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Abstract

Background: Karst caves are considered as extreme environments with nutrition deficiency, darkness, and oxygen
deprivation, and they are also the sources of biodiversity and metabolic pathways. Microorganisms are usually
involved in the formation and maintenance of the cave system through various metabolic activities, and are
indicators of changes environment influenced by human. Zhijin cave is a typical Karst cave and attracts tourists in
China. However, the bacterial diversity and composition of the Karst cave are still unclear. The present study aims to
reveal the bacterial diversity and composition in the cave and the potential impact of tourism activities, and better
understand the roles and co-occurrence pattern of the bacterial community in the extreme cave habitats.

Results: The bacterial community consisted of the major Proteobacteria, Actinobacteria, and Firmicutes, with
Proteobacteria being the predominant phylum in the rock, soil, and stalactite samples. Compositions and
specialized bacterial phyla of the bacterial communities were different among different sample types. The highest
diversity index was found in the rock samples with a Shannon index of 4.71. Overall, Zhijin cave has relatively lower
diversity than that in natural caves. The prediction of function showed that various enzymes, including ribulose-
bisphosphate carboxylase, 4-hydroxybutyryl-CoA dehydratase, nitrogenase NifH, and Nitrite reductase, involved in
carbon and nitrogen cycles were detected in Zhijin cave. Additionally, the modularity indices of all co-occurrence
network were greater than 0.40 and the species interactions were complex across different sample types. Co-
occurring positive interactions in the bacteria groups in different phyla were also observed.

Conclusion: These results uncovered that the oligotrophic Zhijin cave maintains the bacterial communities with
the diverse metabolic pathways, interdependent and cooperative co-existence patterns. Moreover, as a hotspot for
tourism, the composition and diversity of bacterial community are influenced by tourism activities. These afford
new insights for further exploring the adaptation of bacteria to extreme environments and the conservation of cave
ecosystem.

Keywords: Bacterial community, Co-occurrence network, Function prediction, Karst, Zhijin cave, Oligotrophy,
Tourism, 16S rRNA gene
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Background
The adaptation of life to extreme environments, which
are steady or fluctuating habitats and not conducive for
human, has recently become a hot topic for research.
Extremophiles can colonize the extreme environment,
and they are the sources of novel biomolecules and
metabolic pathways [1, 2]. Karst caves are the terrain
formed by the process of soluble rock dissolution [3].
Meantime, it is one of the extreme habitats with harsh
conditions, for instance, nutrient-limitation, darkness,
and high humidity [4]. Microorganisms can also act as
the primary producers and sustain the cycles of sub-
stance and energy by chemoautotrophic and photosyn-
thetic activities, which are normally found in various
cave habitats [4–7]. These microorganisms participate in
the geochemical cycles through inorganic chemical reac-
tions in the cave ecosystems [8, 9]. However, our under-
standing of the microbial diversity, distribution patterns,
and the roles of microorganisms in Karst caves is incom-
plete [3]. Exploring the microbial diversity and compos-
ition of Karst cave is particularly important for
understanding the ecosystem and biodiversity in such
extreme environment.
Previous studies about microorganisms in caves mostly

focused on the microbial community composition, in-
cluding describing and comparing the number of taxa,
relative abundances, and alpha diversity [10], or investi-
gating the microbial communities from different sample
types such as wall surface [11], sediments [12], water
[13–15], rock, and air [15]. However, the co-occurrence
patterns of complex microbial communities are primar-
ily unclear [16]. The co-occurrence network analysis al-
lows us to explore the interactions between coexisting
taxa in complex and diverse microbial communities [10,
17, 18]. Recently, it has been used to analyze microbial
communities in complex habitats from gut intestine [19]
to cave [15, 16] and ocean [20]. Network analysis ap-
proaches provide new insights for the interaction net-
works, structure, and niches distribution of communities
in the Karst caves [10, 17, 21].
Zhijin cave exhibits the complex evolutionary process

and the pattern of the plateau Karst in Guizhou province
since the Paleogene. Meanwhile, it is a typical develop-
mental zone and the microcosm of the plateau Karst in
China [22]. Due to a large number of rare stalactites and
the fantastic Karst landscape, Zhijin cave has become a
tourist cave as well since 1983 and a global geological
park. With the presence of tourists, the cave ecosystems
such as the CO2 concentration, temperature, compos-
ition of microbial communities have affected by human
activities [23–26]. However, the changes of microbial
communities resulted in the loss of pigment on the sur-
face of the walls and sediments in caves [27–29]. Hence,
exploring the composition of bacterial community is

important to conservation of cave. Recently, it was veri-
fied that the environment conditions in Zhijin cave have
been changed, including the upward trend of the CO2

concentration and air temperature [30, 31], decreased
relative humidity [31]. Moreover, the culturable bacterial
composition in water has been impacted by tourism ac-
tivities in Zhijin cave [32]. However, so far, the bacterial
diversity and roles in the Zhijin cave are still unclear. To
better understand the function and co-occurrence pat-
tern of the bacterial community in the oligotrophic Karst
cave, further reveal the potential impacts of tourism ac-
tivities on bacterial diversity and composition in cave
habitats, in this study, 16S rRNA high-throughput se-
quencing technology was used to analyze multiple differ-
ent sample types, which would better reflect the
composition of bacteria communities in Zhijin cave eco-
system. The bacterial composition, network structure,
and function of the bacterial communities were further
compared. We focus on the following objectives: (i) the
composition characteristics of bacterial communities in
the Karst tourism cave, (ii) their potential functions and
metabolism pathways across different sample types, and
(iii) the co-occurrence network patterns of bacterial
communities in Zhijin cave.

Results
Sequence data
A total of 900,491 reads for 16S ribosomal RNA sequen-
cing were successfully obtained from all the samples col-
lected from seven sites in Zhijin cave (Supplemental file
1: Table S1). After removing low-quality, replicate, and
potential chimera tags, we obtained 827,376 tags ranging
from 39,403 to 93,528 per sample site. Based on 97%
similarity, 27,421 OTUs were obtained across all
samples.

Bacterial community composition
A total of 54 phyla, 750 genera, and 407 species were de-
termined in three sample types. We selected the top 10
most abundant phyla in each sample type to further
measure the composition of bacterial community. Their
relative abundances were shown in Fig. 1a. We found
that 9 phyla (Proteobacteria, Actinobacteria, Firmicutes,
Acidobacteria, Nitrospirae, Bacteroidetes, Planctomy-
cetes, Chloroflexi, and Gemmatimonadetes) were shared
by all sample types. Among the top 10 predominant
phyla in samples, Chlorobi was not detected in soil sam-
ples; Verrucomicrobia was not found in rock samples;
Thaumarchaeota was only obtained in stalactite samples.
The Proteobacteria had the highest relative abundance
in the bacterial community across all sample types.
The relative abundances of Proteobacteria were 63.41,

65.15, and 69.79% in rock, soil, and stalactite samples,
respectively. In both rock and stalactite samples,
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Actinobacteria remained to be the second abundant
phylum in the bacterial communities (16.53 and 8.53%,
respectively), and then followed the phylum Firmicutes
(4.16 and 5.77%, respectively). Whereas, in soil samples,
the second abundant phylum in bacterial community
was Firmicutes (17.58%), which was more abundant than
that in rock and stalactite samples. The Abundances of
other phyla were less than 4% across the three sample
types.
At the species level, the NMDS ordination method

showed that bacterial communities were separately dif-
ferent among the three sample types (Fig. 1b). The re-
sults were consistent with the significant test that the
means of the distances were considered as different (P <
0.01) among the three sample types. Besides, the results
from ANOSIM showed that the differences of bacterial
community compositions were significant between rock
and soil samples (R = 0.70, P < 0.01), rock and stalactite
samples (R = 0.74, P < 0.01), as well as stalactite and soil
samples (R = 0.79, P < 0.01).

Bacterial groups with statistical differences
The LEfSe analysis was performed for comparing bacter-
ial communities to find the specialized bacterial groups
within each type of the samples. The cladogram (Fig. 2a)
showed that 2 phyla, 2 classes, 8 orders, 15 families, and
26 genera were significantly variable across the three
sample types. From phylum to species, there were 15, 9,
and 17 groups of bacteria enriched in rock, soil, and stal-
actite samples, respectively. Indicator groups represented
the abundance differentiation of the bacterial group

(LDA value of 3 or higher) among the three sample
types (Fig. 2b). There were 9 differentially abundant bac-
terial groups in soil samples (e.g. Bacillales, Psychrobacil-
lus, and Planococcaceae). A total of 4 bacterial groups
(e.g. Acinetobacter, Moraxellaceae, and Rhodocyclaceae)
were significantly more abundant in rock samples, and 4
taxa (e.g. Salinisphaeraceae and Lactobacillales) were
overrepresented in stalactite samples.

Venn diagram and bacterial diversity
To further obtain insight into the differences of bacterial
communities across the three sample types, the Venn
analysis of the OTUs was performed, which demon-
strated that OTUs differed across the three sample types
(Supplemental file 2: Figure S1). The number of site-
specific OTUs ranged from 175 (soil samples) to 435
(rock samples), and a total of 322 OTUs were shared
among all three sample types. According to the OTUs
identified at different levels of taxon, the Simpson’s
index, Shannon’s index, and Simpson evenness were cal-
culated. The Simpson’s index (0.87–0.91) and Shannon’s
index (3.63–4.71) indicated that the level of diversity
varied among three sample types. The average Simpson
indices were 0.91, 0.89, and 0.87 in rock, soil, and stalac-
tite samples, respectively. The average Shannon’s indices
were 4.71, 3.63, and 4.17 in rock, soil, and stalactite sam-
ples, respectively. The greatest bacterial diversity was ob-
served in rock samples. However, the LSD test showed
that the diversity indices were not significantly different
across the three sample types.

Fig. 1 Bacterial community composition. a Relative abundances of the 10 most abundant phyla in each sample. The relative abundance not
shown in chart if fewer than 4%. b Non-metric multidimensional scaling (NMDS) of bacterial community in three sample types
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Inferred bacterial function by PICRUSt
Based on the PICRUSt analysis, the results of KEGG
(Kyoto Encyclopedia of Genes and Genomes) pathway
abundance in each sample were obtained (Fig. 3a). A
total of 6 functional modules that represented approxi-
mately 86% of the entire dataset in samples were de-
tected, including cellular processes (4%), environmental
information processing (15%), genetic information pro-
cessing (15%), human diseases (1%), metabolism (49%),
and organismal systems (1%). The most abundant

functional module was metabolism across the three sam-
ple types. In generally, the functional modules were
richer in stalactite samples than those in other sample
types.
A total of 41 pathways were predicted across the three

sample types (Fig. 3b). Among them, there were 37 path-
ways in stalactite samples (e.g. cell communication, sen-
sory system, signaling molecules and interaction, and
membrane transport), which were more abundant than
those in the other two sample types. Moreover, cellular

Fig. 2 The results of LEfSe analysis. a Cladograms indicating the phylogenetic distribution of bacterial lineages associated with the samples. b
Indicator bacterial group significantly differentiated across the three sample types with LDA values higher than 3
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processes and organismal systems (e.g. transport and ca-
tabolism, endocrine system, and digestive system) were
overrepresented in rock samples. In soil samples, only
the cardiovascular diseases pathway was more abundant
than that in other sample types.
In addition, to understand the potential metabolism of

carbon and nitrogen reactions in which the bacteria par-
ticipated in, we also aimed to detect the relative encod-
ing genes and enzymes for carbon and nitrogen
metabolisms in the samples of Zhijin cave. It showed
that carbon metabolism pathways, including glycolysis
pathway, pentose phosphate pathway, methanogenesis
pathway, and 6 carbon fixation pathways (reductive pen-
tose phosphate cycle, 3-hydroxypropionate bicycle, re-
ductive citrate cycle, hydroxypropionate-hydroxybutyrate
cycle, reductive acetyl-CoA pathway, and dicarboxylate-

hydroxybutyrate cycle), possibly existed in Zhijin cave.
The predicted relative enzymes were shown in Supple-
mental file 3: Table S2, e.g. hexokinase [EC:2.7.1.1], glyc-
eraldehyde 3-phosphate dehydrogenase [EC:1.2.1.12],
and pyruvate kinase [EC:2.7.1.40] involved in the gly-
colysis pathway; hexose-6-phosphate dehydrogenase
[EC:1.1.1.47 3.1.1.31], glucose-6-phosphate isomerase
[EC:5.3.1.9], and transaldolase/glucose-6-phosphate
isomerase [EC:2.2.1.2 5.3.1.9] involved in the pentose
phosphate pathway; heterodisulfide reductase subunit D
[EC:1.8.98.1], methyl-coenzyme M reductase alpha sub-
unit [EC:2.8.4.1], and F420-non-reducing hydrogenase
large subunit [EC:1.12.99.- 1.8.98.5] involved in the
methanogenesis pathway; and enzymes related to carbon
fixation pathways (e.g. 4-hydroxybutyryl-CoA dehydra-
tase [EC:4.2.1.120 5.3.3.3], ribulose-bisphosphate

Fig. 3 The PICRUSt predicted function in samples. a Predicted function of bacteria among the three sample types. b The second level of KEGG
pathway was shown in the heatmap
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carboxylase [EC:4.1.1.39], and malonyl-CoA reductase
[EC:1.2.1.75 1.1.1.298]).
Moreover, total of 5 related nitrogen metabolism path-

ways, including nitrogen fixation process, denitrification
pathway, dissimilatory nitrate reduction pathway, assimi-
latory nitrate reduction reaction, and complete nitrifica-
tion pathway, were revealed. The predicted related
enzymes were shown in Supplemental file 4: Table S3,
e.g. nitrogenase delta subunit [EC:1.18.6.1], nitrogenase
iron protein NifH [EC:1.18.6.1], and ammonia monooxy-
genase subunit C [EC:1.13.12.-] involved in the nitrogen
fixation process; hydroxylamine dehydrogenase [EC:
1.7.2.6] involved in the nitrification pathway; hydroxyl-
amine oxidase [EC:1.7.3.4], nitrite reductase (NO-form-
ing) [EC:1.7.2.1], and nitrate reductase (cytochrome)
[EC:1.9.6.1] involved in the denitrification pathway; ni-
trate reductase (cytochrome) [EC:1.9.6.1] and nitrate re-
ductase/nitrite oxidoreductase beta subunit [EC:1.7.5.1
1.7.99.-] involved in the dissimilatory nitrate reduction
pathway; ferredoxin-nitrate reductase [EC:1.7.7.2] and
assimilatory nitrate reductase electron transfer subunit
[EC:1.7.99.-] involved in the assimilatory nitrate reduc-
tion reaction.

Bacterial co-occurrence network analysis
The correlation coefficient (r > ±0.8, P < 0.01) co-
occurrence network analysis (Fig. 4 & Supplemental file
1: Table S4) showed that the edges in the network in-
cluded 1127 strong positive correlations and 184 nega-
tive correlations in the rock samples; 1353 strong
positive correlations and 32 negative correlations in the
soil samples; and 1263 strong positive correlations and
145 negative correlations in the stalactite samples. The
modularity indices of the three sample types were all
greater than 0.40, which suggested that the co-
occurrence networks of bacterial communities had a
strong modular structure and complex species

interaction across the three sample types in Zhijin cave
[33]. Comparing to a randomized network, three non-
random co-occurrence networks were observed in Zhijin
cave (P < 0.01).
In the co-occurrence network, the rock samples pre-

sented a shorter average path length (the shortest among
all possible pairs of nodes) and a lower diameter (the
longest of the shortest paths among all pairs of nodes)
(1.98 and 2.00) than those in soil samples (3.66 and
16.00) and stalactite samples (7.84 and 23.00), which
reflected a more efficient information processing and
substance transmission among the species in rock sam-
ples. Furthermore, the C score (co-occurrence index)
was 0.33, and the robustness (stability of community) of
bacterial community was 0.86 in the rock samples. The
greater values of co-occurrence index indicated that bac-
teria were highly exclusive, and the large robustness rep-
resented that the bacterial community was more stable.
Compared with the rock and stalactite samples, the clus-
tering coefficient (the proportion of neighboring nodes
that can be reached through the nodes connecting other
neighbors) was greater in the soil samples (0.97). The
bacterial network had lower values of co-occurrence
index (0.24) and robustness (0.77) in the soil samples.
These results reflected that a relatively high rate of co-
operation was formed by a higher clustering coefficient
and more bacteria were co-occurred in the community
with a low stability in soil samples.
The node degree (the number of ties with other nodes)

reflects the role of node. According to the node degree
of each node, the keystone taxa in each sample type
were captured. The largest node degree was found with
Salinarimonas (466 links), Cloacibacterium, and Mari-
nospirillum (both 17 links) in rock samples; Pasteurella,
Dietzia, Hungatella, and Beggiatoa (all 37 links) in soil
samples; and Streptomyces, Pseudolabrys, and Ignavibac-
terium (all 20 links) in stalactite samples, suggesting that

Fig. 4 The co-occurring network analysis of the bacterial communities across the three sample types. The nodes are colored by phylum level, the
size of each node is proportional to the relative abundance of specific genus level. The color of each edge is positive and negative of correlation
coefficient, grey represents positive correlation, and red represents negative correlation. The thickness of each edge is proportional to the
correlation coefficient (Spearman’s r > ±0.8 and P < 0.01)
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these groups were more prominent than the other
groups with fewer links in the same network.

Discussion
Composition of bacterial community in different sample
types
The environment of Zhijin cave was occupied by diverse
bacteria. Though the Karst cave is an extreme habitat
with nutrition deficiency, light limitation, and oxygen
deprivation [3, 4], our results showed that 54 phyla with
750 genera were detected from the rock, stalactite, and
soil samples, indicating a rich bacterial diversity in the
cave. The Proteobacteria was the predominant group
across all the three sample types. Proteobacteria, as a
group of microbes responding to unstable carbon
sources, was found to be the most abundant in some
other cave ecosystems and various environments as well
[25, 34–37]. The Firmicutes was the second abundant
phylum found in soil samples in Zhijin cave, possibly
due to their resistance towards nutrient stress and cap-
ability of survival under most extreme habitats [25, 38].
For other bacteria groups found in samples, the Actino-
bacteria is considered as the production source of bio-
active compounds, but knowledge of their diversities in
caves is very limited [4]. The Bacteroidetes and Acido-
bacteria are capable of decomposing organic compounds
in environments [39, 40], and the Acidobacteria, specif-
ically, as oligotrophic organism was negatively correlated
with nutrient levels [41, 42]. As autotrophic green non-
sulfur bacteria, the Chloroflexi, which can fix CO2, was a
prevalent phylum and frequently found in caves [43, 44].
The presence of the Nitrospirae is crucial for the nitro-
gen cycle, since several nitrite oxidizers are present in
Nitrospirae, carrying out nitrification and supplying ni-
trogen for oligotrophic environments [45]. In addition,
the Thaumarchaeota, containing ammonia-oxidizing ar-
chaea [46], could obtain energy by oxidizing ammonia
and fixing carbon in oligotrophic environments [47, 48].
Cave habitat is the important factor affecting bacteria

survival, as a result of which, different bacterial commu-
nities were found in various niches in cave environments
[49]. The observed divergent compositional structure
and diversity of bacterial communities in different ex-
treme cave environments might be due to the differences
in cave environments, sampling mediums, and analysis
methods, to a certain extent [50]. The indicator bacteria
were significantly different among three sample types.
The soil samples had the most abundant indicator taxa
(e.g. Bacillales, Psychrobacillus, and Planococcaceae), and
the LEfSe analysis also revealed more specific bacterial
groups in soil samples than those in the other sample
types. These indicator taxa in samples implied that these
bacterial groups specifically functioned in their special
habitats. For example, Bacillales is the common group in

soil [51] and on mineral surface [52], and some Bacillales
[53, 54] and Psychrobacillus [55] are able to degrade oils
in contaminated soil. Salinisphaera was the indicator
taxon in stalactite samples, and previous studies illus-
trated that several strains of Salinisphaera are halophilic
bacteria [56, 57] and capable of fixing CO2 by using or-
ganic carbon sources [58]. It implied that Salinisphaera
might be involved in the process of stalactite formation
by fixing carbon cycle. Further, Moraxellaceae strains
have the ability to bear the natural transformation and
most of them usually inherently reside on the mucosal
membranes in humans and other animals [59].
It was worth noting that there are some hints that the

bacteria diversity and composition in Zhijin cave might
be influenced by the changed ecosystem because of hu-
man activities. Firstly, we observed the relatively lower
bacterial diversity indices in rock samples [11, 15], soil
samples [45, 60], or stalactite samples [11] from Zhijin
cave than those in many natural caves currently re-
ported. Several studies using culture-based method also
uncovered that microbial diversity in show caves was
lower than that in natural caves [25, 26]. In some in-
stances, the diversity of fungi was influenced by the level
of anthropogenic disturbance, in which lower diversity
was found in areas with heavy disturbance and higher
diversity was found in sites with moderate disturbance
[26]. It hinted that the lower bacterial diversity might be
the consequence of tourism in Zhijin cave. Secondly, the
predominance of Proteobacteria in Zhijin cave was con-
sistent to the previous reports in tourist cave ecosystems
[25, 34–36]. The Firmicutes dominated in bacterial com-
munity in natural cave or areas with less tourism influ-
ence, and conversely [25]. Lastly, several microbial
groups of anthropogenic origin [61], such as Lactobacil-
lus, Bacteroides, Staphylococcus, and Moraxella genera,
also observed in our samples (data not shown). Here, we
further inferred that the impact of human activities on
cave ecosystem. With the human access and mass activ-
ities of tourists, certain energy and exogenous bacteria
are potentially transported into the cave system follow-
ing the dropping skin, hair, sweat, and clothing [25, 27,
49, 50]. The organics introduced from human activities
provide new nutrients and habitats for some bacteria,
moreover, resulted in the changes of bacterial commu-
nity in cave. In additionally, the human activities af-
fected the cave microenvironment and led to increased
CO2 concentration, raised temperature, and decreased
relative humidity [12, 26]. These further have a pro-
found influence on the processes of the cave forming
and the bacterial composition in cave. Integrating the
tourism activities, the changed the environment condi-
tions in the Zhijin cave, such as concentration CO2 [30,
31], and these traits of bacterial diversity and compos-
ition, which further confirmed that the cave ecosystem
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were disturbed by human activities in Zhijin cave. As
indicators of cave tourism, monitoring the bacterial di-
versity and composition is crucial to comprehend hu-
man impacts and the changes of bacteria in cave
habitats [62, 63].

Prediction of bacterial functions using PICRUSt
To respond to the severely limited resource, chemolitho-
trophic microorganisms create biogenic energy and nu-
trients in the cave ecosystem using sulfur and metal
irons [64, 65]. Besides, other metabolic processes such as
nitrogen fixation, carbon fixation, and carbon
mineralization allow microorganisms to maintain the
cave ecosystem [63, 66]. Similarly, we found that the
bacteria can survive through various metabolic processes
in Zhijin cave. The co-existent bacteria could involve in
a variety of complex metabolic reactions in the cave
habitat, which was supported by the relative genes and
enzymes for carbon and nitrogen metabolism pathways
detected by PICRUSt analysis across the three sample
types.
We obtained 6 functional modules in the samples, and

the predominant module was the metabolism. However,
due to the lack of photosynthesis in cave environments,
the autotrophic bacteria may act as both the primary
producer and the common energy input [67–69]. Car-
bon fixation is considered as a watershed between the
heterotroph and autotroph organisms. Autotrophic or-
ganisms can fix CO2 through Calvin cycle, which are
widely distributed in environments [70]. The ribulose-
bisphosphate carboxylase, which is the rate-limited en-
zyme in Calvin cycle, was observed in the samples, sug-
gesting that Calvin cycle appeared to exist in the
environment of Zhijin cave. Moreover, bacteria may
utilize several other specific metabolic pathways in ex-
treme environments. The 4-hydroxybutyryl-CoA dehy-
dratase is the indicator enzyme of 3-hydroxypropionate/
4-hydroxybutyrate cycle [47, 71] and dicarboxylate
cycle/4-hydroxybutyrate cycle [72], involving CO2 fix-
ation in archaea [47] and Thaumarchaeota [73]. Accord-
ing to the previously reported study, 4-hydroxybutyryl-
CoA dehydratase was shown abundant in oligotrophic
environments and contributed to the processes of car-
bon assimilation in cave environments [74]. The 3-
hydroxypropionate bicycle is another autotrophic carbon
fixation pathway, as a new CO2 fixation pathway in
Chloroflexus [44, 45]. The malonyl-CoA reductase is the
key enzyme of 3-hydroxypropionate bicycle, which was
observed in several green non-sulfur bacteria for auto-
trophic CO2 fixation [44].
For the nitrogen cycle, previous studies mostly focused

on the role of bacteria in soil, rock, aquatic, and other
oligotrophic conditions [75]. Similarly, we also detected
the relative enzymes for nitrogen cycle from samples in

Zhijin cave. These enzymes involved nitrogen fixation,
denitrification, nitrate reduction, nitrate reduction, and
nitrification were predicted. Due to the limitation of ni-
trogen resource in the cave ecosystems, bacteria could
survive by specific strategies and metabolic pathways
[34, 76–78]. Some autotrophic bacteria in Nitrospirae,
Chloroflexi, and Chlorobi identified in Zhijin cave, might
transfer the N element into the nitrogen cycle by the ni-
trogenase NifH or chemoautotrophic process, utilize in-
organic compounds such as ammonia by the
nitrification, and promote the nitrogen cycle in environ-
ment [6]. In addition, the nitrite reductase is a key en-
zyme in the dissimilatory denitrification [79], the
bacteria catalyze the reduction of nitrite to nitric oxide
in the environments by using the nitrite reductase, and
may contribute to reduce nitrogen loss in oligotrophic
cave [32]. The ammonia-oxidizing bacteria containing
hydroxylamine oxidase probably come from the Nitros-
pirae and Thaumarchaeota found in Zhijin cave, are the
predominant ammonia oxidizers and participate in the
ammonia oxidation process which is the first key step of
nitrification [5, 32, 80]. In a conclusion, the presences of
these metabolic enzymes suggested that bacteria, includ-
ing some autotrophic bacteria, can survive by participat-
ing in specific metabolic pathways in the nutrient-
limited Zhijin cave.
In addition, the abundances of metabolic pathways

were divergent across the three sample types in Zhijin
cave. This probably indicated that the bacterial meta-
bolic activities are divergent, functional bacteria involved
in different dynamic activities could drastically shift in
different samples and habitats in the cave system, and
specific microorganisms play a key role in energy trans-
formation and different geological cycles [81].

Co-occurrence pattern of bacterial communities
The bacterial co-occurrence networks had different
topological properties and complex species interactions
across all the three sample types in Zhijin cave in our
study. We observed that a great number of edges, high
robustness, and modularity in each sample, indicating
that steady and complex interactions and strong modu-
lar structure were present in the bacterial communities
[33]. Moreover, the low values of average path length
and diameter in rock samples illustrated that the infor-
mation and the substances were quickly transmitted
among species in the bacteria communities. This implied
that the bacteria had a higher transmission powers in
the rock samples than in the other samples [82].
Whereas, the highest co-occurrence index detected in
the rock samples implied a lower co-existence degree in
the bacterial communities. For the soil and stalactite
samples, the clustering coefficients were 0.97 and 0.74 in
the bacterial networks respectively, suggesting the
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relatively strong correlation of co-occurrence network
[16]. The lower co-occurrence index, higher clustering
coefficient, and lower negative edges all hinted that the
bacterial community in the soil samples possessed
higher cooperation. Previous study reported that most
ecological networks had a low value of connectance [83],
the same results of which were obtained in all the sam-
ples from Zhijin cave as well in this study. As a matter
of fact, networks with low connectance indicate a
power-law distribution [83, 84].
Though the keystone taxa were divergent in different

sample types, the bacterial groups had a number of links
with the other groups in the same communities. It im-
plied that these bacteria taxa perform key roles or are re-
sponsible for the interactions among the communities
through specific metabolic activities. For example, Sali-
narimonas rosea sp. nov. is a halotolerant bacterium and
capable of reducing the nitrate [85]; Pasteurella could
oxidize organic compounds and assimilate sulfur com-
pounds [86]; and Streptomyces may produce various and
complex secondary metabolites [87]. These keystone
taxa involve in complex metabolic cycles and supply pri-
mary or secondary metabolic products for cooperators
of the communities in cave.
Furthermore, the networks were consisted of a num-

ber of positive edges but fewer negative edges in each
sample type in Zhijin cave. This species co-occurrence
patterns were displayed by the co-occurring and positive
interactions among different phyla. Several previous re-
ports uncovered that metabolic exchanges were detected
in nutrients-limited environments [88–90]. These exam-
ples indicated that the metabolic cooperation could drive
the co-occurrence pattern of bacteria and shape the
compositions of communities [88]. Thereby, the differ-
ent co-occurrence network structures of the bacterial

communities could be explained by the interdependen-
cies in the microorganisms from the collected samples.
The consistent result was revealed by the network de-
scriptors with disparate values of networks and the com-
positions of the communities in Zhijin cave.

Conclusions
Network analysis allows us to explore the composition
and interaction of a community. In this study, our re-
sults confirmed that the tourism activities could influ-
ence the bacterial diversity and composition in Zhijin
cave. In the dark and oligotrophic cave, the bacteria
could co-exist through positive interactions and cooper-
ation by participating in diverse metabolic pathways.
This study develops a better understanding of the adap-
tation and interaction patterns of bacterial communities
in extreme habitats, and provides the evidence for the
development and conservation of cave system.

Methods
Study sites and sample collection
Zhijin cave is located in Guizhou Province in China
(26°38′31″-26°52′35″N, 105°44′42″-106°11′38″E). The
average annual temperature is 18–20 °C, the average an-
nual humidity is 90%, and the average CO2 concentra-
tion is 0.20%. Three types of samples, including rock,
soil, and stalactite, were collected in December 2016.
Each type of sample was collected from five different
sites (Fig. 5). To collect the samples on the rocks and
stalactites, forty-five swabs moistened with sterile deion-
ized H2O were used to swab the surface (4 cm2 per
swab) of the rocks or stalactites at individual sampling
site [74]. Soil samples (200 g) were collected from the
surface soil (0–10 cm) with a spade at each sampling
site. The swabs and soils were placed in tubes, which

Fig. 5 Distribution of sampling sites. A, J, S, T, W, X, Y represent different sampling sites
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were then capped, placed on ice, and immediately trans-
ported back to store at − 20 °C for further DNA extrac-
tion in the laboratory.

DNA extraction and sequencing
Genomic DNA was extracted [12] from 30 swabs or 1 g
soil. The sample material was resuspended in 1500 μL of
TES buffer (0.3 M sucrose, 25 mM Tris-HCl pH 8.0,
0.25 mM EDTA pH 8.0) supplemented with 50 μL Lyso-
zyme (20 mg/mL). The mixture was vortexed for one
minute and incubated for 1 h at 37 °C. Then 30 μL Pro-
teinase K (20 mg/mL) and 200 μL 10% sodium dodecyl
sulphate were added to the tubes, followed by vortex for
3 min and incubation for 2 h at 55 °C. Subsequently,
200 μL 5M sodium chloride and 400 μL CTAB/NaCl
were added, and the mixture was vortexed for 5 min and
incubated for 30 min at 65 °C. The resulting lysate was
extracted with phenol: chloroform: isoamyl alcohol (vol-
ume 25:24:1). The DNA was precipitated by adding 0.1
volume of 3M Na-acetate (pH 4.8) and 0.6 volume of
isopropanol. The DNA pellets were air-dried under −
20 °C temperature for 2 h, resuspended in 100 μL
ddH2O, and stored at − 20 °C.
Finally, amplicon sequencing was conducted with the ex-

tracted DNA using an Illumina MiSeq platform following
the protocols described by previous study [74]. The gene-
specific primers 515F (5′-GTGCCAGCMGCCGCGGTAA-
3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′)
were developed based on the V4 region of the bacterial 16S
rRNA gene [91]. DNA amplification was carried out by
polymerase chain reaction (PCR) with the Thermo Scientific
Phusion High-Fidelity PCR Master Mix (New England Bio-
labs, UK), and the extracted DNA solution was diluted to 1
ng/μL for amplification with the specific primers. The amp-
lification was carried out in a 30 μL reaction volume consist-
ing of 15 μL of 2 × Phusion Master Mix (New England
Biolabs, UK), 10 μL DNA template, 3 μL of each primer
(2 μM), and 2 μL molecular water. Reaction was performed
with 1min at 98 °C, 30 cycles of 10 s at 98 °C, 30 s at 50 °C,
30 s at 72 °C, and a final extension at 72 °C for 5min. Ampli-
cons from three reactions for each sample were excised
from gels, pooled, and purified using GeneJET Gel Extrac-
tion Kit (Thermo Scientific). The sequencing was performed
on the Illumina MiSeq platform at the Novogene Bioinfor-
matics Technology (Beijing, China).

Data processing, assembly, and annotation
Bacterial raw reads were produced by the Illumina
MiSeq platform, the raw sequences were assembled for
each sample, and low-quality sequences were filtered
using QIIME [92]. The OTUs (Operational Taxonomic
Units) table for each sample were clustered at the 97%
similarity following the Uparse (http://drive5.com/
uparse/), and the OTUs were classified and annotated

based on the clustering results using the RDP database
(http://rdp.cme.msu.edu) offering aligned and annotated
for bacterial 16S rRNA sequences [93].

Statistical analysis
The relative abundances of the top 10 most abundant
phyla in each sample were analyzed. To compare the
similarity of composition in bacterial community, a
NMDS (non-metric multidimensional scaling) analysis
and a test of significance among sample types of bacter-
ial community were performed. Variations of species
composition among samples were tested by ANOSIM
(An Analysis of Similarities) at species level and calcu-
lated using 999 permutations in vegan package. To as-
sess the indicator bacterial group specialized in three
sample types, LEfSe (Linear discriminant analysis effect
size) analysis was performed in python 2.7 environment.
Shared and unique OTUs among the three sample types
were used to generate a Venn diagram in VennDiagram
package. Statistical analysis on α diversity index by
OTUs richness was performed with vegan package in R
[94], the diversity indices of different sample types were
compared with ANOVA (one-way analysis of variance),
and the mean of diversity indices was tested by the LSD
(Least Significant Difference) test in agricolae package
[95]. The functional profiles of the bacteria were ob-
tained by PICRUSt (Phylogenetic Investigation of Com-
munities by Reconstruction of Unobserved States)
analysis [96], based on the results from the normalize_
by_copy_number.py analysis, and then the taxonomic
file was uploaded to perform the functional prediction
online (http://huttenhower.sph.harvard.edu/galaxy/). A
co-occurrence network analysis at genus level was per-
formed to explore the linkage of the different bacterial
community in igraph package [97]. We calculated the
spearman correlation matrix and filtered the correlation
coefficient, which were both lower than ±0.8 and not at
the significant level. Then the co-occurrence network
was plotted. In order to describe the structure of the
network, the average path length, diameter, clustering
coefficient, module, co-occurrence index (C score), ro-
bustness, and counting up the node degrees were mea-
sured in igraph and bipartite packages [98]. Besides, the
networks in collected samples and null model (r2dtable)
were compared to test the network distribution.
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