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Abstract Objective: To investigate the performance of machine learning (ML) methods for pre-
dicting outcomes from inpatient rehabilitation for subjects with TBI using a dataset with a large
number of predictor variables. Our second objective was to identify top predictive features
selected by the ML models for each outcome and to validate the interpretability of the models.
Design: Secondary analysis using computational modeling of relationships between patients,
injury and treatment activities and 6 outcomes, applied to the large multi-site, prospective, lon-
gitudinal observational dataset collected during the traumatic brain injury inpatient rehabilita-
tion study.
Setting: Acute inpatient rehabilitation.
Participants: 1946 patients aged 14 years or older, who sustained a severe, moderate, or compli-
cated mild TBI, and were admitted to 1 of 9 US inpatient rehabilitation sites between 2008 and
2011 (N=1946).
Main Outcome Measures: Rehabilitation length of stay, discharge to home, FIM cognitive and FIM
motor at discharge and at 9-months post discharge.
Results: Advanced ML models, specifically gradient boosting tree model, performed consistently
better than all other models, including classical linear regression models. Top ranked predictive
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features were identified for each of the 6 outcome variables. Level of effort, days to rehabilita-
tion admission, age at rehabilitation admission, and advanced mobility activities were the most
frequently top ranked predictive features. The highest-ranking predictive feature differed
across the specific outcome variable.
Conclusions: Identifying patient, injury, and rehabilitation treatment variables that are predic-
tive of better outcomes will contribute to cost-effective care delivery and guide evidence-based
clinical practice. ML methods can contribute to these efforts.
© 2023 The Authors. Published by Elsevier Inc. on behalf of American Congress of Rehabilitation
Medicine. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Optimizing rehabilitation stay of patients with traumatic
brain injury (TBI) is critical for achieving desired cognitive
and motor improvements and ensuring cost-effective care
delivery. Predicting how much functional improvement a
patient can achieve or how much care assistance is reduced
with a tailored set of activities can inform on the efficacy of
the selected therapy activities. Acute inpatient TBI rehabili-
tation involves multiple professional disciplines selecting
therapeutic activities based on varying skilled interventions,
lengths of stay, and the medical and functional statuses of
patients. Therefore, rehabilitation outcomes for patients
with TBI are complex to predict.1

Previous research has started to reveal the main thera-
peutic activities comprising inpatient rehabilitation2 as
well as which therapeutic approaches appear to promote
better outcomes.3 One of the first studies to use treatment
session data to predict outcomes was Horn et al.4 Applying
linear model (LM) to large practice-based evidence (PBE)
data set, they identified significant associations between
patient, injury, and treatment characteristics with out-
comes at discharge and at 9-month post discharge. Specifi-
cally, Horn et al found that better discharge outcomes
were associated with greater effort during therapy ses-
sions, time spent in more complex therapy activities, and
use of specific medications (eg, nonnarcotic analgesics).5

Secondary analysis on the PBE dataset by Bogner et al using
propensity score methodology found a greater proportion
of time spent in real-life activities during therapy sessions
was associated with better functional outcomes at dis-
charge and 9-months post discharge, including increases in
community participation.3

Horn et al and Bogner et al provided valuable insight into
the association of key characteristics during the inpatient
stay that are associated with better outcomes.3,4 A natural
next step would be to determine if additional insight or
enhanced outcome predictions could be obtained from
advanced analytical tools such as machine learning (ML).
Compared with LM, advanced ML methods allow greater
flexibility for modeling non-linear recovery pattern, interac-
tions between treatments, diminishing returns, ceiling/floor
effect, which better reflects real-world settings.6 A few
studies have applied ML methods to rehabilitation data and
predict outcomes in different patient populations affected
by mild TBI,7,8 stroke,9,10 and predict FIM scores at dis-
charge,11 survival or mortality probability after TBI,6,12-18

suicidal ideation after TBI.19 In contrast, Bruschetta et al20

did not find ML methods to have superiority over LM in pre-
dicting outcome after TBI and was limited by quantity of
predictor variables.11,20
The purpose of the current study was to investigate the
predictive performance of ML methods for predicting out-
comes at discharge and at 9-month post discharge from inpa-
tient TBI rehabilitation using a dataset with a large set of
predictor variables, including patient and injury variables,
rehabilitation variables, and daily therapy variables. In addi-
tion, the goal of the work was to obtain further insights into
which variables are most predictive for each outcome and to
validate the interpretability of the models.
Methods

Study design

TBI-practice based evidence (TBI-PBE) observational data-
set, built from 2008 to 2011 was used for the analyses. Each
participant or their proxy gave informed consent. The data-
set contains details of abstracted medical records and point-
of-care (POC) data on patients with TBI admitted for acute
inpatient rehabilitation. Detailed descriptions of the data
collection methods and data variables are described in prior
studies.2,5 Institutional review board approval was obtained
at the time of data collection from all sites contributing to
the dataset. ML methods were selected, applied to the data-
set, and compared for each model’s ability to predict out-
comes.
Setting

The 9 US acute inpatient rehabilitation facilities that partici-
pated in TBI-PBE data collection are described in detail in
prior studies.2,5 The facilities provided care as usual, which
typically includes a minimum of 3 hours of therapy per day
during the weekdays. The primary care in a day includes dis-
ciplines of occupational therapy (OT), physical therapy (PT),
and speech-language therapy (ST). The mean times per
weekday therapy sessions averaged 37.7§7.7 minutes for OT,
38.6§8.7 minutes for PT, and 32.5§6.1 minutes for ST. Each
therapy discipline typically scheduled 2 sessions per day.21

Regulatory guidelines require a level of therapeutic
intensity that is generally defined as a minimum of 3 hours
of therapy per day for 5 days or 15 hours across 7 consecutive
days. Interdisciplinary therapy and these 3 hours must
include PT or OT and 1 other discipline, which is generally
speech therapy.22 These primary therapy disciplines are a
requirement for admission to inpatient rehabilitation, while
the additional therapies are not typically delivered to all
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patients. Restricting the dataset to the primary disciplines
was done to evaluate outcome predictions based on typical
treatment activities delivered to all participants throughout
their entire length of stay.
Participants

Participants were enrolled in the TBI-PBE dataset if they
were (1) aged 14 years or older; (2) sustained a TBI, defined
as damage to brain tissue caused by external force and evi-
denced by loss of consciousness, posttraumatic amnesia,
skull fracture, or objective neurologic findings; (3) TBI diag-
nostic code was consistent with the Centers for Disease Con-
trol and Prevention Guidelines for Surveillance of Central
Nervous System Injury at time of the study; (4) received
their first inpatient rehabilitation admission at 1 of the par-
ticipating sites; and (5) consented to follow-up interviews
post discharge.5 From the 2130 originally enrolled (age dis-
tribution of 44.5§21.3 years involving 586 women and 1544
men with 113 teenagers), 1946 were included in the current
analysis. Participants from the original dataset were
excluded from the current analysis if they (1) were enrolled
at the Canadian site or (2) were admitted and treated for a
disorder of consciousness. Participants from the Canadian
site were excluded because of differences in how acute
rehabilitation care is delivered in the US compared with
Canada. Participants with disorders of consciousness were
excluded because of differences in the therapeutic activities
employed with this small patient population compared with
other participants.
Dataset

Collection of data through the POC forms during the TBI-PBE
study provided a very large number of individual therapy
activities across 6 professional disciplines—OT, PT, ST, thera-
peutic recreation, psychology, and social work/case man-
agement.5 Collapsing of the therapy activity data within the
original dataset was necessary for manageability and to pre-
vent over-specification of the models during the original log-
ical regression analyses.4 The features selected for
predicting each outcome is presented in the Appendix.

The collapsed therapy activity dataset was analyzed with
all therapy activities recorded by all 6 professional disci-
plines and indicated in the data Tables as “All”. A second
collapsed dataset was created by eliminating therapies not
delivered by the 3 primary disciplines—OT, PT, SLP—and
activities not considered interventions. This grouping
removed assessment and evaluation activities designed to
rate patient performance, and education activity when edu-
cation did not occur as part of a functional activity (eg, gen-
eral education about TBI). This dataset is indicated in the
data Tables as “Primary”. This second dataset was analyzed
to evaluate predictions based on the typical therapies pro-
vided to all patients during acute inpatient rehabilitation.

The POC forms collected duration of time engaged in
therapy activity. The time spent on a particular activity var-
ied over the rehabilitation stay. For simplicity, time spent in
a week averaged over the entire rehabilitation stay of the
patient was calculated to give a consolidated representation
of therapeutic activity. The therapy activities are repetitive
and occur in a cycle over the stay of the patient. Hence, by
taking average time spent, the effect of each activity on the
rehabilitation recovery analysis is still maintained.

Outcome measures

The primary outcome measures for prediction were length of
stay, discharge to home, and discharge and 9-month post dis-
charge cognitive and motor function. Length of stay was
measured in days and included the days from admission to
discharge from rehabilitation. For participants who returned
to acute care during the rehabilitation stay, the days in
acute care were not included in the final total rehabilitation
LOS. Participants were not dropped from analysis if they
transferred out to acute care and did not return to rehabili-
tation. Discharge to home was defined as a private home
destination. Cognitive and motor functions were measured
using the Rasch-adjusted FIM.23-26 Cognitive (Range=0 to
100) and motor (Range=0 to 100) FIM sub scores were evalu-
ated each at discharge and at 9-months post discharge.4

Summary statistics for each outcome metric across the origi-
nal patient groupings is shown in table 1.

Modeling methods

Three different ML models of increasing complexity − (1)
LM: with regularization (Lasso27 and Ridge28) and without
regularization, (2) Multilayer Perceptron (MLP),29 (3) Gradi-
ent Boosting Tree Model (GBM)30 − were applied to the data-
set and the performance of the models were compared.
Variations of LMs with lasso and ridge regularization are
administered, as regularization reduces overfitting and helps
to generate a generalized model which performs well on
unseen patients. LM assumes a linear relation between the
features and the outcomes, hence making it impossible to
learn non-linear recovery pattern, interactions between
treatments, diminishing returns of treatments, ceiling/floor
effect limitations. MLP handles these problems because it
can approximate any arbitrary relation. However, MLP mod-
els suffer from limited data, hard to interpret the model,
require hyperparameter tuning. Our dataset is noisy and has
insufficient data to get useful accuracy from MLP model.
Thus, a tree-based gradient boosting model is a suitable
choice as it can learn non-linear recovery patterns, ceiling
and floor effects and interactions between features. Thus,
the advantage of GBM is its ability to generate the impor-
tance of features. Details about each ML models and draw-
backs of each model are explained in the supplemental
section.

Evaluation metrics

F1 score,31 a performance measure similar to accuracy, is
used for analyzing the prediction probability of the discharge
location classifier, as it can handle data imbalance. Root
mean squared error (RMSE) and mean absolute error (MAE)
are used as metrics for the other regression outcome predic-
tions. These 2 metrics can give more interpretable scores for
the number of days in the case of length of stay and change
in scores in the case of FIM scores. Evaluation to find the best
parameters for the model involves 5-fold cross-validation.



Table 1 Outcome variable distribution

Outcome Total (1946) Adm cog
≤6 (306)

Adm cog
7-10 (367)

Adm cog
11-15 (481)

Adm cog
16-20 (381)

Adm cog
≥21 (401)

Length of stay 24.81§18.62 40.82§27.92 31.66§17.14 23.44§13.81 18.29§11.24 13.77§7.54
Discharge to home 84.00% 78.00% 78.00% 85.00% 84.00% 91.00%
Discharge FIM cognitive 54.56§13.15 44.31§13.38 47.00§10.40 53.22§8.96 58.13§7.98 67.58§11.32
Discharge FIM motor 54.71§13.23 48.13§13.91 50.58§13.40 55.61§12.07 58.08§12.40 59.51§11.12
9-month FIM cognitive 77.08§17.60 70.56§19.43 72.16§18.67 77.05§16.56 80.39§15.56 83.68§14.71
9-month FIM motor 81.39§18.96 76.85§20.33 77.91§20.44 82.29§19.08 83.33§16.77 85.65§16.63

NOTE. The percentage distribution of “discharge to home” outcome and mean, standard deviation of other outcome variables is shown.
“Total” represents the entire patient population. The rest columns represent patient groups where the patients are grouped by
“Adm cog” (admission cognitive) score. “Length of stay”, “Discharge FIM cognitive”, “Discharge FIM motor”, “9-month FIM cognitive” and
“9-month FIM motor” have the mean and standard deviation of the respective outcomes. “Discharge to home” has the percentage of
patients discharged to home.
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Models with different combinations of parameters are tri-
aled, followed by calculating corresponding performance
metrics for each case. The best model from the combinations
was selected based on the lowest RMSE score for regression
and the highest F1 score for classification. Mathematical
equations for the metrics are detailed in the Appendix.
Results

Table 2 consolidates the results of best-performing models
for each outcome in each category. Overall, GBM tended
to perform consistently the best across all outcomes and
for both datasets. Table 3 lists the top 3 features identified
for each outcome. Results for discharge motor function,
9-month cognitive function, and 9-month motor function are
available in the supplemental data in the Appendix.

Length of stay prediction

GBM achieved the lowest RMSE and MAE scores of 13.52 and
7.61, respectively, for predicting the length of stay. For
Table 2 Summary of performance of ML models applied to both d

Model Data Set Length of
Stay

Discharge
Home

Discha
Cog F

RMSE MAE Acc F1 RMSE

Linear All 14.80 8.67 0.80 0.88 9.10
Primary 14.86 8.74 0.79 0.87 9.10

Lasso All 14.02 7.81 0.84 0.91 9.11
Primary 14.82 8.42 0.84 0.91 9.09

Ridge All 13.99 7.75 0.85 0.92 9.07
Primary 14.86 8.75 0.84 0.91 9.05

GBM All 11.45 6.02 0.86 0.92 8.51
Primary 13.52 7.61 0.85 0.92 8.45

MLP All 12.64 6.67 0.86 0.92 9.22
Primary 14.26 8.07 0.85 0.91 9.09

NOTE. Best performing Linear, Lasso, Ridge, GBM and MLP models are l
of all data; Primary data set eliminated all treatment activities not de
used. The best performing results for each dataset (All and Primary) is
F1 and accuracy values across models are shown in bold.
primary dataset, the GBM model shows an RMSE of 11.45
and an MAE of 6.02. This represented a drop of 18% for the
RMSE and a drop of 26% for the MSE score. The assessment
and evaluation activities were typically performed at the
beginning and at the end of the stay and may have contrib-
uted to the length of stay prediction. Hence, removing the
details of assessment, evaluation, and education activities
in our analysis caused a drop in performance. Feature anal-
ysis indicated that the length of stay is highly dependent
on the motor abilities of the patient at admission, the
severity of brain injury as measured by Comprehensive
Severity Index score, and days from injury to rehabilitation
admission.
Discharge to home

GBM achieved the best accuracy for predicted cases and the
best F1-score, with an accuracy of 0.86 and an F1-score of
0.92. For primary dataset, GBM achieved an accuracy of
0.856 and an F1-score of 0.92. By restricting the dataset to
primary therapies, no significant change in performance is
noticed. Feature analysis identified level of effort, patient
ata sets on predicting 6 outcomes

rge
IM

Discharge
Motor FIM

9-month
Cog FIM

9-month
Motor FIM

MAE RMSE MAE RMSE MAE RMSE MAE

6.98 8.90 6.69 16.23 13.13 15.00 11.78
6.97 8.97 6.74 16.32 13.18 15.02 11.76
6.90 8.42 6.24 16.24 13.22 14.93 11.79
6.85 8.38 6.21 16.24 13.20 14.90 11.75
6.95 8.47 6.29 16.22 13.18 14.92 11.74
6.92 8.36 6.23 16.25 13.22 14.93 11.71
6.32 7.42 5.50 16.01 13.02 14.72 11.68
6.30 7.37 5.51 15.97 13.00 14.61 11.59
6.95 8.91 6.72 16.77 13.75 15.23 12.09
6.92 8.80 6.62 16.79 13.78 15.32 12.14

isted for each outcome variable prediction. All data set is inclusive
livered by OT, PT, F1, accuracy, RMSE, MAE are the scoring metrics
highlighted in bold. The lowest RMSE and MAE values, and highest



Table 3 Top 3 predictive features selected by the GBM for each outcome

Outcome Rank Features Weight (in %)

Length of stay 1 FIM Rasch Admission Motor 39.80
2 Maximum BI CSI Component 12.03
3 Days to Rehab Admission 5.51

Discharge home 1 Age at Rehab Admission 18.80
2 Level of Effort 14.78
3 PTAdvanced Mobility Activities (gait, community, stairs) 8.29

Discharge FIM Cognitive 1 Level of Effort 36.94
2 FIM Rasch Admission Cognitive 22.73
3 Days to Rehab Admission 3.14

Discharge FIM Motor 1 FIM Rasch Admission Motor 27.24
2 Level of Effort 16.99
3 PTAdvanced Mobility Activities (gait, community, stairs) 14.57

9-month FIM Cognitive 1 Level of Effort 15.52
2 Age at Rehab Admission 10.47
3 Days to Rehab Admission 8.72

9-month FIM Motor 1 Days to Rehab Admission 9.80
2 Age at Rehab Admission 8.88
3 Level of Effort 6.96

NOTE. Top 3 most predictive features selected by the GBM is shown along with its rank and weight.
Abbreviations: BI, brain injury; CSI, Comprehensive Severity Index.
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age at admission to inpatient rehabilitation, and advanced
PT activities (advanced gait training, community locomo-
tion, stairs) as the top predictive features for returning
home at discharge.
Discharge cognitive function

As with the preceding predictions, GBM achieved the best
performance relative to other models. For the total data-
set, GBM produced an RMSE of 8.51 and an MAE of 6.32.
GBM remained the best-performing model for the Primary
dataset, with an RMSE of 8.45 and an MAE of 6.30. Perfor-
mance of GBM did not differ significantly between the 2
datasets, with only a 0.7% and 0.3% improvement in RMSE
and MAE, respectively, and likely attributable to a reduc-
tion of noise in the primary therapy activity dataset. The
most predictive features identified were level of effort
during OT, PT, and ST sessions, admission Rasch-adjusted
FIM cognitive score, and days from injury to rehabilitation
admission.

Overall, GBM exhibited consistent and best perfor-
mance for outcome prediction relative to the other ML
methods for both datasets. The top features were both dif-
ferent and similar depending on the outcome variable pre-
dicted. Level of effort during OT, PT, and ST sessions was
the most consistently noted top feature. The only outcome
for which the level of effort was not a top feature was the
length of stay. Age at rehabilitation admission was also
found as a top feature for discharge to home and 9-month
cognitive and motor function. Days to rehabilitation
admission was a top feature for the length of stay and dis-
charge cognitive function. Advanced PT activities were
among the top features for discharge to home and dis-
charge motor function.
Discussion

An initial goal of this study was to determine if ML models per-
form better than classical or traditional LM at predicting out-
comes, which was shown. Mostly previous studies show the
use of models such as neural networks, tree based model,
and LM. The application and the subdomain they have tackled
is different. In this study, the GBM variant of the tree model is
shown to be the best model for TBI outcome prediction at dis-
charge and 9 months from discharge. The GBM model gives a
picture on importance of features and specifies which combi-
nations of features is significant. Clinical datasets contain var-
iation in relation between input and outcome variable at
different cognitive levels. Complex combination of different
activities may affect the outcome in different ways. Thus,
GBM, which model interactions between features, is a suit-
able ML method. An additional advantage of GBM is its ability
to generate the importance of features. Thus, the second
goal of this study was achieved—obtaining further insights
into which patient, injury, and treatment variables were
most predictive for each outcome. Level of effort was a fre-
quently noted top predictive feature and it was the highest-
ranked feature in 3 of the 6 outcomes. Days to rehabilitation
admission was a predictive feature for length of stay, dis-
charge cognitive FIM, 9-month cognitive and motor FIM. Age
at rehabilitation admission was a predictive feature for dis-
charge to home, and 9-month cognitive and motor FIM. These
results indicate that no 1 feature is relevant to all outcomes
and outcome selection may determine which variables are
necessary for better prediction. Therefore, in line with past
research, the availability and robustness of large sets of pre-
dictive variables are needed to accommodate predictions of
different outcomes.20

Current findings bear similarities to past analyses using
the TBI-PBE dataset. Horn et al using ordinal least squares
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and logistic regression analyses found greater effort demon-
strated during therapy sessions, time spent in more complex
therapy activities, and select medications were associated
with better outcomes. Unlike the regression analyses con-
ducted in the Horn et al study, which could only identify the
percent of variance accounted for by a dependent variable,
the current study was able to rank order the importance of
variables per outcome with the help of GBM model. This has
therefore added further insight into the predictive value of
these features for the different outcome variables. For
example, the level of effort was consistently found to be a
top-performing predictive feature in the current study, and
it was an identified variable in the Horn et al study associ-
ated with better outcomes. Thus, these results indicate
rehabilitation therapists should carefully monitor level of
effort and take it into consideration during treatment plan-
ning. However, level of effort was not a top performing pre-
dictive feature for length of stay and motor function
prediction. These nuanced findings exemplify the added
advantage that ML methods may have over classical LM in
outcome prediction.

Study limitations

Several limitations in the current study are worth noting. The
TBI-PBE dataset used in the current study is relatively aged as
data were last collected in 2011; however, the dataset con-
tains intricate and valuable details on each activity the
patient undertook. It is also possible that the TBI-PBE dataset
missed essential therapeutic features (eg, patient familiarity,
patient preference, treatment target, etc) that could affect
treatment as well as confounding variables (eg, bowel and
bladder management, social determinants of health, etc)
that could affect outcome. Future studies should consider
capturing additional therapeutic features and confounding
variables. By taking the weekly average time, even though
the temporal information about the activities is lost becomes
a vital trade-off to reduce the dimensionality but still pre-
serve the activity details. The FIM is also only a proxy measure
of cognitive and motor function. FIM measures the burden of
care by assessing the level of assistance needed to perform
functional activities. It is possible that with greater specificity
in metrics assessing motor (eg, gait quality, walking speed)
and cognition (eg, frequency of applied compensatory strat-
egy), the predictive value of these functional variables may
change the current findings.
Conclusions

There is an increasing need to identify what leads to greater
levels of recovery and better outcomes and the role inpa-
tient TBI rehabilitation has in effecting those improvements.
Past and ongoing research is identifying critical and essential
inpatient rehabilitation components and their relation to
various outcomes. The newer methods of data analysis,
including ML, appear to have value in this discovery process.
The current study built upon 2 prior studies examining which
variables are associated with better outcomes. The current
study adds to these findings by demonstrating the utility of
ML methods in analyzing a dataset with a large set of
predictive variables and in identifying the top predictive
features specific to each outcome variable.
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