

2
(µ)

µ
G(dµ)

that

∞

∑
l=L

(2l + 1)Cl = 2π2
∫ ∞

0

∞

∑
l=L

(2l + 1)J2
l+ 1

2
(µ)

G(dµ)

µ
. (43)

By von Lommel’s formula (see (2.60) in [29]),

∞

∑
n=0

(ν + 1 + 2n)J2
ν+1+2n(µ) =

µ2

4
(

J2
ν(µ)− Jν−1(µ)Jν+1(µ)

)
,
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where µ ∈ R and ν > −1, we obtain

∞

∑
l=L

(2l + 1)J2
l+ 1

2
(µ) = 2

∞

∑
n=0

(
L +

1
2
+ 2n

)
J2
L+ 1

2+2n(µ) + 2
∞

∑
l=L

(
L + 1 +

1
2
+ 2n

)
J2
L+1+ 1

2+2n(µ)

=
1
2

µ2
(

J2
L− 1

2
(µ)− JL− 3

2
(µ)JL+ 1

2
(µ) + J2

L+ 1
2
(µ)− JL− 1

2
(µ)JL+ 3

2
(µ)

)
=

1
2

µ2
(

JL− 1
2
(µ)
(

JL− 1
2
(µ)− JL+ 3

2
(µ)
)
+ JL+ 1

2
(µ)
(

JL+ 1
2
(µ)− JL− 3

2
(µ)
))

= µ2
(

JL− 1
2
(µ)J

′

L+ 1
2
(µ)− JL+ 1

2
(µ)J

′

L− 1
2
(µ)

)
. (44)

Now, (40) follows by substituting the last expression in (43).
(b) Using the inequality from [30]

|Jν(µ)| ≤
C

(1 + ν2 + µ2)1/6

we obtain that for L ≥ 2∣∣∣∣JL− 1
2
(µ)

(
JL− 1

2
(µ)− JL+ 3

2
(µ)

)
+ JL+ 1

2
(µ)

(
JL+ 1

2
(µ)− JL− 3

2
(µ)

)∣∣∣∣ ≤ 4
C(

1 + (L− 3
2 )

2 + µ2
)1/6 ,

which after the substitution in (43) gives (41).

(c) By the Poisson integral formula and the identity
∫ 1

0 (1− t2)ndt =
√

πΓ(n+1)
2Γ(n+ 3

2 )
one obtains

∣∣JL− 3
2
(µ)
∣∣ ≤ 2(µ/2)L− 3

2
√

πΓ(L− 1)

∫ 1

0
(1− t2)L−2dt =

(µ/2)L− 3
2

Γ(L− 1
2 )

. (45)

If [0, δ], δ > 0, is the support of the measure G(·), then it follows from (43)–(45) that

∞

∑
l=L

(2l + 1)Cl ≤
C

22L−3Γ2(L− 1
2 )

∫ δ

0
max

(
µ2(L− 3

2 )+1, µ2(L+ 3
2 )+1

)
G(dµ),

which completes the proof.

7. Numerical Studies

This section presents numerical studies of the solution TH(x, t), its angular spectrum,
and covariance functions over time. We also provide some numerical analysis of approximation errors.

All numerical computations and simulations in this paper were performed using the software R
version 3.6.1 and Python version 3.7.5. The results were derived using the HEALPix representation
of spherical data (see [31] and http://healpix.sourceforge.net). In particular, the R package
rcosmo [32,33] was used for computations and visualisations of the obtained results. The Python
package healpy was used for fast spherical harmonics generation of spherical maps from Laplace series
coefficients. The R and Python code used for numerical examples in Section 7 are freely available in
the folder “Research materials” from the website https://sites.google.com/site/olenkoandriy/.

It is important to clarify that the numerical analysis in this paper is rather different from the one
in [8] and requires more advanced approximation approaches. Namely, the stochastic model in [8]
yielded the representation of the Laplace series coefficients alm(t) = C[Al(t) + Bl(t)]alm(0) for some
functions Al(t) and Bl(t) which can be explicitly computed in terms of elementary functions. However,
for the model (1)–(2) there is no such simple functional relation that links alm(t) and alm(0). As a
result, there are no explicit elementary functional relations between Cl(t, t′), R(cos γ, t, t′) and Cl(0, 0),

http://healpix.sourceforge.net
https://sites.google.com/site/olenkoandriy/
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R(cos γ, 0, 0) respectively. To compute spectral and covariance functions of TH(x, t) at time t > 0 one
has to use formulae (26), (28) and (29). These integral representations are given in terms of the spectral
measure G(·) and stochastic measures Zlm(·) of the initial random condition field η(x).

By (1.2.5) in [26], it follows from

R(r) =
∫ ∞

0

sin(µr)
µr

G(dµ)

that

G(µ) =

√
2
π

∫ ∞

0
J3/2(ur)(ur)3/2 R(r)

r
dr, (46)

which can be used to compute (26), (29) and simulate Zlm(·) for computations in (28). However,
obtaining a reliable approximation of the integral in (46) and stochastic measures Zlm(·) requires the
estimation of the empirical covariance function R̂(r) on a dense grid. Moreover, for data observed on
bounded subsets of R3, covariance functions can be estimated only for distances that do not exceed
their diameters. Thus, it is important to verify that empirical covariance functions are sufficiently
quickly decaying to be assumed negligible for distances greater than these diameters. We postpone the
solution of these technical problems and analysis of real data to future publications.

In the following examples, we study the properties of solutions and their approximations using
simulated data. The examples were constructed to demonstrate that the model is sufficiently powerful
to imitate behaviours of the empirical CMB covariance function and oscillating angular spectrum
(see [8,34]). The actual CMB covariance function and angular spectrum are shown in Figure 1a,b.
Note that the estimated angular CMB spectrum shown in Figure 1b was obtained by a piecewise fitting
of several physical models and interpolation techniques for different intervals of the spectrum [6,13].
Some actual spectrum estimates deviate substantially from the fitted curve in Figure 1b [34]. Therefore,
in predicting CMB and spectrum changes over time, small details can be ignored and one needs to
focus on a general pattern. Thus, the following examples with the analysis of simulated data which
spectrum is analogous to the real one can offer important insights on the future evolution of CMB and
its spectral properties.

(a) CMB covariance (b) CMB angular spectrum

Figure 1. CMB: Cosmic Microwave Background radiation.
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In the examples, the case of a discrete measure G(·) is considered (i.e., the support of G(·) is a
finite set {µi, i = 1, . . . , I}). We employ real-valued stochastic measures Zlm(·) that are concentrated
on this set and satisfy the condition

G(µi) = E Z2
lm(µi) = σ2

i , i = 1, . . . , I.

We assume that the random field η(x) is centred Gaussian. Hence, we can choose Zlm(µi) ∼ N(0, σ2
i )

that are independent for different l, m and i.
In these settings, formulae (26), (28) and (29) take the following discrete forms:

R(cos γ, t, t′) =
I

∑
i=1

sin(2µi sin( γ
2 ))

2µi sin( γ
2 )

H̃(µi, t)H̃(µi, t′)σ2
i , (47)

alm(t) = π
√

2
I

∑
i=1

Jl+ 1
2
(µi)
√

µi
H̃(µi, t)Zlm(µi),

Cl(t, t′) = 2π2
I

∑
i=1

J2
l+ 1

2
(µi)

µi
H̃(µi, t)H̃(µi, t′)σ2

i , (48)

which are convenient for simulations.
This approach can also be used to approximate absolutely continuous spectral measures G(·) by

considering a sufficiently large I, small |µi − µi+1| and σ2
i = G

(
[µi, µi+1]

)
, i = 1, ..., I.

Example 1. This example illustrates changes over time of the covariance function R(cos γ, 0, t) defined by (26)
and the power spectrum Cl(t, t) defined by (29). To produce plots and computations we used the corresponding
discrete Equations (47) and (48) with values σi =

100
i by i ∈ {1, 2, . . . , 10} and a discrete spectrum concentrated

on the interval [1, 40]. All computations and plots in this example are presented for the values c = 1 and D = 1
of the parameters in Equation (1).

Figure 2a shows the covariance R(cos γ, t, t) at the time lags t = 0, t = 0.1 and t = 0.5 as functions of
the angular distance γ. To understand the effect of time and the angular distance γ on the covariance function
we provided 3D-plots (see Figure 2b) showing the covariance as a function of the time lag t. The plot in Figure 2b
is normalized by dividing each value by max

γ∈[0,π]
R(cos γ, 0, 0). It is obvious that the covariance decays through

time and changes very little except for values of γ, which are close to 0.
To understand the effect of the parameters c and D on the covariance function, we also produced Figure 3.

It illustrates changes of the covariance function R(cos γ, t, t) at a specific time t as functions of the angular
distances γ and the parameters c or D. To produce this figure we used t = 0.1. Figure 3a displays
R(cos γ, 0.1, 0.1) for D = 1 as a function of c and the angular distances γ. Figure 3b displays R(cos γ, 0.1, 0.1)
for c = 1 as a function of D and the angular distances γ. The plots in Figure 3 are normalised by dividing each
value by max

γ∈[0,π]
R(cos γ, 0.1, 0.1). It is clear form Figure 3a that the covariance decays through c (also through

D; see Figure 3b) and changes very little except values of γ which are close to 0. Figure 3b demonstrates that the
normalised covariance function exhibits decaying periodic behaviour when D increases.
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(a) (b)

Figure 2. (a) R(cos γ, t, t) at the time lags t = 0, 0.1 and 0.5 and angular distances γ for c = D = 1.
(b) R(cos γ, t, t) for c = D = 1 at time lag t and angular distance γ.

(a) (b)

Figure 3. (a) R(cos γ, 0.1, 0.1) as a function of γ and c for D = 1. (b) R(cos γ, 0.1, 0.1) as a function of γ

and D for c = 1.

Figure 4a displays the power spectrum Cl(t, t) as a function of t ≥ 0. To produce this figure we used
t ∈ [0, 1] and l = 2, 5 and 10. The first 70 coefficients Cl were computed by applying the Equation (48)
with the above values of σi, i = 1, . . . , 10. From this figure it is clear that the power spectrum Cl(t, t) decays
very quickly to 0 when l increases. To investigate the effect of the parameter l we provide a plot of the ratio
R0.1,0,l = Cl(0.1, 0.1)/Cl(0, 0) for the first 70 coefficients Cl (see Figure 4b). This figure confirms that the ratio
R0.1,0,l is bounded by 1 and changes very little when l increases.

Figure 5a plots the tail sums ∑l≥L(2l + 1)Cl(0, 0) and ∑l≥L(2l + 1)Cl(0.1, 0.1) as functions of L, while

Figure 5b displays the corresponding ratio RR0.1,0,L = ∑l≥L(2l+1)Cl(0.1,0.1)
∑l≥L(2l+1)Cl(0,0) . From Figure 5a it is clear that
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when L increases, both the terms ∑l≥L(2l + 1)Cl(0, 0) and ∑l≥L(2l + 1)Cl(0.1, 0.1) have the same asymptotic
behaviour up to a constant multiplier, which is also further confirmed in Figure 5b.

(a) (b)

Figure 4. (a) The power spectrum Cl(t, t) for c = D = 1 and values l = 2, 5 and 10. (b) The ratio R0.1,0,l
of the first 70 coefficients for c = D = 1.

(a) (b)

Figure 5. (a) Plots of ∑l≥L(2l + 1)Cl(t, t) at t = 0 and t = 0.1. (b) The ratio RR0.1,0,L.

Example 2. In this example we use a discrete spectrum concentrated on the two intervals [0, 20] and [80, 90].
Thus, the initial condition random field η(x) has low- and high-frequency components. To produce realisations
of η(x) and TH(x, t), x ∈ S2, which are similar to small real CMB values, we used σ2

i = 0.00003 and 0.0001
for low- and high-frequency components, respectively. These small values allow us to employ the visualisation
tools and colour palettes used for CMB plotting in the R package rcosmo [33] and the Python package healpy.

To produce the plots and computations in this paper we used the first 100 coefficients Cl obtained by
applying (48) to the above discrete spectrum. They are shown in Figure 6 in red. In this example we use the
values c = 1 and D = 2 of the parameters in Equation (1). The coefficients Cl(t, t) for t = 0.05 and 0.1 are
plotted in blue and green respectively. The graph indicates two regions with relatively large values of Cl that
correspond to the spectral measure G(·) used for these computations. It can be seen that values Cl(t, t) decrease
over time. However, the corresponding spherical maps change rather slowly. Therefore, only two maps, for t = 0
and 0.05, are plotted in Figure 7.
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Figure 6. Angular power spectra Cl(t, t) for c = 1 and D = 2 at time t = 0, 0.05 and 0.1.

(a) (b)

Figure 7. (a) Realisation of TH(θ, ϕ, 0) for c = 1 and D = 2. (b) Realisation of TH(θ, ϕ, 0.05) for c = 1
and D = 2 with two observation windows.

For the following numerical studies we used simulated data from two windows shown in Figure 7b.
The estimated means in Table 1 confirm that TH(θ, x, t) has a zero mean. It can be observed from Figure 7 and
the estimated interquartile ranges (IQRs) in Table 1 that the magnitude of TH(x, t) values decrease with time.
However, the distribution type of the combined values does not change substantially. Namely, the combined
values of TH(x, t) exhibit an approximately bell-shaped behaviour with tails that are heavier than in the Gaussian
case (see Figures 8 and 9). Similar results were obtained for various observation windows of S2. For example,
for the second rectangular window shown in Figure 7b Q–Q plots and histograms of observations in this window
are given in Figures 8 and 9, respectively. These results about distributions of combined values were also
confirmed by computing the Shannon entropy

Ĥ = −∑
i=1

p̂i log( p̂i)

for the empirical distributions { p̂i} given by the histograms in Figure 9. Values of Ĥ do not change much over
time t (Table 1). They are not substantially different from the entropy upper bound log(16) ≈ 2.77.
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(a) (b)

Figure 8. (a) Normal Q–Q plot of all TH(θ, ϕ, 0) values from window 2 in Figure 7b. (b) Normal Q–Q
plot of all TH(θ, ϕ, 0.05) values from window 2 in Figure 7b.

(a) (b)

Figure 9. (a) Histogram of all TH(θ, ϕ, 0) values from window 2 in Figure 7b. (b) Histogram of all
TH(θ, ϕ, 0.05) values from window 2 in Figure 7b.

The q-statistic, see [35], was used to investigate heterogeneity between values of TH(θ, ϕ, t) in windows 1
and 2 from Figure 7b. Table 1 indicates that heterogeneity is absent at time 0 and the evolution due to the model
(1) does not introduce heterogeneity, at least for short time periods.

Table 1. Statistics for windows 1 and 2.

Time 0 0.05 10

Mean for window 1 1.353× 10−5 −5.62× 10−6 3.501× 10−7

Mean for window 2 7.083× 10−6 −1.132× 10−5 −5.166× 10−8

IQR for window 1 2.877× 10−4 1.307× 10−4 6.78× 10−6

IQR for window 2 3.252× 10−4 1.452× 10−4 7.11× 10−6

Entropy for window 1 2.193 2.116 2.369
Entropy for window 2 2.302 2.221 2.387

q-statistics 1.986× 10−4 7.272× 10−4 1.5× 10−3
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8. Entropy and Hyperbolic Diffusion

This section discusses the evolution of Shannon entropy for hyperbolic diffusion. Theoretical
analysis and several numerical examples are presented. To simplify the exposition and plots, only the
case of x ∈ R and various non-random initial conditions are studied.

For diffusive transport that arises from the random motion of particles, the mass distribution may
indeed be regarded as a probability distribution, after which the Shannon entropy may be calculated.
For a simple thermodynamic system governed purely by linear or nonlinear heat conduction, there
is a close analogy between thermodynamic entropy and Shannon entropy (e.g., [24,36]). When the
transport mechanism is modified to hyperbolic diffusion, the behaviour of entropy requires more
scrutiny. In order to illustrate this, consider one-dimensional solutions q(x, t) on [−`, `]×R+, subject
to Neumann boundary conditions

qx(x, t) = 0, x = ±L.

This may represent transport in the x-direction through a linear conduit of cross-sectional area A,
with the variation of density in each cross section being effectively zero. It will be seen that the total
mass M is constant. Therefore, the scaled density q∗ = qA/M has constant unit integral on [−L, L],
from which physically relevant non-negative solutions q∗(x, t) may be regarded as distributions.
By choosing length scale D/c and time scale D/c2, it may be assumed that the coefficients in the
hyperbolic diffusion equation are normalised to ±1.

Let t∗ = tc2/D, x∗ = xc/D and L∗ = Lc/D. Then,

q∗t∗ + q∗t∗t∗ = q∗x∗x∗ ,

subject to boundary conditions
q∗x∗ = 0, x∗ = ±L∗

and initial conditions
q∗(x∗, 0) = u0(x∗), q∗t∗(x∗, 0) = v0(x∗).

Defining Shannon entropy density to be s = −q∗ log q∗, the hyperbolic diffusion equation for
q∗(x, t) implies

st +
D
c2 stt = D

q∗2x − 1
c2 q∗2t

q∗
. (49)

The case of unbounded speed of propagation is obtained by taking the limit c → ∞, which results
in a positive entropy production rate Dq∗2x /q∗. This is familiar from the theory of heat conduction,
for which the entropy production rate is LeDT2

x /T, where T is absolute temperature and Le is the
Lewis number, which is the order-1 ratio of thermal diffusivity to mass diffusivity.

For uni-directional waves of velocity ±c, the entropy production rate is zero. For bi-directional
waves, the total Shannon entropy is constant when opposite-travelling waves are not superposing,
increasing when opposite-travelling superposing waves are separating, and decreasing when they are
superposing and approaching. However, non-constant travelling wave solutions of the hyperbolic
diffusion equation must have speed less than c and they must have an amplitude that decreases with
time. For the remainder of this section, the asterisk superscripts will be conveniently omitted.

Some solutions of the hyperbolic diffusion equation may be of dissipative diffusive type, while
others may be dissipative bi-directional waves. In order to illustrate this, by the completeness of the
Fourier transform, the general even solution by the separation of variables is

q = a0 +
nc

∑
n=1

[ane−α+n t + bneα−n t] cos(knx) (50)

+
∞

∑
n=nc+1

ane−0.5t cos(ωnt) cos(knx), (51)
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where nc = [L/2π]−, kn = nπ/L, ωn = kn
√

1− 1/(2kn)2 and α±n = 1
2 (1±

√
1− 4k2

n).
The first summation covers modes that are purely dissipative in character, just as for the linear heat

diffusion equation. However, in this case, the dissipative modes exist only when L ≥ 2π. The second
summation covers standing wave modes with decaying amplitude. These may be regarded as a
superposition of a decaying left-travelling wave and a decaying right-travelling wave. Note that the
dissipative mode with logarithmic decay rate α−1 decays more slowly than all other modes.
The above solution is mass-conserving with mean value a0 and constant mass integral 2La0 = 1
by normalisation. For a single decaying standing wave mode of a hyperbolic diffusion equation
distribution, for some value of t,

q =
1

2L
[1 + e−0.5t cos(ωnt) cos(knx)].

Then, the total Shannon entropy is

S =
∫ L

−L
q log(1/q)dx.

At times t = (2m + 1)π/2ωn, m ∈ Z, the distribution is uniform, which is the state of maximum
entropy S = log(2L). Overall, the total entropy oscillates as it approaches the limiting equilibrium
state. However the negative excursions of entropy may be quite small since the amplitude of oscillation
decreases exponentially.

Figure 10 plots the total entropy for a wave with single harmonic, calculated by trapezoidal
integration with 400 intervals, versus time.
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Figure 10. Total entropy for standing wave with single harmonic. L = 3π, wave number k2 = 2π/L.

It would be helpful to have a point-source solution for the hyperbolic diffusion equation. As far as
we are aware, there is no known simple expression for the point source evolution but it has the standard
uniform Fourier spectrum that evolves according to (50). It is plotted in Figure 11 after truncating the
Fourier series at 100 terms. As in the d’Alembert wave equation, two separating travelling delta waves
emerge but now the amplitudes of the truncated spikes are decreasing and there is an additional central
symmetric hump due to the purely diffusive terms. The leading edges of the spikes are travelling
at maximum speed c. In two and three dimensions there would be similar solutions with a single
travelling cylindrical or spherical shock wave surrounding a central hump.
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Figure 11. Evolving spike solution for L = 3π.

It is instructive also to view the motion of an initial rectangular disturbance of finite amplitude.
This is approximated in Figures 12 and 13 by a Fourier series of 200 terms. The truncated Fourier series
is an exact solution, but due to the truncation and the boundary conditions, the solution is negative at
some values of the domain, so that Shannon entropy cannot be calculated. However, the solution is
indicative of the behaviour of a non-negative solution with initial rectangle. As in the bidirectional
wave equation, the symmetric solution consists of two superposed rectangles that increase entropy as
they begin to separate by travelling in opposite directions. After they have separated, their amplitude
decreases, which leads to further entropy increase. The height of the leading edge decreases more
rapidly than the trailing edge, so each rectangle evolves to a trapezoid. The leading edge—which is the
boundary of the disturbance—continues to move at maximum speed c. Between the trapezoids, there
is a central hump that eventually dominates, and resembles a diffusive Gaussian, increasing entropy
further. With this kind of peaked initial condition, there is no indication of any significant period of
entropy decrease.
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Figure 12. Evolving symmetric rectangle: emergent bidirectional wave.
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Figure 13. Evolving rectangle: dominant diffusive hump at large t, with leading edge of remnant
rectangle demarcating the extent of the disturbance.

9. Future Research Problems

This paper investigated evolutions of random fields determined by hyperbolic diffusion equations
with random initial conditions. Spherical random fields were modelled as restrictions of 3D solution
fields to the sphere. Compared to the previous publications, it resulted in a more realistic physical
model. However, the solution field for the new model cannot be represented by using Laplace series
coefficients alm(0) of the initial condition directly. The more complicated representation involves
spectral measures of initial random conditions.

Detailed studies of the solutions and their approximations were presented. In particular, regularity
properties and temporal dependencies of solutions were investigated. Approximations to the SPDE
solutions were proposed, and the upper bound analysis of approximation errors was provided.
It was demonstrated that the magnitude of approximation errors is determined by the angular power
spectrum Cl and decreases at the rate of the cumulative tail sums (∑∞

l=L(2l + 1)Cl)
1/2 .

The numerical studies investigated the dependence of solution fields on parameters of the SPDE
model and provided some insight into the evolution of Shannon entropy for hyperbolic diffusion.

Some important problems and extensions for future research are:

• Investigating the sharpness of the obtained upper bounds on approximation errors (see [8]);
• Developing statistical estimators of the equation parameters and studying their

asymptotic properties;
• Extending the methodology to tangent spherical vector fields (see [37]);
• Developing numerical methods for the obtained representations to deal with spectra of

initial conditions;
• Extending the analysis and numerical studies in Section 8 to other scenarios;
• In line with the theme of this Special Issue, in future we intend to study the effect of nonlinear

diffusivity in the equation

qt +
1
c2 qtt = ∇ · [D(q)∇q].

For example, if q is the electron density in a plasma, D(q) is typically decreasing [38].
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