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Abstract
Recent research has demonstrated that affective states elicited by viewing pictures varying

in valence and arousal are identifiable from whole brain activation patterns observed with

functional magnetic resonance imaging (fMRI). Identification of affective states from more

naturalistic stimuli has clinical relevance, but the feasibility of identifying these states on an

individual trial basis from fMRI data elicited by dynamic multimodal stimuli is unclear. The

goal of this study was to determine whether affective states can be similarly identified when

participants view dynamic naturalistic audiovisual stimuli. Eleven participants viewed 5s

audiovisual clips in a passive viewing task in the scanner. Valence and arousal for individual

trials were identified both within and across participants based on distributed patterns of

activity in areas selectively responsive to audiovisual naturalistic stimuli while controlling for

lower level features of the stimuli. In addition, the brain regions identified by searchlight

analyses to represent valence and arousal were consistent with previously identified

regions associated with emotion processing. These findings extend previous results on the

distributed representation of affect to multimodal dynamic stimuli.

1.0 Introduction
The two major components of core affect posited to underlie more complex emotions are
valence, varying from negative to positive, and arousal, varying from low to high [1, 2].
Researchers have identified physiological correlates of valence and arousal across several differ-
ent types of affect eliciting stimuli [3–5]. Similarly, neuroimaging studies have also demon-
strated a number of correspondences between different neural activation patterns and levels of
valence and arousal for typical [6–8] and clinical [9] populations. These results support the
idea that the neural representations of valence and arousal should be identifiable on a trial-by-
trial basis for a variety of different types of stimuli.

There has been growing interest in investigating the utility of multivariate pattern analysis
(MVPA) approaches applied to fMRI data in clinical populations. MVPA is ideal in this regard
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because it is designed to analyze the data at the level of individual, which is critical in clinical
applications. Much of the clinical work to date has examined functional responses to static
affective stimuli, such as pictures of faces [10–12] or the images found in the International
Affective Picture System (IAPS) [13]. There is a recent growing interest in affective processing
of dynamic multimodal stimuli (see recent special issue, [14]) At the same time, it has been
argued that naturalistic viewing conditions that are dynamic and multimodal, as well as low in
task demands, may be critical in examining emotion perception in clinical populations [15].
For instance, a selective deficit to dynamic social stimuli, but not static stimuli, has been identi-
fied in individuals with autism spectrum disorders [16]. Impaired multisensory integration of
emotions has been shown in schizophrenia [17] [18]. Moreover, context, that is more readily
available in dynamic multimodal stimuli, has been shown to play an important role in emotion
perception [19]. Therefore, it may be most relevant to examine affective responses to naturalis-
tic multimodal stimuli that are closer to what is encountered in more realistic and natural set-
tings, increasing the ecological validity of unimodal experimental designs [20, 21]. A first step
in this direction is to establish that valence and arousal elicited by dynamic naturalistic stimuli
can be reliably identified from fMRI data in a typical sample.

Previous fMRI studies have used MVPA to investigate the representation of affect, success-
fully decoding affective states from patterns of brain activity located in specific regions of inter-
est as well as from patterns of whole brain activity [22]. However, most of those studies used
static, visual stimuli and only a few studies investigated other modalities or dynamic stimuli
[23], such as sounds [24, 25], smells [26], or autobiographic recall [27]. Thus it is unclear
whether the affective dimensions of valence and arousal are identifiable from fMRI data using
dynamic multimodal stimuli.

Behavioral studies have shown that multimodal presentation of congruent face and voice
expressions facilitated emotion perception [28] compared to unimodal presentation. Context-
rich multimodal stimuli may enhance affect recognition for patients with traumatic brain
injury [29] and autism [30], but the reverse pattern was also reported for schizophrenic
patients [31], possibly due to the failure of information integration across the two modalities.
Brain activation evoked by natural dynamic stimuli has been shown to be highly reliable [32].
Behavioral studies of facial expressions have shown that dynamic stimuli are more easily recog-
nized than static stimuli in both healthy populations [33, 34] and in clinical populations [35].
Neuroimaging studies have also found more extended activation patterns for dynamic facial
expressions [36]. Many of the emotion studies comparing static versus dynamic conditions
have utilized facial expressions, with few employing other types of stimuli [37]. Thus the repre-
sentation of affective states in the brain induced by naturalistic dynamic stimuli requires fur-
ther investigation.

Audiovisual clips may be a particularly relevant stimulus format to explore in linking expe-
riences to more real world situations. In a constantly changing, dynamic environment, percep-
tual and affective components from multiple modalities tend to co-occur so that, for instance,
one both sees and hears a laughing child on a playground. Audiovisual clips of affectively
charged everyday occurrences present a dynamic and continuous audio-visual unfolding of
events over time, more typical of naturalistic experience. These types of stimuli have a long his-
tory in emotion research [38, 39]. For example, film stimuli have been shown to produce differ-
ential psychophysiological response patterns to valence [40, 41]. Visual and auditory
modalities that are stimulated together are more naturalistic in everyday life and may result in
response enhancement and an advantage of redundancy [42]. Unlike static stimuli, audiovisual
stimuli preserve natural timing relations and resolve ambiguities present in each separate
modality [43].
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One of the challenges of using naturalistic stimuli in research is the possible confounding of
lower level features. For example, valence has been shown to be positively correlated with
brightness [44] and level of arousal has been shown to be related to loudness and motion [45,
46]. Moreover, it has been demonstrated that affective states can be identified solely from
lower level features. For example, using musical pieces, Coutinho and Cangelosi [47] identified
arousal from lower level features such as loudness, tempo, pitch level, and sharpness, and they
identified valence from features such as tempo and pitch level. In our experiment, we manipu-
late the affective states elicited by short videos along the dimensions of valence and arousal,
producing four groupings of stimuli. We exercise some control of the semantic content of these
audiovisual clips by distributing topics (human, animal, and inanimate) across the affective cat-
egories. To keep the stimuli naturalistic, we did not directly control the perceptual features,
with an exception of sound intensity. Instead, we attempted to have a broad range of values of
lower level features within each affective category and then control for these effects statistically
and through the use of functional localizers. Thus, we sought to identify affective states under
more naturalistic viewing conditions from neural patterns of activity measured with fMRI,
after controlling for semantic and lower level features. By controlling for lower level features,
we enhance the interpretation of our classification results as reflecting valence and arousal.

In summary, the goal of this study was to identify affective content of naturalistic audiovi-
sual stimuli in individuals from fMRI data on a single trial basis, thus extending previous work
that identified valence and/or arousal derived from static visual stimuli using MVPA methods
based on fMRI data [7, 48]. In addition, we examine the neural representation of arousal and
valence components of core affect in terms of areas that lead to identification of these core
dimensions of affect. In this auxiliary analyses, we employ a decoding based searchlight analy-
sis and compare the regions identified with those implicated in previous research as being
important in emotion processing.

2.0 Method

2.1 Participants
This research was approved by the Institutional Review Board at the University of South Caro-
lina. All volunteers gave written informed consent in accordance with the Institutional Review
Board at the University of South Carolina. Eleven (five female, two left handed) volunteer
adults (mean age 23.91 years, SD = 4.02) from the University of South Carolina community
participated in the fMRI experiment. A separate group of volunteer adults (n = 49) from the
same community participated in a preliminary behavioral experiment for stimulus validation.
All participants in the fMRI experiment reported normal hearing, normal or corrected to nor-
mal vision, and no history of neurological diseases.

2.2Materials
Participants viewed affect-eliciting audiovisual clips that varied on levels of valence and
arousal. Naturalistic audiovisual stimuli were selected ad hoc from a larger in-house behavior-
ally-validated stimulus set, with the goal to maximize differences in valence for positive versus
negative sets and maximize differences in arousal for low versus high arousal sets, while
attempting to match levels on the shared dimensions across sets so that valence and arousal
values are orthogonal. Eight stimuli were selected for each affective category corresponding to
each of the four quadrants of the affective space: high arousal-negative valence (HN), low
arousal-negative valence (LN), low arousal-positive valence (LP), and high arousal-positive
valence (HP). The stimuli were balanced on semantic content across the affective categories.
Each affective category included four clips with humans, two clips with animals, and two clips
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with inanimate content. The stimuli did not contain speech or written language. Some audio
components contained prosodic information. All stimuli were selected to reflect a single topic
with homogeneous affective content for the duration of the clip (e.g., children laughing and
running around a playground).

The 32 selected audiovisual stimuli were validated in a behavioral experiment on a separate
group of participants (n = 49). Affective categories of stimuli were shown to differ in a non-
overlapping way on the dimensions of valence and arousal (Table 1 and S1 Table). Participants
were asked to rate their emotional states along one of six dimensions after each video. The
dimensions reflected the degree to which the participant reported feeling excited, positive,
calm, anxious, negative, or sad. A correlation matrix of the 32 stimuli across the six ratings was
constructed for each individual and the combined data was analyzed with INDSCAL [49]. The
dimensions of valence and arousal naturally emerged from the ratings of the 6 dimensions,
even though the two dimensions were not rated directly (Fig 1). This method was used to mini-
mize bias in demand characteristics in responding that could arise from direct ratings of

Table 1. Description of audiovisual stimuli. Means and standard deviations are shown.

Description Affective Category F-test

Negative Valence,
High Arousal

Negative Valence,
Low Arousal

Positive Valence,
High Arousal

Positive Valence,
Low Arousal

Valence Arousal

Valence -0.92 (0.24) -0.83 (0.25) 0.78 (0.16) 0.96 (0.16) F(1,28) =
583.87***

ns.

Arousal 0.37 (0.11) -0.24 (0.27) 0.25 (0.18) -0.38 (0.29) ns. F(1,28) =
62.17***

Hue 0.35 (0.12) 0.26 (0.11) 0.41 (0.18) 0.34 (0.24) ns. ns.

Saturation 0.25 (0.08) 0.27 (0.16) 0.33 (0.16) 0.35 (0.18) ns. ns.

Value (Brightness) 0.47 (0.09) 0.52 (0.07) 0.60 (0.12) 0.54 (0.14) ns. ns.

Amplitude (dB) (left) 10.00 (3.38) 14.75 (3.26) 13.78 (2.79) 11.85 (2.86) ns. ns.

Amplitude (dB)
(right)

10.44 (3.55) 14.76 (3.26) 13.73 (2.80) 11.31 (2.60) ns. ns.

Frequency (Hz) (left) 379.22 (361.05) 241.26 (137.93) 465.58 (697.45) 1161.76 (1441.87) ns. ns.

Frequency (Hz)
(right)

454.71 (372.69) 241.66 (137.70) 491.21 (687.18) 1170.00 (1435.29) ns. ns.

Motion 1 (slow and
drifting)

122108.01 (54831.82) 36616.89 (34589.29) 91659.27 (44101.18) 32263.66 (31748.91) ns. F(1,28) =
23.469***

Motion 2 53812.82 (22459.94) 17790.62 (14413.37) 43402.15 (20830.68) 15407.53 (14798.81) ns. F(1,28) =
24.016***

Motion 3 38860.56 (15262.57) 14337.7 (10537.67) 30810.13 (14032) 12256.57 (11724.12) ns. F(1,28) =
21.884***

Motion 4 24938.01 (9014.75) 10388.2 (6386.2) 18924.16 (8638.21) 8335.32 (7803.32) ns. F(1,28) =
19.629***

Motion 5 15024.27 (4520.56) 6986.16 (3533.85) 12377.26 (5407.69) 5579.42 (4900.99) ns. F(1,28) =
20.431***

Motion 6 7305.06 (2337.75) 3863.75 (1697.84) 6830.85 (3381.41) 2720.06 (2723.28) ns. F(1,28) =
16.776***

Motion 7 (fast and
transient)

2597.47 (846.05) 1308.79 (695.17) 2668.86 (2197.91) 989.22 (911.23) ns. F(1,28) =
10.275**

Note:

** p < .01

*** p < .001.

Hue, saturation, and value (brightness) were measured on 0 to 1 HSV scale; motion features were measured by the number of pixels of differences between

frames.

doi:10.1371/journal.pone.0161589.t001
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valence and arousal [50]. In an Analysis of Variance (ANOVA) conducted on the dimensional
values from the MDS solution, the positive videos were significantly higher than the negative
videos in mean valence configuration values, F(1,28) = 439.21, p< .001, ηp

2 = .969 (MPositive =
.87 and MNegative = -.87) and the high arousal videos were significantly higher than the low
arousal videos in mean arousal values, F(1,28) = 79.48, p< .001, ηp

2 = .739 (MHigh = .37 and
MLow = -.37).

Auditory components of the stimuli were normalized to the same mean amplitude by set-
ting the values for each sound file extracted from the original video stimuli to the overall mean
computed across all sound files using MATLAB (R2010b, MathWorks, Inc.). To keep the
audiovisual stimuli naturalistic, no attempt was made to equate the stimuli on any other lower

Fig 1. Lower dimensional representation of affective videos based on behavioral data. A two-dimensional solution from a separate group of
participants described the data well (stress = .282, R2 = .543, n = 49).

doi:10.1371/journal.pone.0161589.g001
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level features. The differences in lower level visual (hue, saturation, brightness, and motion)
and four acoustical (bilateral frequency and amplitude) features across the affective categories
were examined. Hue, saturation, and brightness of visual features were computed for each
video by averaging the means of each frame of the video using the MATLAB rgb2hsv function.
No significant differences in mean hue, saturation, or brightness values were found across
valence or arousal conditions, ps>.05 (Table 1). Estimation of total motion for each video
stimulus was based on absolute differences of pixels between frames at several time rates from
slower or drifting motions to fast transient motions, without respect to the direction of motion
that causes differences. Seven motion parameters were estimated at several time differences
from slow drifting motions (e.g., walking) to fast transient motions (e.g., running). ANOVAs
conducted on the total motion parameter for the 32 stimuli indicated that positive and negative
videos differed in the total motion, F(7, 22) = 2.95, p =. 024, ηp

2 = .484, and high and low
arousal videos differed in the total motion, F(7, 22) = 4.474, p = .003, ηp

2 = .587. Negative vid-
eos had greater total motion than positive videos and high arousal videos had greater total
motion than low arousal videos. Separate ANOVAs conducted on each constituent motion
parameter failed to find any significant effects of valence (p> .05), although all seven indicated
significant effects of arousal (ps< .001). Finally, frequency and amplitude for left and right
channels were measured with Frequency Analysis and Amplitude Statistics functions of Adobe
Audition CS6. The four experimental sets did not differ from each other in mean frequency or
amplitude, ps> .05.

2.3 fMRI acquisition
MRI data were acquired on a Siemens Magnetom Trio 3.0T whole-body scanner (Siemens,
Erlangen, Germany) at the McCausland Center for Brain Imaging at the University of South
Carolina. The functional images were acquired using a single-shot echo-planar imaging pulse
sequence (TR = 2200ms, TE = 35ms, 90° flip angle) with a 12-channel head coil. Thirty-six 3
mm thick oblique-axial slices were imaged in interleaved scanning order with no gap. The
acquisition matrix was 64×64 with 3×3×3 mm voxels. Functional data was acquired using a
slow event-related design in two scanning sessions (two runs for each session). High-resolution
whole-brain anatomical images were acquired using a standard T1-weighted 3DMP-RAGE
protocol (TR = 2250 ms, TE = 4.18 ms, FOV = 256 mm, flip angle = 9°, voxel size = 1×1×1
mm) to facilitate normalization of the functional data.

2.4 Functional Localizer
Areas responsive to naturalistic audiovisual presentation were identified in a separate localizer
session for each participant. There were four experimental conditions: baseline, auditory
(beep), dynamic visual (checkerboard), and a combined naturalistic audiovisual condition
(audiovisual). Additionally, the functional localizer contained two other conditions that were
not part of the present experiment. The conditions were presented in a block design with each
block lasting 12s (Fig 2A). Baseline condition consisted of a black screen with a white fixation
cross shown in the center of the screen and background noise. During an auditory condition,
designed to localize primary auditory cortex, a binaural sine tone of 1,000 Hz pulsating at 6 Hz
was presented [51]. During a dynamic visual condition, designed to localize primary visual
areas, there were 12s of high-contrast flickering checkerboard reversals, 200ms per cycle [52].
During a naturalistic audiovisual condition, four 3s audiovisual clips sampled from the four
affective quadrants were played back to back. By including a wide range of affective conditions
the localizer is not sensitive to facets of the stimuli that discriminate between affective condi-
tions. There were eight runs in the localizer scan and each run consisted of six conditions
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presented in a pseudo randomized order such that the same condition was not presented twice
in a row for the two subsequent runs. There were a total of 48 blocks resulting in 273 acquired
volumes. All stimuli were different from those presented in the main experiment. Audio-visual
clips used for the localizer scan were not repeated within the localizer scan.

2.5 Experimental paradigm
Functional magnetic resonance imaging was used to measure brain activity while participants
were presented with affect-eliciting audiovisual clips. All stimuli were presented using E-prime
software (Psychology Software Tools, Sharpsburg, PA). Audiovisual stimuli were presented in
320 × 240 pixels resolution in 32-bit color at a rate of 25 frames per second onto a 640 × 480
resolution screen. Sound was delivered via Serene Sound Audio System (Resonance Technol-
ogy Inc, Northridge, CA). Each clip was presented for 5s, followed by a white fixation cross
shown on black background for 7s (Fig 2B). Participants were instructed to focus on the fixa-
tion cross in the center of the screen throughout the experiment. For each participant, 128 trials
were presented in 4 blocks of the 32 unique exemplars. Within each block, the 32 exemplars
were randomly presented with the restriction that no stimuli from the same affective condition

Fig 2. A schematic representation of the presentation timing. (A) Functional localizer. Participants were presented with baseline,
auditory (beep), dynamic visual (checkerboard), and naturalistic audiovisual stimuli in a block design. Each block lasted for 12s. (B)
Main experiment. Participants were presented with naturalistic audiovisual stimuli selected from the four quadrants of the affective
space: high arousal negative valence (HN), low arousal negative valence (LN), low arousal positive valence (LP), and high arousal
positive valence (HP). Each audiovisual clip was presented for 5s, followed by 7s fixation.

doi:10.1371/journal.pone.0161589.g002
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were presented twice in a row and that each affective state was presented within each successive
block of four trials.

2.6 fMRI data processing and analysis
Data processing and statistical analyses were performed in MATLAB environment using stan-
dard procedures in Statistical Parametric Mapping software (SPM 8, Wellcome Department of
Cognitive Neurology, London, UK). The data were corrected for motion and linear trend.
Structural data were segmented into white and gray matter to facilitate the normalization.
Functional and anatomical images were co-registered and spatially normalized into the stan-
dard Montreal Neurological Institute (MNI) space based on T1-derived normalization
parameters.

Functional localizer: For each participant we have identified voxels that were more respon-
sive to audiovisual condition compared to baseline (VA) (p< .05, FWE-corrected, cluster
size> 5), but excluding those voxels that were more responsive to checkerboard condition
compared to baseline (VP) (p< .05, FWE-corrected, cluster size> 5) and those voxels that
were more responsive to beep condition compared to baseline (AP) (p< .05, FWE-corrected,
cluster size> 5).

Main experiment: To improve signal-to-noise ratio, the time-series data for each voxel were
fit using GLMdenoise [53], a technique successfully used in MVPA and other applications [54,
55]. GLMdenoise used the four affective categories to estimate regressors of no interest. Notably
the procedure was blind to valence and arousal categories, and thus did not bias the results
when comparing across combined categories (i.e., positive versus negative valence or high ver-
sus low arousal). Furthermore, to control for possible confounds arising from lower level fea-
tures of the stimuli, five lower level feature components were regressed out as covariates of no
interest together with six head motion parameter estimates. We used principal components to
reduce the number of regressors, while keeping most of the variability in the data. The five
lower level feature components were generated from three separate principal components anal-
yses: two scores from three visual features which captured 81.91% of the variance for the visual
features, one score from seven motion features (88.37%), and two scores from four auditory
features (99.03%). The residuals from this analysis were used for all further analyses. The per-
cent signal change (PSC) relative to the average activity in a voxel was computed for each voxel
in every volume from the residuals. The mean PSC of two volumes, offset 4.4s from the stimu-
lus onset (to account for the delay in hemodynamic response), was used as the input for further
analyses [7]. Data for each condition were standardized across voxels to have zero mean and
unit variance [56].

2.7 Multivariate Pattern Analyses
The MVPA methods employed in this work are similar to those that have been successfully
used in our other exploration of affective space [7, 57]. Logistic regression classifiers [58] were
trained to identify valence and arousal patterns of brain activity associated with affect-eliciting
audiovisual stimuli. Two-way classifications were performed to identify valence (positive vs.
negative) trials, as well as arousal (high vs. low) trials.

Within-participant classification was performed within functionally localized gray matter
voxels that selectively responded to naturalistic audiovisual stimuli. In each of the four cross-
validation folds, one presentation of the 32 exemplars was left out as test data when the classifi-
ers were trained on the other three presentations. Prior to classification, trials were divided into
training and test sets. The classifier was constructed from the training set and applied subse-
quently to the unused test set. Classification accuracies were computed based on the average
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classification accuracy across the four cross-validation folds. Furthermore, to test the generaliz-
ability of the affect representation across stimuli, we trained a valence classifier and an arousal
classifier on 31 exemplars, and tested on the left out exemplar by decoding its valence or
arousal. Each of the 32 exemplars was left out once for testing in a cross-validation fold. The
average classification accuracy for the four presentations of the test exemplars was reported.

Cross-participant classification performance was evaluated with eleven-fold cross-valida-
tion, where data from one of the participants was left out for testing in each fold. The classifier
was trained on data from all but one participant and used to make predictions for individual
trial data from the left-out participant. Average classification accuracy across trials was com-
puted as a measure of how well individual affective states can be identified based on data from
other individuals. This procedure was repeated for all participants. Classifications were per-
formed using all voxels as well as the union of functional localizer masks.

Statistical significance for the classification accuracies was evaluated by comparison to an
empirically derived null distribution constructed by 1,000 non-informative permutations of
labels in the training set. Classification accuracies with p-values smaller than .05 were consid-
ered significant.

2.8 Searchlight analyses
Searchlight analyses [59] were performed to localize regions that were sensitive to valence and
arousal information. Searchlight analyses employ a sliding neighborhood with a predefined
search radius to scan an entire volume. A union of areas sensitive to checkerboard and beep
sounds (compared to baseline) were excluded from the subsequent searchlight analyses for
each participant.

For each participant and each voxel, data from a 5×5×5 voxels neighborhood, centered at a
given voxel, was extracted and used for the same MVPA procedure described above. The aver-
age classification accuracy was assigned to the center voxel. Two-way classifications for valence
(positive vs. negative) and arousal (high vs. low) were performed across the gray matter voxels
in the mask described above. Thus two classification accuracy maps were generated for each
individual. Chance-level accuracy (.5) was subtracted from obtained classification accuracy
maps [60] before they were submitted to a random-effects whole-brain group analyses.

Permutation tests were performed to find the empirically significant cluster sizes [61]. For
each run, the same searchlight procedure was conducted as described above, but with a random
permutation of condition labels for each individual. The individual accuracy maps generated
using a random permutation of condition labels were submitted to a group analysis and the
largest cluster size was recorded. This entire procedure was repeated 1,000 times each for
valence and arousal classification (which are equivalent), yielding null distributions of cluster
sizes.

Finally, additional confirmatory analyses were performed to verify that the identified clus-
ters were sensitive to valence and arousal information [62]. The significant clusters found by
searchlight analyses were based on group analysis, so that not all of the voxels within each
searchlight cluster may be informative and represent affective states at the individual level.
Thus an additional feature selection procedure was performed for each individual to exclude
voxels that were not related to affective states. In the first confirmatory analysis, a within-indi-
vidual classification analysis was performed for each cluster identified by the searchlight analy-
sis. Prior to classification, a measure of stability was computed for all voxels within each
searchlight by computing correlations across three folds in the training set. The top 80% of the
most stable voxels from the training set were used for subsequent classification for each fold.
Classification accuracies across the four cross-validation folds were averaged for each
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participant. Significance testing was conducted with a one-sample t-test to evaluate if the
group mean accuracy was significantly above chance (.5). In the second confirmatory analysis,
lower dimensional representation analyses were performed for each cluster identified by the
searchlight analyses. These analyses used the top 80% of stable voxels. STATIS [63], a generali-
zation of principal components analysis for multiple similarity matrices, was conducted to
visualize the underlying structure of the exemplars within each searchlight cluster. This tech-
nique is based on the cross-product matrix, thus allowing the number of voxels in the analysis
to vary across individuals [64]. Point-biserial correlations (rpb) between design values (1 for
positive or high arousal, and -1 for negative or low arousal) and corresponding coordinates
from the STATIS solutions were computed to evaluate if the solutions were indeed sensitive to
valence information from valence clusters and arousal information from arousal clusters.

3.0 Results

3.1 Functional localizer
For each participant we have identified functional masks for voxels that were more responsive
to audiovisual condition compared to baseline but excluding those voxels that were more
responsive to checkerboard condition compared to baseline and those voxels that were more
responsive to beep (VA\(VPSAP)c). The number of voxels in each mask identified for each
participant is shown in Table 2. For a concise summary, the functional localizer results are pre-
sented at a group level in S2 Table. Please note, individual masks (S1 Fig) were used for subse-
quent MVPA analyses; group localizer results are presented to facilitate comparison to other
studies.

3.2 Identification of valence
We examined whether the valence of the stimuli (positive or negative) could be identified for
individual trials based on activity patterns elicited by viewing audiovisual clips, defined by the

Table 2. Number of voxels for each of the masks reported by participant.

Participant Gray matter VA VP AP VA\(VPSAP)c GM\(VA\(VPSAP)c)

1 12243 15554 7475 577 8864 2551

2 20279 11723 4006 682 8066 3086

3 24024 12255 15253 1286 4031 2040

4 12544 13294 6664 5193 6590 1261

5 16064 8926 3028 1008 5855 1977

6 15931 11947 10337 3298 3195 1031

7 17528 5221 1784 185 3449 1207

8 15766 8078 3372 538 5039 1351

9 21940 7558 1949 2048 5032 2142

10 8689 9935 3504 433 6810 1101

11 20825 13872 9461 1202 6674 2951

VA, voxels that were more responsive to audiovisual condition compared to baseline (p < .05, FWE-corrected, cluster size > 5); VP, voxels that were more

responsive to checkerboard condition compared to baseline (p < .05, FWE-corrected, cluster size > 5); AP, voxels that were more responsive to beep

condition compared to baseline (p < .05, FWE -corrected, cluster size > 5); VA\(VPSAP)c: voxels that were more responsive to audiovisual condition

compared to baseline (p < .05, FWE-corrected, cluster size > 5), but excluding those voxels that were more responsive to checkerboard condition compared

to baseline (p < .05, FWE-corrected, cluster size > 5) and those voxels that were more responsive to beep condition compared to baseline (p < .05, FWE

-corrected, cluster size > 5); GM\(VA\(VPSAP)c), the intersection between individual gray matter mask and VA\(VPSAP)c. Participants are ordered by

within-participant classification performance (see below).

doi:10.1371/journal.pone.0161589.t002
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quadrants of the valence-arousal space. First, classifiers were trained for each participant to
identify the valence category of the stimuli they were watching: positive or negative. Significant
classification accuracies (p< .05) were found for ten of 11 participants (Fig 3A). Classification
accuracies for eleven participants ranged from .59 to .80, with the mean of the accuracies
(M = 0.66, SD = 0.06) significantly greater than chance, t(10) = 8.17, p< .001. Moreover, the
valence states of audiovisual clips that were previously unseen by the classifier were identified
with accuracy reliably above chance for nine out of 11 participants (cross-exemplar decoding,
M = .74, SD = .13, range = (0.56, 0.94)), suggesting that it was the neural representation of
valence, rather than individual stimuli-specific properties that drove the decoding accuracy.

To examine the similarity of valence representation across participants and to show the typ-
icality of the decoding results we have used data from all but one participant to train a classifi-
cation model and predict valence in the left out participant at the whole brain level of analysis.
From all voxels, we were able to identify valence in nine of 11 participants with accuracies
above chance, p< .05 (Fig 3A). Classification accuracies ranged from 0.48 to 0.69, with the
mean of the accuracies (M = .61, SD = .06) significantly greater than chance, t(10) = 6.34, p<
.001. To link these results more directly to the results for decoding within individuals, we
restricted the analyses to the union of functional localizer masks. Under this restriction, we
were able to identify valence in six out of 11 participants with accuracies above chance, p< .05.
Classification accuracies ranged from .51 to .65, with the mean of the accuracies (M = .60, SD =
.05) significantly greater than chance, t(10) = 7.05, p< .001.

Having established the typicality of the decoding results with cross-participant identifica-
tion of valence, searchlight analyses were performed to spatially localize brain regions that
were sensitive to valence. These revealed five clusters: the left medial prefrontal cortex (mPFC),
the right posterior part of the cingulate cortex (PCC), the left superior/middle temporal gyrus
(STG/MTG), the thalamus, and the middle frontal gyrus (MFG) (p< .05, cluster size> 43).

Confirmatory MVPA and STATIS analyses were performed within each cluster to verify the
information content of identified clusters. The results of MVPA showed four out of five valence
clusters (with mean accuracies of .60, .57, .56, and .54) significantly discriminated valence
information, ps< .05 (Fig 3B; Table 3; S2 Fig). The classification accuracy from the thalamus
cluster did not reach significance (M = .53, p = .14). The lower dimensional representation of
32 exemplars from the four valence clusters confirmed that each of the clusters identified by
searchlight was informative of valence. The point-biserial correlations between design values
and component values corresponding to valence for the four regions were .41, .46, .47, and .55,
ps< .05 (also see S3 Fig). In sum, four clusters sensitive to valence (PCC, MFG, STG/MTG,
and mPFC) were identified by searchlight analyses (Fig 3B, Table 3).

3.3 Identification of arousal
We examined whether the arousal of the stimuli (low or high) could be identified for individual
trials based on activity patterns elicited by viewing audiovisual clips, defined by the quadrants
of the valence-arousal space. Classifiers were trained for each participant to identify the arousal
category of the audiovisual stimuli: high or low. Significant classification accuracies (p< .05)
were found for eight of 11 participants (Fig 4A). Classification accuracies based on functionally
defined ROI for eleven participants ranged from 0.52 to 0.70, with the mean of the accuracies
(M = .60, SD = .06) significantly greater than chance, t(10) = 6.00, p< .001. The arousal states
elicited by audiovisual clips that were previously unseen by the classifier were identified with
reliably above-chance accuracy for nine out of 11 participants (M = .66, SD = .09, range =
(0.50, 0.81)), suggesting that it was the neural representation of arousal, rather than individual
stimuli-specific properties that drove the decoding accuracy.
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Fig 3. MVPA results for valence. (A) Classification accuracies for within-participant (filled bars) and cross-participants (unfilled bars)
valence identification. Participants are ordered by within-participant classification performance. (B) Four clusters; the left medial
prefrontal cortex (mPFC), the right posterior part of the cingulate cortex (PCC), the left superior/middle temporal gyrus (STG/MTG), and
middle frontal gyrus (MFG) are shown on axial slices.

doi:10.1371/journal.pone.0161589.g003
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To examine the similarity of arousal representation across participants and show the typi-
cality of the decoding results we used data from all but one participant to train a classification
model and predict arousal, high or low, in the left out participant. From all voxels, we were able
to identify arousal in eight of 11 participants with accuracies above chance. Classification accu-
racies ranged from .48 to .69, with the mean of the accuracies (M = .61, SD = .05) significantly
greater than chance, t(10) = 6.37, p< .001. To link these results more directly to the results for
decoding within individuals, we restricted the analyses to the union of functional localizer
masks. Under this restriction, we were able to identify arousal in six out of 11 participants with
accuracies above chance, p< .05. Classification accuracies ranged from .43 to .64, with the
mean of the accuracies (M = .58, SD = .06) significantly greater than chance, t(10) = 4.29, p<
.01.

Having established the typicality of the decoding results with cross-participant identifica-
tion of arousal, searchlight analyses were performed to spatially localize brain regions that were
sensitive to arousal. Searchlight analyses revealed two significant clusters: the right precuneus
(PC) and the right orbitofrontal cortex (OFC) (p< .05, cluster size> 50). Confirmatory
MVPA and STATIS analyses were performed within each cluster to verify the information con-
tent of identified clusters. MVPA within each of the identified arousal clusters confirmed that
mean classification accuracies (M = .56 andM = .57) from each cluster were significantly
higher than chance, ps< .01 (Fig 4B; Table 3; S2 Fig). The lower dimensional representation
confirmed that each of the clusters identified by searchlight was sensitive to arousal (S3 Fig).
The point-biserial correlations between design values and component values corresponding to
arousal for the two regions were indicative of the predicted relationship (OFC: rpb = .33, p =
.07, PC: rpb = .59, p< .001). In sum, two regions sensitive to arousal (OFC and PC) were identi-
fied by the searchlight analyses (Fig 4B, Table 3).

4.0 Discussion
This study investigated how valence and arousal elicited by naturalistic multimodal stimuli are
represented in the brain. We were able to identify valence and arousal for individual trials
based on activity patterns elicited by the audiovisual stimuli for most of the individuals. This
result was achieved when controlling for lower level features of the stimuli by excluding brain
regions associated with lower level perceptual processing and removing the effects of lower
level stimulus parameters statistically. By doing so we bolster the inference that identification

Table 3. Searchlight results for valence and arousal.

MNI coordinates

Anatomical region Hemisphere Cluster size x y z T Z

Valence

PCC R 109 6 -46 31 8.89 4.58

MFG R 87 30 11 52 7.57 4.28

STG/MTG L 46 -63 -58 10 8.23 4.44

mPFC L 44 -15 56 1 9.25 4.66

Arousal

PC R 56 9 -49 52 6.67 4.03

OFC R 54 27 62 -17 7.47 4.25

Note: p < .001, uncorrected, cluster size > 40 for valence and 50 for arousal. R, right; L, left; cluster size reported in voxels; T indicates peak t values; Z

indicates peak z values; OFC: anterior part of orbitofrontal cortex; PC: precuneus; mPFC: medial prefrontal cortex; PCC: posterior part of the cingulate

cortex; STG/MTG: superior/middle temporal gyrus; MFG: middle frontal gyrus.

doi:10.1371/journal.pone.0161589.t003
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Fig 4. MVPA results for arousal. (A) Classification accuracies for within-participant (filled bars) and across-participants (unfilled
bars) arousal identification. (B) Two clusters, the right anterior part of orbitofrontal cortex (OFC) and the right precuneus (PC) are
shown on sagittal slices.

doi:10.1371/journal.pone.0161589.g004
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of affective states was indeed attributable to valence and arousal. The fact that the neural repre-
sentation of affect was conveyed by brain areas selectively responsive to naturalistic dynamic
multisensory information is consistent with the idea that valence and arousal are two funda-
mental properties that are readily accessed when processing dynamic multimodal stimuli.

In addition to classifying valence and arousal within individuals, we also found that the
affective states of an individual could be reliably modeled by training the classifiers on data
from other individuals. This cross-participant classification implies common areas of represen-
tation of affective states across individuals. As in the case of within-participant classification,
the cross-participant classification was based on voxel activity that controlled for similarity of
lower level perceptual features across stimuli, supporting the conclusion that these activation
patterns reflect the core dimensions of affect and not just perceptual regularities within affec-
tive categories. We used searchlight techniques to visualize spatially localized regions contain-
ing valence or arousal information. The areas identified by searchlight as sensitive to valence
(PCC, MFG, STG, MTG, mPFC) and arousal (PC and OFC) information were consistent with
the areas previously implicated in emotion processing.

The regions found to be involved in valence in the current study were PCC, MFG, STG/
MTG, and mPFC. It has been reported that the PCC is activated in emotional word processing
[65–67], representation of associated emotions [60], and modality-general representation of
complex emotional information [68]. The STG and MTG have been implicated in integration
of multimodal affective information [28, 69–72], and more generally, in integration of multi-
modal (mostly visual and auditory) sensory information [73]. However, it is not clear whether
valence, arousal or both are represented in this region, because most of the aforementioned
studies utilized discrete emotions (e.g., happy, disgusted, or angry). While the current study
provides support for valence related processing in these regions, more work is needed to deter-
mine if arousal is represented in these regions. The mPFC is often found to be involved in pro-
cessing of emotion [74]. It has been implicated in the perception of affect in faces and scenes
[75]. The mPFC has been shown to be related to consistent representation of discrete emo-
tional states from face, voice, and body movement, suggesting modality-general processing of
emotion within the mPFC [70]. The current study found the mPFC is sensitive to valence, sug-
gesting that valence might be driving this distinction.

The regions found to be involved in arousal in the current study were PC and OFC. The
OFC has been reported to be engaged in processing of affective word stimuli [76], odors [77]
and tastes [78]. It has been identified as representing valence for both pictures and tastes, i.e., a
modality-general representation of affect [78]. In our study, the OFC was identified to be sensi-
tive to arousal information, which is another dimension of core affect (the cluster size within
OFC for valence fell at the top 7.4% within the null distribution, which was not statistically sig-
nificant). These findings, taken together, implicate the OFC in general affective processing.

In sum, the regions identified as sensitive to valence and arousal information in the current
study are consistent with the regions identified in literature linked to emotion. Moreover,
many of six regions have been linked to modality-general representations of emotion [68, 70,
78]. Our findings are consistent with the idea that the core affect dimensions of valence and
arousal may underlie the processing of emotions in these regions for multimodal affective sti-
muli. The clusters that we have shown to be sensitive to valence and arousal in this study are
consistent with the idea that these areas may contribute to the brain’s affective workspace [79].

Past research has demonstrated that modality-congruent sensory areas are also involved in
affect processing. For example, patterns of activity in voice-sensitive cortices were found to rep-
resent categorical emotional vocal expressions [80], while activity patterns in fusiform face area
represent facial expressions [81]. Similarly, Lang, Bradley [82] presented emotion-inducing
pictures and found a greater functional activity for emotional pictures than for neutral pictures
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in primary visual regions, including occipital gyrus, fusiform gyrus, and lingual gyrus. Both
valence and arousal have been demonstrated to be represented in the visual cortex [83]. Thus,
successful classifications of valence and arousal are expected in the modality-congruent
regions. We excluded sensory regions that were localized functionally to minimize the effect of
the lower level features and thereby enhance interpretation of our classification in terms of
affective features rather than sensory features.

In developing a stimulus set that independently manipulated valence and arousal, we chose
to exclude the neutral valence condition. This is because neutral valence conditions are difficult
to match on arousal levels with corresponding positive and negative valence conditions.
Though two core affect dimensions, valence and arousal, are assumed to be independent,
unsigned valence dimension (positive/negative vs. neutral) may relate to arousal. For example,
affective stimuli data sets such as the International Affective Picture System (IAPS) and Inter-
national Affective Digitized Sounds (IADS) databases [84, 85] show distributions of U-shaped
pattern, indicating valenced stimuli tend to be more arousing compared to neutral stimuli.
Thus, it is difficult to find stimuli that are neutral with moderate or high arousal level and it is
more likely for neutral stimuli to be associated with less arousal level compared to valenced sti-
muli. For example, [86] found brain regions that activated as quadratic function of valence rais-
ing a possibility that these results might be confounded with arousal dimension. Consistent
with this idea, Viinikainen, Kätsyri [87] reported extreme positive and negative valence stimuli
were associated with high arousal. The relationship between valence and arousal is still open
for the further investigation.

The results of our study have important implications for affective processing in clinical pop-
ulations. First, we used a passive viewing paradigm to successfully decode valence and arousal.
This type of task may be more amenable to clinical populations, as it has been argued that
implicit tasks may reduce task demands. Explicit tasks, such as emotion categorization or
matching of emotional stimuli, can be problematic in clinical populations that may suffer from
executive dysfunction [15]. Second, the present study extends previous work by demonstrating
that the affective dimensions of valence and arousal can be identified from dynamic audio-
visual stimuli. Given the distinction between processing of affect from static and dynamic sti-
muli for some clinical populations noted earlier [16], these representational analyses may be
helpful in better understanding affective disorders. Third, the cross-participant classification
utilized in the current study provides a basis for future classification studies of clinical popula-
tions based on a match to specific profiles for affective representation [13].

Several design facets limit the generalizability of the findings. First, we tried to make the sti-
muli as homogeneous as possible for the duration of the clip with an assumption of constant
affective response to a single stimulus, but the methods in the current study have not been
demonstrated for more transient nature of affective states in truly naturalistic settings. Future
research may examine applications to longer and more variable stimuli. Second, this study is
based on categorical affective states rather than continuous ones due to the difficulty of collect-
ing neutral stimuli with varying arousal levels. As discussed above, it is challenging to manipu-
late neutral condition with moderate and high arousal levels. Finally, our results are
correlational in nature; although we have shown that BOLD data contain enough information
to identify the affective category of the stimuli, no inference can be made on how the brain uses
this information.

In conclusion, we were able to identify valence and arousal states in individuals for single
trials of multimodal dynamic stimuli while controlling for lower level features statistically and
with functional localizers. We were able to do this both within and across individuals. The spa-
tially localized areas found to be sensitive to valence and arousal information were consistent
with the literature on affective states. These findings extend previous results on affective
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representation [7, 13] to naturalistic dynamic stimuli and identify possible brain regions for
encoding valence and arousal representations.
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S1 Fig. Functional localizer masks for each of the participants. Voxels that were more
responsive to audiovisual condition compared to baseline (p< .05, FWE-corrected, cluster
size> 5), but excluding those voxels that were more responsive to checkerboard condition
compared to baseline (p< .05, FWE-corrected, cluster size> 5) and those voxels that were
more responsive to beep condition compared to baseline (p< .05, FWE-corrected, cluster
size> 5) are shown in red.
(EPS)

S2 Fig. Within-participant classification accuracies obtained in confirmatory analyses for
valence (left panel) and arousal (right panel). Classification accuracies are summarized by
box plots across the 11 participants for each cluster identified by searchlight analyses.
(EPS)

S3 Fig. STATIS solutions performed as confirmatory analyses within each searchlight clus-
ter for valence (left panel) and arousal (right panel). rpb denotes point-biserial correlation
coefficient between design values and component 1 coordinates, † p< .1, � p< .05, �� p< .01,
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(DOCX)

S2 Table. Group summary of functional localizer masks.
(DOCX)

Acknowledgments
We thank Laura B. Baucom and Matthew J. Facciani for help with fMRI data collection, Mary-
Catherine Newell for help with stimuli development, and all participants for their time.

Author Contributions

Conceptualization: SS DW.

Data curation: JK.

Formal analysis: JK JW DW SS.

Methodology: JK JW DW SS.

Software: JK JW DW SS.

Writing – original draft: JK DW SS.

References
1. Russell JA. Core affect and the psychological construction of emotion. Psychol Rev. 2003; 110(1):145–

72. PMID: 12529060.

2. Russell JA, Barrett LF. Core affect, prototypical emotional episodes, and other things called emotion:
dissecting the elephant. J Pers Soc Psychol. 1999; 76(5):805–19. PMID: 10353204.

Identifying Core Affect from fMRI Responses to Dynamic Naturalistic Audiovisual Stimuli

PLOS ONE | DOI:10.1371/journal.pone.0161589 September 6, 2016 17 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161589.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161589.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161589.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161589.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0161589.s005
http://www.ncbi.nlm.nih.gov/pubmed/12529060
http://www.ncbi.nlm.nih.gov/pubmed/10353204


3. Bradley MM, Lang PJ. Affective reactions to acoustic stimuli. Psychophysiology. 2000; 37:204–15.
PMID: 10731770

4. Cacioppo JT, Berntson GG, Larsen JT, Poehlmann KM, Ito TA. The psychophysiology of emotion. In:
Lewis R, Haviland-Jones JM, editors. The handbook of emotion. 2nd ed2000. p. 173–91.

5. Gomez P, Danuser B. Affective and physiological responses to environmental noises and music. Int J
Psychophysiol. 2004; 53(2):91–103. Epub 2004/06/24. doi: 10.1016/j.ijpsycho.2004.02.002
S0167876004000273 [pii]. PMID: 15210287.

6. Anders S, Eippert F, Weiskopf N, Veit R. The human amygdala is sensitive to the valence of pictures
and sounds irrespective of arousal: an fMRI study. Soc Cogn Affect Neurosci. 2008; 3(3):233–43. Epub
2008/11/19. nsn017 [pii] doi: 10.1093/scan/nsn017 PMID: 19015115.

7. Baucom LB, Wedell DH, Wang J, Blitzer DN, Shinkareva SV. Decoding the neural representation of
affective states. NeuroImage. 2012; 59(1):718–27. doi: 10.1016/j.neuroimage.2011.07.037 PMID:
21801839

8. Wilson-Mendenhall CD, Barrett LF, Barsalou LW. Neural evidence that human emotions share core
affective properties. Psychol Sci. 2013; 24(6):947–56. Epub 2013/04/23. 0956797612464242 [pii] doi:
10.1177/0956797612464242 PMID: 23603916.

9. Tseng A, Wang Z, Huo Y, Goh S, Russell JA, Peterson BS. Differences in neural activity when process-
ing emotional arousal and valence in autism spectrum disorders. Human brain mapping. 2016; 37
(2):443–61. doi: 10.1002/hbm.23041 PMID: 26526072

10. Mourão-Miranda J, Almeida JR, Hassel S, de Oliveira L, Versace A, Marquand AF, et al. Pattern recog-
nition analyses of brain activation elicited by happy and neutral faces in unipolar and bipolar depres-
sion. Bipolar Disord. 2012; 14(4):451–60. Epub 2012/05/29. doi: 10.1111/j.1399-5618.2012.01019.x
PMID: 22631624.

11. Mourão-Miranda J, Oliveira L, Ladouceur CD, Marquand A, Brammer M, Birmaher B, et al. Pattern rec-
ognition and functional neuroimaging Help to discriminate healthy adolescents at risk for mood disor-
ders from low risk adolescents. PLoS ONE. 2012; 7(2):e29482. doi: 10.1371/journal.pone.0029482
PMID: 22355302

12. Hahn T, Marquand A, Ehlis A-C, Dresler T, Kittel-Schneider S, Jarczok TA, et al. Integrating neurobio-
logical markers of depression. Archives of General Psychiatry. 2011; 68(4).

13. Habes I, Krall SC, Johnston SJ, Yuen KS, Healy D, Goebel R, et al. Pattern classification of valence in
depression. Neuroimage Clin. 2013; 2:675–83. Epub 2013/11/02. doi: 10.1016/j.nicl.2013.05.001
S2213-1582(13)00057-0 [pii]. PMID: 24179819.

14. Klasen M, Kreifelts B, Chen Y-H, Seubert J, Mathiak K. Neural processing of emotion in multimodal set-
tings. Frontiers in human neuroscience. 2014; 8.

15. Garrido-Vasquez P, Jessen S, Kotz SA. Perception of emotion in psychiatric disorders: on the possible
role of task, dynamics, and multimodality. Soc Neurosci. 2011; 6(5–6):515–36. Epub 2011/10/04. doi:
10.1080/17470919.2011.620771 PMID: 21961831.

16. Weisberg J, Milleville SC, Kenworthy L, Wallace GL, Gotts SJ, Beauchamp MS, et al. Social Perception
in Autism Spectrum Disorders: Impaired Category Selectivity for Dynamic but not Static Images in Ven-
tral Temporal Cortex. Cereb Cortex. 2012. Epub 2012/09/29. bhs276 [pii] doi: 10.1093/cercor/bhs276
PMID: 23019245.

17. De Jong J, Hodiamont P, De Gelder B. Modality-specific attention and multisensory integration of emo-
tions in schizophrenia: Reduced regulatory effects. Schizophrenia research. 2010; 122(1):136–43.

18. de Gelder B, Vroomen J, de Jong SJ, Masthoff ED, Trompenaars FJ, Hodiamont P. Multisensory inte-
gration of emotional faces and voices in schizophrenics. Schizophrenia research. 2005; 72(2):195–
203.

19. Barrett LF, Mesquita B, Gendron M. Context in Emotion Perception. Current Directions in Psychological
Science. 2011; 20(5):286–90. doi: 10.1177/0963721411422522

20. Hasson U, Malach R, Heeger DJ. Reliability of cortical activity during natural stimulation. Trends Cogn
Sci. 2010; 14(1):40–8. doi: 10.1016/j.tics.2009.10.011 PMID: 20004608

21. Maurage P, Campanella S. Experimental and clinical usefulness of crossmodal paradigms in psychia-
try: an illustration from emotional processing in alcohol-dependence. 2013.

22. Kragel PA, LaBar KS. Multivariate neural biomarkers of emotional states are categorically distinct. Soc
Cogn Affect Neurosci. 2015; 10(11):1437–48. doi: 10.1093/scan/nsv032 PMID: 25813790; PubMed
Central PMCID: PMCPMC4631142.

23. Satpute AB, Wilson-Mendelhall CD, Kleckner IR, Barrett LF. Emotional experience. Brain mapping: An
encyclopedic reference. 2015; 3:65–72.

Identifying Core Affect from fMRI Responses to Dynamic Naturalistic Audiovisual Stimuli

PLOS ONE | DOI:10.1371/journal.pone.0161589 September 6, 2016 18 / 21

http://www.ncbi.nlm.nih.gov/pubmed/10731770
http://dx.doi.org/10.1016/j.ijpsycho.2004.02.002
http://www.ncbi.nlm.nih.gov/pubmed/15210287
http://dx.doi.org/10.1093/scan/nsn017
http://www.ncbi.nlm.nih.gov/pubmed/19015115
http://dx.doi.org/10.1016/j.neuroimage.2011.07.037
http://www.ncbi.nlm.nih.gov/pubmed/21801839
http://dx.doi.org/10.1177/0956797612464242
http://www.ncbi.nlm.nih.gov/pubmed/23603916
http://dx.doi.org/10.1002/hbm.23041
http://www.ncbi.nlm.nih.gov/pubmed/26526072
http://dx.doi.org/10.1111/j.1399-5618.2012.01019.x
http://www.ncbi.nlm.nih.gov/pubmed/22631624
http://dx.doi.org/10.1371/journal.pone.0029482
http://www.ncbi.nlm.nih.gov/pubmed/22355302
http://dx.doi.org/10.1016/j.nicl.2013.05.001
http://www.ncbi.nlm.nih.gov/pubmed/24179819
http://dx.doi.org/10.1080/17470919.2011.620771
http://www.ncbi.nlm.nih.gov/pubmed/21961831
http://dx.doi.org/10.1093/cercor/bhs276
http://www.ncbi.nlm.nih.gov/pubmed/23019245
http://dx.doi.org/10.1177/0963721411422522
http://dx.doi.org/10.1016/j.tics.2009.10.011
http://www.ncbi.nlm.nih.gov/pubmed/20004608
http://dx.doi.org/10.1093/scan/nsv032
http://www.ncbi.nlm.nih.gov/pubmed/25813790


24. Kotz SA, Kalberlah C, Bahlmann J, Friederici AD, Haynes JD. Predicting vocal emotion expressions
from the human brain. Human Brain Mapping. 2013; 34(8):1971–81. doi: 10.1002/hbm.22041 PMID:
22371367

25. Shinkareva SV,Wang J, Kim J, Facciani MJ, Baucom LB,Wedell DH. Representations of modality‐spe-
cific affective processing for visual and auditory stimuli derived from functional magnetic resonance
imaging data. Human brain mapping. 2014; 35(7):3558–68. doi: 10.1002/hbm.22421 PMID: 24302696

26. Royet JP, Plailly J, Delon-Martin C, Kareken DA, Segebarth C. fMRI of emotional responses to odors:
influence of hedonic valence and judgment, handedness, and gender. Neuroimage. 2003; 20(2):713–
28. doi: 10.1016/S1053-8119(03)00388-4 PMID: 14568446.

27. Daselaar SM, Rice HJ, Greenberg DL, Cabeza R, LaBar KS, Rubin DC. The spatiotemporal dynamics
of autobiographical memory: neural correlates of recall, emotional intensity, and reliving. Cereb Cortex.
2008; 18(1):217–29. doi: 10.1093/cercor/bhm048 PMID: 17548799.

28. Kreifelts B, Ethofer T, GroddW, Erb M, Wildgruber D. Audiovisual integration of emotional signals in
voice and face: an event-related fMRI study. Neuroimage. 2007; 37(4):1445–56. doi: 10.1016/j.
neuroimage.2007.06.020 PMID: 17659885.

29. Zupan B, Neumann D. Affect recognition in traumatic brain injury: responses to unimodal and multi-
modal media. J Head Trauma Rehabil. 2014; 29(4):E1–E12. doi: 10.1097/HTR.0b013e31829dded6
PMID: 23982789.

30. Brosnan M, Johnson H, Grawmeyer B, Chapman E, Benton L. Emotion recognition in animated com-
pared to human stimuli in adolescents with autism spectrum disorder. J Autism Dev Disord. 2015; 45
(6):1785–96. doi: 10.1007/s10803-014-2338-9 PMID: 25567528.

31. Magnee MJ, Oranje B, van Engeland H, Kahn RS, Kemner C. Cross-sensory gating in schizophrenia
and autism spectrum disorder: EEG evidence for impaired brain connectivity? Neuropsychologia.
2009; 47(7):1728–32. doi: 10.1016/j.neuropsychologia.2009.02.012 PMID: 19397868.

32. Gerrards-Hesse A, Spies K, Hesse FW. Experimental inductions of emotional states and their effective-
ness: a review. British journal of psychology. 1994; 85:55–78.

33. Ambadar Z, Schooler JW, Cohn JF. Deciphering the enigmatic face: the importance of facial dynamics
in interpreting subtle facial expressions. Psychol Sci. 2005; 16(5):403–10. doi: 10.1111/j.0956-7976.
2005.01548.x PMID: 15869701.

34. SatoW, Kochiyama T, Yoshikawa S, Naito E, Matsumura M. Enhanced neural activity in response to
dynamic facial expressions of emotion: an fMRI study. Brain Res Cogn Brain Res. 2004; 20(1):81–91.
doi: 10.1016/j.cogbrainres.2004.01.008 PMID: 15130592.

35. de Gelder B, Vroomen J, Pourtois G, Weiskrantz L. Non-conscious recognition of affect in the absence
of striate cortex. Neuroreport. 1999; 10(18):3759–63. PMID: 10716205.

36. Kilts CD, Egan GFG, D.A., Ely TD, Hoffman JM. Dissociable neural pathways are involved in the recog-
nition of emotion in static and dynamic facial expressions. NeuroImage. 2003; 18:156–68. PMID:
12507452

37. Atkinson AP, Dittrich WH, Gemmell AJ, Young AW. Emotion perception from dynamic and static body
expressions in point-light and full-light displays. Perception. 2004; 33(6):717–46. PMID: 15330366.

38. Gross JJ, Levenson RW. Emotion elicitation using films. Cognition & Emotion. 1995; 9(1):87–108. doi:
10.1080/02699939508408966

39. Rottenberg J, Ray RD, Gross JJ. Emotion elicitation using films. In: Coan JA, Allen JJB, editors. The
handbook of emotion elicitation and assessment. London: Oxford University Press; 2007.

40. Hubert W, de Jong-Meyer R. Psychophysiological response patterns to positive and negative film sti-
muli. Biol Psychol. 1990; 31(1):73–93. Epub 1991/08/01. PMID: 2021681.

41. Hubert W, de Jong-Meyer R. Autonomic, neuroendocrine, and subjective responses to emotion-induc-
ing film stimuli. Int J Psychophysiol. 1991; 11(2):131–40. Epub 1991/08/01. PMID: 1748588.

42. de Gelder B, Bertelson P. Multisensory integration, perception and ecological validity. TRENDS in Cog-
nitive Sciences. 2003; 7:460–7. PMID: 14550494

43. Bertelson P, de Gelder B. The psychology of multimodal perception. In: Spense C, Driver J, editors.
Crossmodal space and crossmodal attention. Oxford: Oxford University Press; 2004. p. 141–77.

44. Lakens D, Fockenberg DA, Lemmens KPH, Ham J, Midden CJH. The evaluation of affective pictures
depends on their brightness. Cognition and Emotion. 2013. doi: 10.1080/02699931.2013.781501

45. Gabrielsson A, Lindström E. The influence of musical structure on emotional expression. In: Juslin PN,
Sloboda J, editors. Music and emotion: Theory and research Series in affective science. New York:
Oxford University Press; 2001. p. 223–48.

46. Juslin PN, Laukka P. Expression, perception, and induction of musical emotions: A review and a ques-
tionnaire study of everyday listening. Journal of NewMusic Research. 2004; 33(3):217–38.

Identifying Core Affect from fMRI Responses to Dynamic Naturalistic Audiovisual Stimuli

PLOS ONE | DOI:10.1371/journal.pone.0161589 September 6, 2016 19 / 21

http://dx.doi.org/10.1002/hbm.22041
http://www.ncbi.nlm.nih.gov/pubmed/22371367
http://dx.doi.org/10.1002/hbm.22421
http://www.ncbi.nlm.nih.gov/pubmed/24302696
http://dx.doi.org/10.1016/S1053-8119(03)00388-4
http://www.ncbi.nlm.nih.gov/pubmed/14568446
http://dx.doi.org/10.1093/cercor/bhm048
http://www.ncbi.nlm.nih.gov/pubmed/17548799
http://dx.doi.org/10.1016/j.neuroimage.2007.06.020
http://dx.doi.org/10.1016/j.neuroimage.2007.06.020
http://www.ncbi.nlm.nih.gov/pubmed/17659885
http://dx.doi.org/10.1097/HTR.0b013e31829dded6
http://www.ncbi.nlm.nih.gov/pubmed/23982789
http://dx.doi.org/10.1007/s10803-014-2338-9
http://www.ncbi.nlm.nih.gov/pubmed/25567528
http://dx.doi.org/10.1016/j.neuropsychologia.2009.02.012
http://www.ncbi.nlm.nih.gov/pubmed/19397868
http://dx.doi.org/10.1111/j.0956-7976.2005.01548.x
http://dx.doi.org/10.1111/j.0956-7976.2005.01548.x
http://www.ncbi.nlm.nih.gov/pubmed/15869701
http://dx.doi.org/10.1016/j.cogbrainres.2004.01.008
http://www.ncbi.nlm.nih.gov/pubmed/15130592
http://www.ncbi.nlm.nih.gov/pubmed/10716205
http://www.ncbi.nlm.nih.gov/pubmed/12507452
http://www.ncbi.nlm.nih.gov/pubmed/15330366
http://dx.doi.org/10.1080/02699939508408966
http://www.ncbi.nlm.nih.gov/pubmed/2021681
http://www.ncbi.nlm.nih.gov/pubmed/1748588
http://www.ncbi.nlm.nih.gov/pubmed/14550494
http://dx.doi.org/10.1080/02699931.2013.781501


47. Coutinho E, Cangelosi A. Musical emotions: predicting second-by-second subjective feelings of emo-
tion from low-level psychoacoustic features and physiological measurements. Emotion. 2011; 11
(4):921–37. doi: 10.1037/a0024700 PMID: 21859207.

48. Yuen KSL, Johnston SJ, De Martino F, Sorger B, Formisano E, Linden DEJ, et al. Pattern classification
predicts individuals’ responses to affective stimuli. Translational Neuroscience. 2012; 3(3):278–87.

49. Carroll JD, Chang JJ. Analysis of individual differences in multidimensional scaling via an N-way gener-
alization of 'Eckard-Young' decomposition. Psychometrika. 1970; 35:283–320.

50. Russell JA, Bullock M. Multidimensional scaling of emotional facial expressions: similarity from pre-
schoolers to adults. Journal of Personality and Social Psychology. 1985; 48(5):1290.

51. Haller S, Wetzel SG, Radue EW, Bilecen D. Mapping continuous neuronal activation without an ON–
OFF paradigm: initial results of BOLD ceiling fMRI. European Journal of Neuroscience. 2006; 24:2672–
8. PMID: 17100855

52. Fox PT, Raichle ME. Stimulus rate determines regional brain blood flow in striate cortex. Annals of neu-
rology. 1985; 17(3):303–5. PMID: 3873210

53. Kay KN, Rokem A, Winawer J, Dougherty RF, Wandell BA. GLMdenoise: a fast, automated technique
for denoising task-based fMRI data. Frontiers in Neuroscience. 2013; 7:Article 247.

54. Erez J, Cusack R, Kendall W, Barense MD. Conjunctive coding of complex object features. Cerebral
Cortex. 2015:bhv081.

55. Henriksson L, Khaligh-Razavi S-M, Kay K, Kriegeskorte N. Visual representations are dominated by
intrinsic fluctuations correlated between areas. NeuroImage. 2015; 114:275–86. doi: 10.1016/j.
neuroimage.2015.04.026 PMID: 25896934

56. Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a tutorial overview. Neuro-
image. 2009; 45:S199–S209. doi: 10.1016/j.neuroimage.2008.11.007 PMID: 19070668

57. Shinkareva SV,Wang J, Kim J, Facciani MJ, Baucom LB,Wedell DH. Representations of modality-spe-
cific affective processing for visual and auditory stimuli derived from fMRI data. Human Brain Mapping.
2014; 35(7):3558–68. doi: 10.1002/hbm.22421 PMID: 24302696

58. Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006.

59. Kriegeskorte N, Goebel R, Bandettini P. Information-based functional brain mapping. Proc Natl Acad
Sci U S A. 2006; 103(10):3863–8. PMID: 16537458.

60. Kim J, Schultz J, Rohe T, Wallraven C, Lee SW, Bulthoff HH. Abstract representations of associated
emotions in the human brain. J Neurosci. 2015; 35(14):5655–63. doi: 10.1523/JNEUROSCI.4059-14.
2015 PMID: 25855179.

61. Stelzer J, Chen Y, Turner R. Statistical inference and multiple testing correction in classification-based
multi-voxel pattern analysis (MVPA): random permutations and cluster size control. Neuroimage. 2013;
65:69–82. doi: 10.1016/j.neuroimage.2012.09.063 PMID: 23041526.

62. Etzel JA, Zacks JM, Braver TS. Searchlight analysis: promise, pitfalls, and potential. NeuroImage.
2013; 78:261–9. Epub 2013/04/06. S1053-8119(13)00291-7 [pii] doi: 10.1016/j.neuroimage.2013.03.
041 PMID: 23558106.

63. Abdi H, Williams LJ, Valentin D, Bennani-Dosse M. STATIS and DISTATIS: optimummultitable princi-
pal component analysis and three way metric multidimensional scaling. Wiley Interdisciplinary
Reviews: Computational Statistics. 2012.

64. Shinkareva SV, Malave VL, Mason RA, Mitchell TM, Just MA. Commonality of neural representations
of words and pictures. Neuroimage. 2011; 54:2418–25. doi: 10.1016/j.neuroimage.2010.10.042 PMID:
20974270

65. Maddock RJ, Buonocore MH. Activation of left posterior cingulate gyrus by the auditory presentation of
threat-related words: an fMRI study. Psychiatry Res. 1997; 75(1):1–14. PMID: 9287369.

66. Maddock RJ, Garrett AS, Buonocore MH. Posterior cingulate cortex activation by emotional words:
fMRI evidence from a valence decision task. Hum Brain Mapp. 2003; 18(1):30–41. doi: 10.1002/hbm.
10075 PMID: 12454910.

67. Fossati P, Hevenor SJ, Graham SJ, Grady C, Keightley ML, Craik F, et al. In search of the emotional
self: an fMRI study using positive and negative emotional words. Am J Psychiatry. 2003; 160
(11):1938–45. Epub 2003/11/05. PMID: 14594739.

68. Klasen M, Kenworthy CA, Mathiak KA, Kircher T, Mathiak K. Supramodal representation of emotions.
The Journal of Neuroscience. 2011; 31(38):13635–43. doi: 10.1523/JNEUROSCI.2833-11.2011
PMID: 21940454

69. Park JY, Gu BM, Kang DH, Shin YW, Choi CH, Lee JM, et al. Integration of cross-modal emotional
information in the human brain: an fMRI study. Cortex. 2010; 46(2):161–9. doi: 10.1016/j.cortex.2008.
06.008 PMID: 18691703.

Identifying Core Affect from fMRI Responses to Dynamic Naturalistic Audiovisual Stimuli

PLOS ONE | DOI:10.1371/journal.pone.0161589 September 6, 2016 20 / 21

http://dx.doi.org/10.1037/a0024700
http://www.ncbi.nlm.nih.gov/pubmed/21859207
http://www.ncbi.nlm.nih.gov/pubmed/17100855
http://www.ncbi.nlm.nih.gov/pubmed/3873210
http://dx.doi.org/10.1016/j.neuroimage.2015.04.026
http://dx.doi.org/10.1016/j.neuroimage.2015.04.026
http://www.ncbi.nlm.nih.gov/pubmed/25896934
http://dx.doi.org/10.1016/j.neuroimage.2008.11.007
http://www.ncbi.nlm.nih.gov/pubmed/19070668
http://dx.doi.org/10.1002/hbm.22421
http://www.ncbi.nlm.nih.gov/pubmed/24302696
http://www.ncbi.nlm.nih.gov/pubmed/16537458
http://dx.doi.org/10.1523/JNEUROSCI.4059-14.2015
http://dx.doi.org/10.1523/JNEUROSCI.4059-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/25855179
http://dx.doi.org/10.1016/j.neuroimage.2012.09.063
http://www.ncbi.nlm.nih.gov/pubmed/23041526
http://dx.doi.org/10.1016/j.neuroimage.2013.03.041
http://dx.doi.org/10.1016/j.neuroimage.2013.03.041
http://www.ncbi.nlm.nih.gov/pubmed/23558106
http://dx.doi.org/10.1016/j.neuroimage.2010.10.042
http://www.ncbi.nlm.nih.gov/pubmed/20974270
http://www.ncbi.nlm.nih.gov/pubmed/9287369
http://dx.doi.org/10.1002/hbm.10075
http://dx.doi.org/10.1002/hbm.10075
http://www.ncbi.nlm.nih.gov/pubmed/12454910
http://www.ncbi.nlm.nih.gov/pubmed/14594739
http://dx.doi.org/10.1523/JNEUROSCI.2833-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21940454
http://dx.doi.org/10.1016/j.cortex.2008.06.008
http://dx.doi.org/10.1016/j.cortex.2008.06.008
http://www.ncbi.nlm.nih.gov/pubmed/18691703


70. Peelen MV, Atkinson AP, Vuilleumier P. Supramodal Representations of Perceived Emotions in the
Human Brain. The Journal of Neuroscience. 2010; 30:10127–34. doi: 10.1523/JNEUROSCI.2161-10.
2010 PMID: 20668196

71. Pourtois G, de Gelder B, Vroomen J, Rossion B, Crommelinck M. The time-course of intermodal bind-
ing between seeing and hearing affective information. Neuroreport. 2000; 11(6):1329–33. PMID:
10817616.

72. Robins DL, Hunyadi E, Schultz RT. Superior temporal activation in response to dynamic audio-visual
emotional cues. Brain Cogn. 2009; 69(2):269–78. doi: 10.1016/j.bandc.2008.08.007 PMID: 18809234;
PubMed Central PMCID: PMCPMC2677198.

73. Beauchamp MS, Lee KE, Argall BD, Martin A. Integration of auditory and visual information about
objects in superior temporal sulcus. Neuron. 2004; 41(5):809–23. Epub 2004/03/09.
S0896627304000704 [pii]. PMID: 15003179.

74. Phan KL, Wager T, Taylor SF, Liberzon I. Functional neuroanatomy of emotion: a meta-analysis of
emotion activation studies in PET and fMRI. NeuroImage. 2002; 16(2):331–48. PMID: 12030820

75. Sabatinelli D, Fortune EE, Li Q, Siddiqui A, Krafft C, Oliver WT, et al. Emotional perception: meta-analy-
ses of face and natural scene processing. NeuroImage. 2011; 54(3):2524–33. Epub 2010/10/19.
S1053-8119(10)01303-0 [pii] doi: 10.1016/j.neuroimage.2010.10.011 PMID: 20951215.

76. Lewis PA, Critchley HD, Rotshtein P, Dolan RJ. Neural correlates of processing valence and arousal in
affective words. Cerebral cortex. 2007; 17:742–8. doi: 10.1093/cercor/bhk024 PMID: 16699082

77. Anderson AK, Christoff K, Stappen I, Panitz D, Ghahremani DG, Glover G, et al. Dissociated neural rep-
resentations of intensity and valence in human olfaction. Nature Neuroscience. 2003; 6(2):196–202.
PMID: 12536208

78. Chikazoe J, Lee DH, Kriegeskorte N, Anderson A. Population coding of affect across stimuli, modalities
and individuals. Nature Neuroscience. 2014; 17:1114–22. doi: 10.1038/nn.3749 PMID: 24952643

79. Lindquist KA, Satpute AB, Wager TD, Weber J, Barrett LF. The Brain Basis of Positive and Negative
Affect: Evidence from a Meta-Analysis of the Human Neuroimaging Literature. Cereb Cortex. 2015. doi:
10.1093/cercor/bhv001 PMID: 25631056.

80. Ethofer T, Van De Ville D, Scherer K, Vuilleumier P. Decoding of emotional information in voice-sensi-
tive cortices. Current Biology. 2009; 19(12):1028–33. doi: 10.1016/j.cub.2009.04.054 PMID: 19446457

81. Harry B, Williams MA, Davis C, Kim J. Emotional expressions evoke a differential response in the fusi-
form face area. 2013.

82. Lang PJ, Bradley MM, Fitzsimmons JR, Cuthbert BN, Scott JD, Moulder B, et al. Emotional arousal and
activation of the visual cortex: an fMRI analysis. Psychophysiology. 1998; 35:199–210. PMID: 9529946

83. Mourao-Miranda J, Volchan E, Moll J, de Oliveira-Souza R, Oliveira L, Bramati I, et al. Contributions of
stimulus valence and arousal to visual activation during emotional perception. Neuroimage. 2003; 20
(4):1955–63. PMID: 14683701

84. Lang PJ, Bradley MM, Cuthbert BN. International affective picture system (IAPS): Affective ratings of
pictures and instruction manual. Gainesville, FL: University of Florida, 2008 Contract No.: A-8.

85. Bradley M, Lang PJ. The International affective digitized sounds (IADS)[: stimuli, instruction manual
and affective ratings: NIMH Center for the Study of Emotion and Attention; 1999.

86. Viinikainen M, Jääskeläinen IP, Alexandrov Y, Balk MH, Autti T, SamsM. Nonlinear relationship
between emotional valence and brain activity: evidence of separate negative and positive valence
dimensions. Human brain mapping. 2010; 31(7):1030–40. doi: 10.1002/hbm.20915 PMID: 19957266

87. Viinikainen M, Kätsyri J, SamsM. Representation of Perceived Sound Valence in the Human Brain.
Human Brain Mapping. 2012; 33:2295–305. doi: 10.1002/hbm.21362 PMID: 21826759

Identifying Core Affect from fMRI Responses to Dynamic Naturalistic Audiovisual Stimuli

PLOS ONE | DOI:10.1371/journal.pone.0161589 September 6, 2016 21 / 21

http://dx.doi.org/10.1523/JNEUROSCI.2161-10.2010
http://dx.doi.org/10.1523/JNEUROSCI.2161-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20668196
http://www.ncbi.nlm.nih.gov/pubmed/10817616
http://dx.doi.org/10.1016/j.bandc.2008.08.007
http://www.ncbi.nlm.nih.gov/pubmed/18809234
http://www.ncbi.nlm.nih.gov/pubmed/15003179
http://www.ncbi.nlm.nih.gov/pubmed/12030820
http://dx.doi.org/10.1016/j.neuroimage.2010.10.011
http://www.ncbi.nlm.nih.gov/pubmed/20951215
http://dx.doi.org/10.1093/cercor/bhk024
http://www.ncbi.nlm.nih.gov/pubmed/16699082
http://www.ncbi.nlm.nih.gov/pubmed/12536208
http://dx.doi.org/10.1038/nn.3749
http://www.ncbi.nlm.nih.gov/pubmed/24952643
http://dx.doi.org/10.1093/cercor/bhv001
http://www.ncbi.nlm.nih.gov/pubmed/25631056
http://dx.doi.org/10.1016/j.cub.2009.04.054
http://www.ncbi.nlm.nih.gov/pubmed/19446457
http://www.ncbi.nlm.nih.gov/pubmed/9529946
http://www.ncbi.nlm.nih.gov/pubmed/14683701
http://dx.doi.org/10.1002/hbm.20915
http://www.ncbi.nlm.nih.gov/pubmed/19957266
http://dx.doi.org/10.1002/hbm.21362
http://www.ncbi.nlm.nih.gov/pubmed/21826759

