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The role of Neutrophil Extracellular Traps in Covid-19: Only an hypothesis or a potential new field E

of research?

Neutrophils are the main cells of the innate immunity system. One
of the mechanisms of neutrophils action is the formation of Neutrophil
Extracellular Traps (NETs) [1].

Brinkman was the first to report the release of NETs in 2004 [2]. The
discovery of NETs has spawned a new field of research in granulocytes
investigation.

NETs are composed of nuclear chromatin, associated with nuclear
histones and granular antimicrobial proteins. They are scaffolds, ideal
for retaining microbes. The main function of NETs is trapping and
killing pathogens, as such as bacteria, fungi, viruses and protozoa [1,2].
The trapping within DNA fibres prevents the spread of pathogens and
facilitates the concentration of antimicrobial factors at the infection site
[11.

The process of NETs generation, called NETosis, is a specific type of
cell death, different from necrosis and apoptosis. It is a multi-step cell
death program: enzymes from granules translocate to the nucleus and
facilitate chromatin de-condensation. Then, internal membranes break
down, and cytolysis releases NETs.

Both the nuclear and granular membranes disintegrate during
NETosis, but plasmatic membrane integrity is maintained. This is in
contrast to apoptosis or necrosis. NETosis is associated with disin-
tegration of the nuclear envelope and mixing of nuclear and cyto-
plasmic material, loss of internal membranes and the disappearance of
cytoplasmic organelles. More precisely, no peculiar signs of apoptosis
are observed (membrane blebs, phosphatidylserine exposure, nuclear
chromatin condensation and DNA fragmentation).

NETosis resembles necrosis in that both membranes are not intact,
allowing intracellular proteins to leak outside the cells.

NETs release is a nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase-dependent cellular death process. During activation,
neutrophils produce reactive oxygen species (ROS), through the acti-
vation of NADPH oxidase [3]. ROS are involved in NETs release
through a neutrophil elastase-mediated mechanism: it translocates from
cytoplasmic granules to the nucleus and triggers chromatin degradation
through histone cleavage [1-3]. Also myeloperoxidase contributes to
the nuclear DNA de-condensation [1-3]. The role of oxidative stress in
NETosis has been carefully reviewed [3,4].

An intriguing point about NETosis is that current evidence suggests
that it is not only a death pathway: two different mechanisms have been
described, and one of them could be considered the “vital” NETosis, as
already carefully reviewed [5]. Also the “vital” NETosis allows NETSs
release. The principal differences between the two forms are the nature
of the trigger stimulus, the timing and the mechanisms employed to
make NETs release [5].

The involvement of NETosis in several diseases (other than infec-
tions) has been established, in particular autoimmune diseases, cancer,
venous thromboembolism, atherosclerosis, diabetes, etc. [6-8].

https://doi.org/10.1016/j.thromres.2020.04.031

1. NETs and Covid-19: What we need to know

Viruses are known for their ability to evade the body's immune re-
sponse. Recently, it has been shown that they can act as triggers of
NETosis processes [9-11].

In fact, many viruses can stimulate neutrophils to produce NETs.
Different responses of neutrophils have been observed: classical
NETosis, the production of antiviral agents or even the switch to
apoptosis.

Virus-induced NETs (made up of complexes of double-stranded
DNA, histones, granular proteins) can circulate in an uncontrolled way,
leading to an extreme systemic response of the body with the produc-
tion of immune complexes, cytokines, chemokines, finally favouring
inflammation.

It is therefore clear that the virus-induced NETosis acts as a double-
edged sword: there is the mechanical entrapment of the virus, but the
inflammatory and immunological reaction triggered by the release of
the NETs can be harmful by itself.

To date, there is no data in medical literature on the role of NETs in
Covid-19 infection, a novel viral infection that leads to highly lethal
interstitial pneumonia and for which there is currently no vaccine nor
specific therapy [12].

In this scenario, the primary objective is understanding if NETs may
be implicated in the response to Covid-19 and by which mechanisms.
Concrete therapeutic proposals could derive from the knowledge of this
form of innate immunity. To do this, it will be necessary to evaluate the
activity of NETosis in patients with Covid-19 and evaluate whether the
clinical course of the disease (clinical worsening or healing) may
modulate NETosis.

Of note, it has been established that NETosis appears to be closely
linked to the inflammatory response also in pulmonary diseases. In fact,
NETs increase in patients with Acute Respiratory Distress Syndrome
(ARDS) as shown in studies on bronchoalveolar lavage fluid [13,14], as
well as in patients with acute respiratory failure during Chronic Ob-
structive Pulmonary Disease (COPD) exacerbation [15]. Similarly, ad-
vanced forms of Covid-19 are often characterized by hyper-inflamma-
tion (“cytokine storm”) with the development of an ARDS-like
condition [12].

Up to now, many studies have confirmed the occurrence of several
thrombotic complications in Covid-19 infection (both venous throm-
boembolism and arterial thrombotic complications) [16,17]. Further-
more, reports of micro and macro thrombotic phenomena such as mi-
croangiopathy, pulmonary embolism [18] have been frequently
reported, which has led to a careful evaluation procedure for anti-
thrombotic prophylaxis and/or coagulation in Covid-19 patients
[16-18]. This issue is very important because it is related to the fact
that NETosis seems to play an important role in all conditions char-
acterized by venous and arterial thrombosis, as numerous evidences
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have confirmed [19-21]. NETosis has also been documented at the
microvascular level, such as in many vasculitis, thrombotic micro-
angiopathies such as Moschowitz syndrome [22].

Also the activity of DNAsi I (the enzyme implicated in the “diges-
tion” of NETs) and the phagocytic activity of macrophages should be
investigated in detail, as these are the two main mechanisms for reg-
ulating and self-limiting NETosis itself [1-2].

New frontiers in NETs evaluation in covid-19 may be represented by
testing NETosis activity directly on bronchial alveolar fluid of patients
after bronchoscopy or after sputum induction, using previously de-
scribed approaches [12-15].

The final goal concerns the possibility of creating a NETs-oriented
clinical trial. If it is true that the production of NETs occurs in con-
junction with ROS increase, it is rational to study signal pathways in-
volved in the response to oxidative stress, such as the pathway regu-
lated by the Nuclear erytroid-related factor 2 (Nrf2) Nrf2/antioxidant
related elements (ARE), the main transcription factor involved in an-
tioxidant defence [23]. Possible therapeutic implications with Nrf2
activators (such as Resveratrol and Sulforaphane) [24,25] may then be
considered.
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