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Raman spectral signature reflects transcriptomic
features of antibiotic resistance in Escherichia coli

Arno Germond', Taro Ichimura® 2, Takaaki Horinouchi', Hideaki Fujita'3, Chikara Furusawa'* &
Tomonobu M. Watanabe'

To be able to predict antibiotic resistance in bacteria from fast label-free microscopic
observations would benefit a broad range of applications in the biological and biomedical
fields. Here, we demonstrate the utility of label-free Raman spectroscopy in monitoring the
type of resistance and the mode of action of acquired resistance in a bacterial population of
Escherichia coli, in the absence of antibiotics. Our findings are reproducible. Moreover, we
identified spectral regions that best predicted the modes of action and explored whether the
Raman signatures could be linked to the genetic basis of acquired resistance. Spectral peak
intensities significantly correlated (False Discovery Rate, p < 0.05) with the gene expression
of some genes contributing to antibiotic resistance genes. These results suggest that the
acquisition of antibiotic resistance leads to broad metabolic effects reflected through Raman
spectral signatures and gene expression changes, hinting at a possible relation between these
two layers of complementary information.
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important concerns for public health. While the number of

pathogens resistant to various drugs is on the rise, various
scientific and economic challenges have reduced the development
of new antibiotic drugs™ 2. It has been suggested that the devel-
opment of antibiotic drugs could be accelerated by techniques
that could perform rapid and accurate characterization of the
mode of action, or mechanism, of bacterial resistance. Such
approaches would also be beneficial in clinical environments,
where patient survival depends on the time needed to diagnose
patients infected by antibiotic-resistant bacteria, which needs to
be shortened as much as possible. However, the conventional
methods used to detect antibiotic resistance, such as cell culture,
in vitro drug sensitivity testing, proteomic profiling, and genetic
analyses (e.g., transcriptomic analyses), are time-consuming and
costly.

Raman spectroscopy is increasingly used in microbiology to
perform cell-type or cell-state identification, with the possibility
of achieving single-cell measurements®> . Because a Raman
spectrum is essentially an ensemble of molecular vibrations, it
provides rich, but complex information reflecting the metabolism
and chemical composition of the cell and its structures. Raman
spectroscopy has been successfully used to monitor the pheno-
typic responses of bacterial species exposed to various drugs, at
various concentrations, and for various durations of exposure®~!”.
Cost-efficient and fast identification measurements of various
types and subtypes of pathogenic and commensal bacteria and
mycobacteria exposed to drugs were reported!® '® 17, demon-
strating the potential of this technique by comparison to more
conventional approaches. In addition, some studies also hinted at
possible metabolic or structural relations between cells and
spectral signaturesls’ 17,18,

The question remains whether spectral information can be
used to reliably discriminate acquired resistance in bacteria in the
absence of drugs, and if the spectral signatures can be linked to
the molecular mechanisms of antibiotic resistance. These two
questions are challenging because of our limited understanding of
the complex nature of the Raman spectrum, in which each peak
represents the contribution from multiple chemical compounds.
In order to increase the interpretability of the Raman spectrum
phenotypic signature, we envision it could be combined with the
information of other techniques. Genetic analyses of microbial
resistance against antibiotic drugs have been a topic of high
interest in recent years, and some specific genes were contributin
to the antibiotic-resistance phenotypes have been identified!® 2°.
Since Raman spectral data have been shown to be good pheno-
typic indicators of antibiotic resistance, it is worth exploring if it
reflects variations in the gene expression of Escherichia coli
strains. It is reasonable to assume that information derived from

The acquisition of antibiotic resistance in bacteria raises

two different facets of a common biological system may be linked
through the complex network of the cell.

In this paper, we explore these questions using antibiotic-
resistant E. coli MDS42 cells obtained through laboratory
evolution?’. We used ten strains that exhibit mutations con-
ferring resistance to different antibiotics (Table 1). Specifically,
strains CFIX and CPZ are resistant to -lactam antibiotics, which
inhibit cell wall synthesis; strains CPFX and ENX are resistant to
quinolones, antibiotics that act on DNA gyrase systems and that
participate in DNA replication; and strain TP is resistant to tri-
methoprim, which inhibits DNA replication by preventing the
synthesis of folic acid, a precursor to the essential coenzyme
tetrahydrofolate. We also considered five strains that show
resistance to antibiotics that inhibit the translation of mRNA by
binding to the 30S ribosomal subunit or the 50S ribosomal sub-
unit, and thereby prevent the synthesis of proteins.

First, we determined whether Raman spectra could dis-
criminate the different strains that developed resistance. We
evaluated the robustness and reproducibility of the discrimination
by analyzing a relatively large number of independent bacterial
population. We then investigated the possibility of extracting the
wavenumbers of Raman spectra that contributed to the dis-
crimination. The hope was that these same wavenumbers could
then be linked to the mode of action for each form of antibiotic
resistance. Our results show that Raman spectroscopy identifies
both the type of antibiotic resistance and the mode of action
across the 11 considered strains in a reproducible manner. In
addition, we explored the relationship between the expression of
some well-known antibiotic resistance genes, and the Raman
spectral intensities. Significant linear correlations (|R|>0.601,
FDR p<0.05) were found, suggesting that the expression of
multiple genes induces detectable spectroscopic variations. Our
results strongly encourage further studies to verify the possibility
of predicting antibiotic resistance in other species in the absence
of drugs, and demonstrating how gene expression and spectral
data might be connected through the network of the cell by
integrative machine learning techniques.

Results

Discrimination of 11 bacterial strains. The parental E. coli strain
and ten antibiotic-resistant laboratory-evolved strains obtained
from a previous study?? were grown in the absence of antibiotics
using a robotic system. Immediately following culturing, strains
were measured by Raman spectroscopy using optical-bottom 96-
well plates (see Material and Methods). Each well contained an
independently grown cell culture (ie., biological replicate), and
the bacterial cells were measured at five different locations within
the well. After appropriate background subtraction and

Table 1 List of strains used in this study

Mode of action

Representative fixed mutations

Evolved strains Antibiotic name Class

CFIX Cefixime Cephalosporin, p-lactam
CPz Cefoperazone Cephalosporin, p-lactam
CPFX Ciprofloxacin Quinolone

ENX Enoxacin Quinolone

TP Trimethoprim

AMK Amikacin Aminoglycoside

DOXY Doxycycline Tetracycline

NM Neomycin Aminoglycoside

AZM Azithromycin Azalide, macrolide

CP Chloramphenicol

Cell wall

Cell wall

DNA gyrase

DNA gyrase

Folic acid synthesis

Protein synthesis 30S, aminoglycosides
Protein synthesis 30S, aminoglycosides
Protein synthesis 30S, aminoglycosides
Protein synthesis 50S

Protein synthesis 50S

ompC

acrB, acrR

gyrA, ompF, mipA, nuoA
gyrA, acrR, dinG

phoQ

cpxA, phoQ, nuoE

rpsF

cpxA, cyoAB, ompC, sapA
gyrA

acrR, marR, mutL, ompR

The name of the strains corresponds to the antibiotics they were exposed to during a 3-month period of experimental evolution after which it was confirmed that the resistance phenotype was
maintained in the absence of antibiotics2?. Genomes of each strain were sequenced in a previous study?® and fixed mutations found in the evolved strains are listed
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Fig. 1 Label-free spectral measurements of 11 E. coli strains and
discrimination of the strains. a Normalized mean Raman spectrum of the E.
coli parental strain MDS42 (n = 48 independent population) and each of
the laboratory-evolved antibiotic-resistant strains (n =16 independent cell
cultures). b Discrimination of E. coli cell type on the first two DA-PC
dimensions of the DA-PC model. Inner and outer rings represent 95% and
50% confidence-levels, respectively. The model was trained using 155
population (filled circles), then 52 population chosen randomly from each
cell line were used as test data (white circles) and were plotted on the
same semantic space. Bacterial population of the test data were classified
by type with 100% accuracy

normalization, the spectroscopic profiles of the bacterial cells
were averaged to obtain a spectrum representative of a given
bacterial population (single well). For all subsequent analysis, we
consider these single well population as representative units. The
normalized mean spectra for the parental strain derived from 48
individual wells and for the ten evolved strains each derived from
16 individual wells are shown in Fig. 1a.

Differences in intensities were clearly visible among the
11 strains (n=208 populations). A total of 35 peaks regions
were selected from literature and visual inspection of the average
spectrum of each cell line, then associated to molecular
compounds (Table 2). To demonstrate the statistical significance
of the variation across the strains, ANOVA F-values and Fisher
scores, two methods that estimate variance, were calculated using
the normalized spectra (Supplementary Figure 1). The differences
in spectral intensities were significant (ANOVA, p <0.01) for all
wavenumbers corresponding to peak regions identified in Table 2;
however, intensity differences for some of the valley regions
corresponding to the baseline of the Raman spectra were not
statistically significant. The spectral shapes of the ANOVA F-
value and Fisher score were similar to the average spectrum of
each strain, and that weak peaks made large contributions to the
discrimination of the strains (Supplementary Figure 1). For
example, four peaks in the 800-1000 cm ™! spectral region (853,
936, 972, 989 cm ™~ !) were weakly observed, but highly contributed
to the discrimination. These spectroscopic vibrations were
primarily related to the skeletal structure of proteins (Table 2).
The relationship between some of these peaks and particular
genes will be discussed in a later section.

In Fig. 1b, we applied principal component analysis (PCA)
followed by discriminant analysis, a supervised approach we refer

to as DA-PC, which allowed us to quantitatively represent each
bacterial population in a space of reduced dimensions. The PCA
results are described in detail in Supplementary Figure 2. First, we
tested if the spectral variations observed in Fig. 1a allowed for the
discrimination of the cells by cell-type, despite their close
relationship. Spectral dataset was separated into training and test
dataset so that 25% of the dataset is used as an independent test
dataset. Specifically, we randomly selected four biological
replicates per evolved strain, and 12 for the ancestral strain for
the test data. Eight principal components were selected in the
model based on their Fisher score (see Materials and methods).
The DA-PC model was performed with the training data. The
95% and 50% confidence-level ellipses are plotted for the mean of
each strain. When groups differed significantly, their confidence
ellipses tend to not intersect. The DA-PC model exhibited 100%
well-classified observations on the training dataset (filled
markers), and successfully discriminated the test data (white
markers) with an accuracy of 100% (Fig. 1b). The result suggests
that Raman spectroscopy has the ability to discriminate and
predict the 11 types of bacteria strains, even though these strains
are genetically very close. A similar result was obtained when
using a larger dataset from three independent experiments, as
described later.

Discrimination of the mode of action of acquired antibiotic
resistance. We hypothesized that the effects of acquired resistance
would be reflected in metabolic and/or structural differences
between the parental and evolved strains. Thus, we calculated the
differences between the spectra of the evolved strains (n = 16 per
strain) and the averaged spectrum of the parental strain (n = 48)
(Fig. 2a). The relative differences between the parental and
evolved strains are shown for a few selected peaks, as well as
across the entire spectral range (Supplementary Figure 3a and 3b,
respectively). Notably, important differences across strains were
found for nucleic-acids, protein-related and/or cytochrome-
related aromatic compounds, proteins, aromatic compounds,
and lipids. To determine if the relative differences across the ten
evolved strains were statistically significant, we calculated the
ANOVA F-value and Fisher scores on the difference spectra
(Supplementary Figure 4). Variations of relative differences were
found to be significant (ANOVA, p<0.001) for all the peak
regions.

We then investigated whether the relative spectral differences
(Fig. 2a) reflected the five mechanisms of antibiotic resistance. A
DA-PC model was developed using the relative spectral
differences for 160 population. Four biological replicates per
evolved strain were randomly selected to constitute a test data.
Seven principal components of the PCA model were selected
according to their F-values (Supplementary Figure 5). DA-PC
model was trained and cross-validated using the training data,
and exhibited 100% well-classified observations on training data.
When using the test data, only one population was found
misclassified. The overall prediction accuracy was 99.4%, with an
R? of 0.98. In the DA-PC model shown in Fig. 2b, the evolved
strains clustered together, depending on the mode of action of
their antibiotic resistance. For example, clones CFIX and CPZ
were grown during experimental evolution with cefoperazone and
cefixime stresses. Both of these antibiotics target the cell wall.
When grown in the absence of antibiotic, these two strains
clustered in the DA-PC analysis. Likewise, strains CPFX and
ENX (DNA gyrase), strains AMK, DOXY, and NM (protein
synthesis, 30S rRNA), and strains AZM and CP (protein
synthesis, 50S rRNA) grouped according to the specific mode
of action of their antibiotic resistance. The overlap observed
between the groups whose resistance mechanisms are both
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Table 2 Molecular assighment of the Raman peaks found in this study.
Wavenumber (cm 1) Molecular assignment

~605

~630 8(C-C) twist., Tyr

~650 C-S stretch., C-C twist.

~676 G, T, C-S stretch. of cysteine

~730 A ring breath.

~752 8(C-C) Tyr

~786 C, T, U ring br., v PO, group

~818 O-P-0 stretch. DNA, Tyr

~853 v(C-C) proline, ring breath. Tyr

~878 v(C-C), COH ring

~922 R-CHs

~936 C-0O-C linkage, C-C stretch., a-helix
~950

~972 CH, rock., C-C stretch., a-helix

~989 B-sheet

~1001 Phe ring breath., C-C skeletal (protein)
~1030 8(CH) bend., Tyr, Phe

~1079 PO2 str., (C-C) stretch., C-O

~1101 Symmetric phosphate stretch. (DNA)
~1123 CH Phe

~1155 CC/CN stretch.

~1170 C-H in-plane bend. mode (Tyr), (CH) Phe
~1209 C-Cg¢Hs stretch., Phe, Trp

~1220-40 T, A, Amide Ill, CH bend.

~1298 CH, twist.

~1333 CHsCH, def. of collagen

~1355 A, G, CH def.

~1388 CHs

~1450 G, A, CH def.

~1476 Amide I, Purine bases (U)

~1545 v(C=0C) stretch., Tyr

~1578 G A

~1599 v(C=C) aromatic compound

~1610 o(C=0), Trp

~1658 v(C=C) cis., amide | envelope

stretch. stretching mode, bend. bending, br. breathing mode, def. deformation, twist. twisted, Tyr tyrosine, Trp tryptophan, Phe phenylalanine

through protein synthesis (30S and 50S) suggests that their
difference was not statistically significant when only two DA-PC
dimensions were considered. The above results suggest that
Raman spectroscopy has the ability to discriminate and predict
the four major modes of action of antibiotic resistance, which was
confirmed when considering a larger dataset obtained from three
independent experiments, as described below.

Reproducibility and outcome predictability of independent
experiments. Because biological and technical variations, such as
temperature and vibrational effects on optical components, are
known to influence the results of Raman spectroscopy, this
technique is often criticized for its lack of reproducibility?!.

Reproducibility can be defined as the limitation in discriminating
different cell-lines across experiments that were performed at
different times. Good reproducibility can be defined as the ability
to successfully predict the result of an independent experiment. In
the present study, we made a point to demonstrate the repro-
ducibility of our results. To accomplish this, three independent
spectral measurements of 208 independent cell-cultures were
performed during different weeks. The datasets were combined
and evaluated by subsequent multivariate analyses (Supplemen-
tary Figure 6). The first eight statistically significant PC compo-
nents (p<0.001) were chosen for subsequent discriminant
analyses. DA-PC showed that each strain occupied a similar
position in the semantic space across three experiments (Sup-
plementary Figure 6¢, 6d, 6e). While some variations were
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Fig. 2 Discrimination of the mode of action of antibiotic resistance in
absence of antibiotics. a Relative spectrum differences of each population
of the laboratory-evolved antibiotic-resistant strains from the averaged
spectrum of the parental population (n = 48). b Discrimination of the mode
of antibiotic resistance on the first two DA-PC dimensions of the DA-PC
model. The DA-PC was performed on the spectral differences shown in
(a). The model trained on 120 population (filled markers) and 40
population chosen randomly from each cell line were used as test

data (white markers). Inner and outer rings represent 95% and 50%
confidence-levels, respectively. Bacterial population of the test data was
classified according to their respective mode of action of antibiotic
resistance with a 99.4% accuracy

observed across experiments, the strains were classified with an
accuracy of 99.6%. This result demonstrates the robustness of the
classification across independent experiments, performed at dif-
ferent times.

To evaluate the reproducibility of our method, we trained a
predictive DA-PC model across two combined datasets of
spectral measurements obtained on different days (training data,
n=416), and tested it against a third dataset obtained on a
different day (test data, n=208). Cross-validation within the
training data exhibited 97.9% well-classified observations, with an
R? of 0.96. When tested against the test data, a classification
accuracy of 93.3% was achieved (14 misclassified spectra out of
208) and the predicted R? value was 0.81. These results verified
that our experimental approach could predict the identity of
bacteria measured in an independent experiment.

Likewise, we tested whether the mode of action of antibiotic
resistance could be predicted. We used the same datasets as
above. However, in this test, the difference spectra were calculated
by subtraction of the mean spectrum of the parental strain from
each mode of action from two datasets that were concatenated
(training data, n = 320), and tested against the test dataset (n=
160) obtained from the third experiment. The DA-PC model
included seven PCs and cross-validation of the training data
accurately classified 95.3% of the observations, with an R? of 0.88.
When tested against the test dataset, 93.7% of the 160 bacterial
cultures were successfully classified according to their mode of
action for antibiotic resistance in the absence of antibiotics. The

predicted R? value was 0.86, demonstrating a good ability to
identify the mode of action of antibiotic resistance from a new
dataset.

Spectral peaks important for the discrimination antibiotic
resistance mode of action. In an attempt to extract the wave-
numbers that contributed to the discrimination of each mode of
action (Fig. 2b), we established a DA-PC model that included all
population as training data, then extracted the discriminant
vectors (vectors of the canonical discriminant analysis axes) of the
first two components, as shown in Fig. 3. The positive values of
DA-PCI1 contributed to the modes of action of protein synthesis,
30S and 508, and folic acid synthesis; while negative values pri-
marily contributed to the DNA gyrase group. In the DA-PC2, the
positive values contributed to the discrimination of the folic acid
synthesis and the cell-wall associated modes of action. Negative
values of DA-PC2 contributed to the classification of the DNA
gyrase group and the protein synthesis group, although these
groups could also exhibit positives values in the two-dimensional
space of the DA-PC model (Fig. 2b). Together, these results show
that the whole spectral region (600-1710cm™1) successfully
identified the different modes of action of antibiotic resistance,
but that some spectral regions could contribute toward a given
mechanism of action.

The peaks at wavenumbers ~950 and ~1209 cm™! exhibited
negative values in the DA-PC1, and positive values in the
DA-PC2. We considered these peaks as contributing to the
discrimination of the cell wall-related group in the DA-PC
model, although the associated discriminant scores at these
wavenumbers are not that dominant (Fig. 3). The peaks at ~752
and ~1123 cm ™1, often assigned to cytochrome (Table 2), and the
peaks at ~1170 cm™! (proteins), ~1298 cm~ ! (saturated lipids),
and ~1578 cm™! (nucleic acids), were identified in both the
discriminant vectors with negative values. These peaks were
considered to contribute to the classification of the DNA gyrase
group. The peaks at ~605, ~630, ~730, ~853, and ~1350 cm ™!
exhibited positive values in the DA-PC1, and negative values in
the DA-PC2, and were considered to contribute in the
discrimination of the protein synthesis group. The peaks at
~1450, ~1545, and ~1658 cm ™! were attributed to the folic acid
synthesis group for both of the discriminant vectors. The peaks at
~752 and ~1123cm~! also contributed negatively to the
classification of the folic acid synthesis group.

Correlations between peak spectral intensities and gene
expression. A number of genes contributing in various ways to
antibiotic resistance are known!'” 2%, and we identified above
various groups of peaks that contribute to discriminate the modes
of action of antibiotic resistance. Here we investigated the cor-
relation of the expression some of these genes with the Raman
spectra. Gene expression related to antibiotic resistance for the
11 strains were obtained at the population level and are expressed
in normalized quantile®. Scatter-plots of normalized gene
expression of selected genes compared to normalized spectral
intensities of selected wavenumbers across the 11 strains are
represented in Figs. 4 and 5. Correlations between spectral
intensities and gene expression were calculated and considered
significant if the absolute value of the correlation coefficient was
greater than 0.601 (|R|>0.601, p<0.05, see Materials and
methods). We have chosen to showcase some of the positive and/
or negative correlations found for some genes of interest (Figs. 4
and 5).

We selected a few genes coding for inner membrane protein and
multidrug efflux pump which might contribute in cell-wall
resistance (Fig. 4a). The genes acrA and acrB code for a multidrug
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efflux pump that organisms use to expel dru§s out of their cells, as
well as also for cation and protein export?”. Gene expression of
acrA and acrB correlated significantly (FDR, p < 0.05) to the spectral
intensity of wavenumber attributed to lipids (~950 cm™ 1) (Fig. 4a),
which was identified as being important to the cell wall group
(Fig. 3). The wavenumber ~1209 cm ! also correlates with the cell
wall cluster (Fig. 3a, b). Interestingly, the expression of elaA and
elaB was correlated with the spectral intensity of this wavenumber
(FDR, p<0.05). These two genes encode an inner cell wall
membrane protein that are involved in various stress responses?>.
In addition, elaB was also correlated to ~1545 cm™—! (FDR, p<0.05),
but not elaA. The above correlations suggest a relation between
these wavenumbers and genes. The strains CFIX and CPZ, which
were grown under antibiotics targeting the cell-wall (Table 1),
did not exhibit higher spectral intensity or gene expression at
1209 cm ™. This hints at the contribution of genes other than elaA
and elaB in resistance in these two strains.

Significant correlations (FDR, p <0.05) were found between
three genes often involved in DNA gyrase-related antibiotic
resistance and the spectral intensities at wavenumbers 1079 and
1101 cm™! (Fig. 4b), both of which are associated to nucleic acids
(Table 2). We noticed that for mipA, which is a regulator gene of
gyrA and gyrB, correlation coefficient values had opposite signs to
the ones for gyrA and gyrB. Two strains associated with DNA
gyrase stress (ENX and CPFX) displayed higher spectral
intensities at 1101 cm ™1, compared to the other strains (Fig. 4b).
The difference was found to be significant (ANOVA, Tukey HSD,
p <0.05). The CFPX strain, which exhibits a fixed mutation in
mipA (Table 1), exhibited the lowest level of mipA expression in
comparison to any other strain (Fig. 4b).

Mutations in the cyo operon, which encodes for a cytochrome
subunit, is often associated to antibiotic resistance targeting the
synthesis of ribosomal proteins 30S or 50S. Correlations between
gene expression of cyoA and cyoD with spectral intensities
were found to be significant (FDR, p < 0.05) across several peaks

of the Raman spectra, including for the wavenumbers 730 and
1476 cm™!, as shown in Fig. 4c. These wavenumbers are
associated to nucleic acids and the cytochrome bo subunit
(Table 2), respectively. The wavenumber 730 cm~! was identified
as being important for classification of this group (Fig. 3). Strains
associated with protein-related antibiotic resistance exhibited
various gene expression and spectral intensities at the wavenum-
bers shown. We noted that the strain NM, which has a mutation
in the cyoA gene, exhibited a significantly lower gene expression
for cyoD (ANOVA, Tukey HSD, p <0.05), and had significantly
higher spectral intensities (ANOVA, Tukey HSD, p<0.05) at
these wavenumbers by comparison to the other strains.

Antibiotic resistance associated with the folic acid synthesis
often involves mutations in the folACD operon, which encodes
for a key enzyme involved in purine biosynthesis, and in the
formation of tRNA (a precursor of DNA synthesis). Figure 5a
shows correlations that were significant for two wavenumbers
(FDR, p <0.05). Strain TP, which has a mutation in this operon,
displayed higher gene expression for folA and folC. It also had a
higher spectral intensity for these wavenumbers by comparison to
other strains (ANOVA, Tukey HSD, p <0.05). Figure 5b displays
the correlations for other genes involved in various antibiotic
resistance, such as ompF, nuo, dinB, and shd, all of which were
significant (FDR, p <0.05). The CFPX strain, which has fixed
mutations in nuoA (Table 1), showed the lowest level of gene
expression for nuoA when compared to the other strains, and
exhibited the lowest and highest spectral intensities at selected
wavenumbers (Fig. 5b).

Discussion

In the past decade, the application of vibrational spectroscopy
to identify antibiotic resistance has become a promising
avenue of research leading to the development of diagnostic
methods'® 19718 Previous studies have focused on monitoring
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Fig. 4 Scatterplots of normalized Raman peak intensity and normalized
gene expression for genes related to three modes of action, cell wall

(a), DNA gyrase (b), and protein synthesis (c). Wavelengths that helped
identify these modes of actions were selected and associated to genes that
may contribute to these antibiotic resistances. On each scatter plot, each
point represents a strain for which the gene expression was measured by
microarray, and the spectral intensities were averaged from 16 population
(laboratory-evolved strains) or 48 population (parental strain). A linear fit
was applied to each scatterplot, and the Pearson correlation value R is
displayed on each graph. Two-tailed test and FDR assessed that
correlations greater than 0.601 in absolute value were significant

(|R| >0.601, FDR p<0.05)

phenotypic responses by bacteria in response to direct drug
exposure to evaluate the impact of antibiotic treatment or to
investigate the antibiotic mode of action®~!8.

In this study, we demonstrated the use of Raman spectral
information in identifying bacterial cell type (Fig. 1b) and the
mode of action of antibiotic resistance (Fig. 2b) in the absence of
antibiotic drugs in closely related strains of E. coli. Interestingly,
two of the modes of action could not be distinguished in the two-
dimensional DA-PC space (Fig. 2b), and both modes related to
the inhibition of mRNA translation through binding to the ribo-
some (30S and 50S subunits). Moreover, to assess the general-
ization power of our model to reliably predict antibiotic resistance
in independent experiments, we trained our model on the 416
population measured across two experiments and tested the model
on a third experiment that includes 208 population (Supplemen-
tary Figure 6). The accuracy of the predictions demonstrates the
ability of Raman spectroscopy to produce fine-grained, reliable,
phenotypic signatures for the characterization of antibiotic resis-
tance even though strains are closely related. Further investiga-
tions could address the antibiotic resistance dynamics in unknown
genetic background or a broader range of species by performing
analytical models trained on spectral database established on a
large variety of species, as suggested in previous studies!®~!%,

The above results suggest that spectral signatures of bacteria
cells reflect the overall metabolic response of acquired resistance.

However, it remains a challenge to determine which aspects of the
wavenumbers of a Raman spectrum are linked to the internal
information of cells. The discriminant vectors of the DA-PC
model helped in identifying the spectral regions that contributed
the most in the discrimination of the different modes of action of
antibiotic resistance (Fig. 3), and therefore would be the most
representative of metabolic differences across the antibiotic-
resistant strains of this study. We focused on the analysis of the
two first components because they possess most of the dis-
criminant information needed to distinguish the mode of actions
(Fig. 2b). We envisioned that the identified groups of wave-
numbers could be used to generate testable hypotheses in order to
decipher the complex relationships between antibiotic resistance
and the nature of Raman spectral information. We performed an
exploratory approach to verify (i) if any correlation could be
found between Raman spectral information and gene expression,
(i) if the spectral regions or peaks found to contribute to the
classification of the mode of actions correlated with the genes
possibly involved in the resistance, and (iii) discuss if there
metabolic/structural link could be found between a given gene
and wavelength.

We found significant correlations (|R|>0.601, FDR p < 0.05)
between Raman spectral intensities and gene expression. This
result alone suggests that some metabolic or structural relation-
ship between spectral information and gene expression may exist,
as exemplified below with the case of some mutant strains. We
also found that the wavenumbers contributing to the classifica-
tion of the mode of action (Fig. 3) could correlate with the
expression of genes involved in antibiotic resistance mechanisms.
For example, the wavenumbers 950 and 1209 cm ™!, associated to
lipids and proteins, respectively, strongly correlated with the
expression of the acr and ela operons, respectively (Fig. 4a,
Supplementary Table 1). These operons are known to code for
membrane proteins associated to multidrug efflux or resistance to
oxidative stress’> 2%, Regarding the mode of action relating to
DNA gyrase, strong correlations were found between two wave-
numbers associated with nucleic acids and the gene expression of
the gyr operon, and its regulator mipA. The two DNA gyrase
mutant strains exhibited higher gene expression and higher
spectral intensities by comparison to other strains (Fig. 4b,
Table 2), suggesting the chosen combinations of gene and
wavenumber are representative of the mode of action of antibiotic
resistance. Furthermore, the wavenumbers 752 and 1450 cm ™!
were identified as contributing to the classification of the folic
acid synthesis (Fig. 3). These two wavelengths were also found to
correlate with the gene expression of the fol operon (Fig. 5a,
Supplementary Table 1). Interestingly, the TP strain, which is
related to folic acid resistance, displayed higher levels of gene
expression of the fol operon, and higher spectral intensities at the
shown wavenumbers (Fig. 5a). Thus, these wavenumbers might
be particularly relevant to monitor the expression of the fol
operon, a key compound in the tetrahydrofolate metabolic cycle.

The above results highlighted linear correlations between the
variations in gene expression and variations in spectral intensities
for some genes of interests. However, most likely, the spectral
variations are the products of the combined effects of the
expression profile of a number of genes, which may lead to both
structural and metabolic changes. Therefore, determining a
straightforward biochemical interpretation that explains the
occurrence of linear dependencies is more challenging.

Interesting patterns were found by looking at the specific
responses of the mutant strains used in this study. For example,
we mentioned about the two DNA gyrase mutant strains (Fig. 4b)
and the TP strain (Fig. 5a) which position on the scatterplots
could confirm a biochemical or metabolic relation between these
gene expressions and wavenumbers. We also found that the gene
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(b). Wavelengths that helped identify these modes of actions were selected and were associated to genes known to contribute to the mode of action for
folic acid synthesis or known to contribute to various antibiotic resistances were selected. A linear fit was applied to each scatterplot, and the Pearson
correlation value R is displayed on each graph. Two-tailed test and FDR assessed that correlations greater than 0.601 in absolute value were significant (|R|

>0.601, FDR p<0.05)

expression of cyo, mutated in the NM strain (Fig. 4c), was
strongly correlated to the 1476 cm™! peak. Interestingly, this gene
operon is known to code for the cytochrome bo complex in
bacteria, and this wavelength has been identified as a marker for
histidine in the ferrous heme components in the cytochrome bo
complex'®, These patterns indicated that the spectral phenotypic
information may reflect the structural or metabolic effects
induced by the mutations. To attempt to determine if these
variations in gene expression and spectral intensities were caused
by the contribution of a single mutation, or the complex inter-
action of multiple genes, one could establish engineered mutation
strains and measure how the gene expression and Raman spectra
are affected. While this was not the purpose of the present study,
our approach helped in identifying possible candidates to gen-
erate testable hypotheses.

In summary, our results demonstrate that acquired antibiotic
resistance, and the mode of action for the resistance, can be
characterized using spectral measurements in the absence of
antibiotics. A systematic method was proposed to identify the
spectral regions that contribute the most to each mode of action.
In addition, our exploratory work relating gene expression and
Raman spectral information revealed the existence of linear
relations between wavelengths associated to antibiotic resistance

and the expression levels of genes involved in antibiotic resis-
tance. The relation between Raman signatures and transcriptome
is an open question for future studies and should be confirmed in
other cell types and using appropriate integrative approaches. In a
follow-up study, we will propose the use of a linear model to
integrate these layers of information which we think are com-
plementary. To study how these two layers of information are
connected through the intricate networks of the cell could enable
many applications in basic and applied research.

Materials and methods

Cell culture and plate preparation. In a previous study, E. coli MDS42 strain was
experimentally evolved for 3 months against 12 different antibiotic drugs at various
concentrations?’. In that work, the antibiotic tolerance of ten evolved clones was
verified by conventional methods and were therefore selected for the present study
along with the parental strain (Table 1). Frozen pure bacterial stocks (—80 °C) were
cultured in 10 mL modified M9 medium?? in test tubes placed in water bath
shakers with 150 strokes/min shaking (Personal-11, Taitec Co., Saitama, Japan).
Cells were transferred to 96-well microplates (3595, Corning Inc., NY, USA) and
cultured in modified M9 medium using an automated culture system>® which
consists of a Biomek® NX span8 laboratory automated workstation (Beckman
Coulter, Tokyo, Japan) in a clean booth connected to a microplate reader, a shaker
incubator (STX44; Liconic, Mauren, LI), and a microplate hotel (LPX220, Liconic,
Mauren, LI). To avoid growth phase variations, the cell cultures were synchronized
in subsequent measurements by using robotic culturing. To do so, we conducted a
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preliminary experiment in which eight cultures with different initial cell density
values (ranging from 1073 to 107> of ODgqo) Were prepared for each line. These
culture series (88 cultures in total) were incubated and the OD values were
monitored. Based on this information, we determined the initial cell density for
which the growth phase of each line would reach the same point prior to the
measurements by Raman spectroscopy. Prior to Raman spectroscopic analysis, cells
of synchronized cultures were harvested at the beginning of the stationary phase by
centrifugation at 9000g at room temperature for 2 min and washed with PBS buffer.
Optical density was measured at 600 nm (ODggo) by microplate reader (1420
ARVO, PerkinElmer Inc., Waltham, USA) and cells of individual population at an
ODggp value of 1.0 (equivalent of 2.0 x 10° cells) were transferred in optical glass-
bottom 96-well microplates (265300, Thermo Fisher Scientific Co., Ltd., Waltham,
USA). This OD value was applied to all population of all strains.

Optical setup and measurement of bacterial cells. A homemade confocal
Raman microscope was developed for this study. We used an inverted microscope
(IX81, Olympus, Tokyo, Japan) equipped with a motorized stage (BIOS-L101T-S,
Opto-Sigma, Tokyo, Japan) and a heated micro-chamber (Olympus, Tokyo, Japan).
A 532 nm diode-pumped solid-state laser (Ventus, Laser Quantum, UK) was
focused to a few micrometers above the optical glass surface through a water-
immersion objective lens (NA: 1.20, UPLSAPO60xW, Olympus, Tokyo, Japan).
Back-scattered Raman scattering signal was collected by the same objective lens
and, detected by an electronically-cooled CCD detector (PIXIS BR400, Princeton
Instruments, NJ, USA) mounted on a polychromator (MK-300, Bunko Keiki,
Tokyo, Japan). The polychromator used a 1200 g mm ™! grating to maximize the
spectral resolution of the fingerprint region (from 600 to 1700 cm™!). The Rayleigh
scattering background was rejected by a long-wave pass edge filter and a notch
filter (LPDO01-532RS and NF01-532U-25, Semrock, NY, USA). An automated
shutter (SHB1T, Thorlabs, NJ, USA) was placed in front of the polychromator, and
the entrance-slit width was adjusted around the size of the focal spot. The spatial
resolution of our system was approximately 300 nm, and spectral resolution
approximately 1 cm™1,

For each laboratory-evolved strain, 16 bacterial population were inoculated
onto optical plates. For each plate, 16 wells containing PBS were used to measure
the background signal. Moreover, for each plate, 16 wells with the parental strain
MDS42 were used as internal controls. The plate design is shown in Supplementary
Figure 7. This setup gave the possibility to determine the reproducibility of the
automated measurements within each experiment, and to perform background
subtraction. Within each experiment, three plates were measured (n = 208 cultures
and n = 48 wells filled with buffer). Plates were measured by Raman spectroscopy
immediately after transferring the cells. Within each well, measurements were
performed at five positions spaced by 100 um intervals and forming a cross pattern.
Measurements were not considered to be performed at a single-cell level, although
cells were trapped in the laser, cells were alive and mobile. At each position, cells
were excited for 5s (laser power at sample 25 mW, equivalent to 100 mW pm~2).
The five spectra taken for a given well were averaged to obtain the mean spectrum
of that well, which is equivalent to one population. Approximately 50 min were
required to scan and entire 96-well plate. Cells were kept alive in a microchamber
at 37°C during analysis to avoid metabolic stress' 19, rather than measuring the
Raman spectra of fixed or dried bacteria cells> 7> °-11. Measurements were
performed using WinSpec (Princeton, NJ, USA) synchronized to a home-made
automated program developed in IGOR (IGOR Pro v6, WaveMetrics, Inc.,
Portland, USA).

Influence of the growth phase on Raman spectrum. In a preliminary experi-
ment, we noticed that the rate of growth was dramatically different among the
laboratory-evolved strains. Specifically, 8-16 h were needed to reach the plateau
phase (high OD value), depending on the type of strain. Therefore, we examined
whether the growth phase influenced the Raman spectrum of cells, and if it hin-
dered the accuracy of classification. Bacterial cultures at various points during the
growth phase of culturing, with corresponding density values ranging from 0.1 to
1.1 (OD¢go), were collected and measured by Raman spectroscopy (Supplementary
Figure 8). For each strain, six different concentrations were inoculated onto optical
plates and analyzed as described above. The experiment was performed in dupli-
cate on different days. After processing the spectral data, it was pooled prior to
PCA and discriminant multivariate analysis

(Supplementary Figure 8). We observed an influence of the growth phase on the
Raman spectrum of cells which results are discussed in the supplemental infor-
mation (Supplementary discussion).

Raman spectral pre-processing. Raman spectra of bacterial cells were treated to
remove cosmic rays, and then the spectra of cells measured at five different
positions within a given well. The measurements were averaged together with the
mean value recorded for each well considered one cell culture. Spectra of PBS-
containing wells served as negative controls and were averaged (n = 16 for each
plate) and used to perform background subtraction analysis. A polynomial baseline
correction using the ModPoly algorithm was applied on background subtracted
spectra®®, and then the spectral data were vector-normalized. To compare Raman
spectra from different experiments generated on different days, and to compensate

for the imperfect reproducibility of the grating angle in the polychromator, data
were interpolated using a cubic spline function. As a result, 1111 spectral variables
were obtained for the range 600-1710 cm 1. These pre-processing steps were
conducted using a homemade program in MatLab (MatLab 2015a, Mathworks,
USA).

To determine if the spectral variations were significant among strains, ANOVA
F-values and Fisher scores were performed using the null hypothesis that there
were no significant differences among strains (Supplementary Figure 1,
Supplementary Figure 4). Both methods calculate the ratio of inter-group variance
(i.e., across strains) to intra-group variance (i.e., within each strain). A ratio of
1 shows that there is no difference between the intra-group variance and the inter-
group variance. A ratio greater than 1 indicates that the inter-group variance is
stronger than the intra-group variance. While Fisher score is simply defined as a
ratio, the ANOVA F-value takes into account F-distribution, and therefore the
F-test can be applied to the ANOVA F-values to evaluate statistical significance
(p value).

Multivariate analyses. For the purpose of classification, the spectral data were
analyzed by PCA? followed by discriminant analysis, an approach we named
DA-PC. Calculations were performed using JMP software (IMP®, Version v11, SAS
Institute Inc., Cary, USA). The PCA allowed decomposing the spectra into a linear
combination of loading vectors after extracting the number of independent com-
ponents. In other words, PCs quantitatively expressed the phenotypes of cells in a
space of reduced dimensions. Plots of Q residuals vs. Hotelling T statistics were
used to identify outliers, if any, in the datasets. Only one outlier among the 624
population was removed from our analysis. Data were separated between training
and test datasets as described in the result sections. The number of PCs included in
the DA was determined so that only the PCs with a statistically significant
approximate F-value (p <0.001) were included in the subsequent discriminant
analysis. The approximate F-scores were calculated following the Wilk’s Lambda
and Hotelling-Lawley Trace, as defined in the JMP suite. The number of PCs for
the model shown in Figs. 1b and 2b were 8 and 7, respectively. For the models
shown in Supplementary Figure 1c, and Supplementary Figure 7b, 7¢, 7d, 7e,
models included 4 and 8 PCs, respectively. All associated loadings are shown in the
supplementary figures. The DA-PC includes a priori knowledge of the groups of
observations (label). The discriminant analysis assumed that each group had a
multivariate normal distribution, and calculated the Mahalanobis distance, which is
the distance of an observation from the mean of a group divided by the standard
deviation along the direction vector. The quadratic discriminant analysis was
applied to consider that the intra-group covariance matrices are not assumed
equals. For a given observation, probabilities of membership in each group were
calculated based on the Mahalanobis distances, and the observation was classified
to the group for which the probability was the largest.

Gene expression and correlation values. Gene expression of the parental strain
and the ten evolved clones were measured in a previous study using Affymetrix
microarray without any exposure to the antibiotic drug?’. The resulting gene
expression data of Affymetrix microarray are expressed in terms of quantile-
normalized expression ratio. To perform scatter plots of gene expression with
Raman spectral intensities, the average spectrum of each strain was calculated (n =
16 for evolved strains, n = 48 for the parental strain) for pairwise correlation with
gene expression. The significance of Pearson correlation values was determined by
calculating a two-tailed test on the Pearson product-moment correlation coeffi-
cient. The degree of freedom (df) was dependent on the number of independent
samples. We used the averaged value of 11 strains, which gave a df of 9, and a
significance threshold of 0.601 (p <0.05). Adjusted p values were calculated using
FDR correction, and values below p < 0.05 were considered statistically significant
(Supplementary Table 1). To determine if variations in gene expression or spectral
intensities were significant between mutant strains, ANOVA followed by a post-
hoc Tukey HSD tests (p < 0.05) were performed. Calculations were conducted using
JMP (]MPQ, Version v11, SAS Institute Inc., Cary, USA).

Data availability. Raman spectral data and gene expression datasets of the
11 strains used in this study are made available in figshare (https://doi.org/10.6084/
m9.figshare.6280796)8.
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