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Simple Summary: Good feed efficiency (FE) is an important trait to ensure the economic output of
the livestock and poultry industries. Herein, a genome-wide association study was conducted to
identify potential variants and genes associated with seven FE measures in ducks. Genomic DNA
samples of 308 ducks were collected and sequenced. All animals were evaluated concerning body
weight gain (BWG), feed intake (FI), residual feed intake (RFI), feed conversion ratio (FCR), and
weight at 21 (BW21) and 42 days of age (BW42). Overall, 4 (FCR), 3 (FI), 36 (RFI), 6 (BWG), 8 (BW21),
and 10 (BW42) single nucleotide polymorphisms (SNPs) were significantly associated with these FE
traits, respectively. Moreover, candidate genes close to the identified variants were found to be mainly
involved in key pathways and terms related to metabolism. In summary, these findings improve our
understanding of poultry genetics and provide new foundations for breeding programs aimed at
maximizing the economic potential of duck breeding and farming.

Abstract: Feed efficiency (FE) is the most important economic trait in the poultry and livestock
industry. Thus, genetic improvement of FE may result in a considerable reduction of the cost and
energy burdens. As genome-wide association studies (GWASs) can help identify candidate variants
influencing FE, the present study aimed to analyze the phenotypic correlation and identify candidate
variants of the seven FE traits in ducks. All traits were found to have significant positive correlations
with varying degrees. In particular, residual feed intake presented correlation coefficients of 0.61,
0.54, and 0.13 with feed conversion ratio, and feed intake, respectively. Furthermore, data from seven
FE-related GWAS revealed 4 (FCR), 3 (FI), 36 (RFI), 6 (BWG), 8 (BW21), and 10 (BW42) SNPs were
significantly associated with body weight gain, feed intake, residual feed intake, feed conversion
ratio, and weight at 21 and 42 days, respectively. Candidate SNPs of seven FE trait-related genes were
involved in galactose metabolism, starch, propanoate metabolism, sucrose metabolism and etc. Taken
together, these findings provide insight into the genetic mechanisms and genes involved in FE-related
traits in ducks. However, further investigations are warranted to further validate these findings.

Keywords: feed efficiency; phenotypic traits; genome-wide association; single nucleotide
polymorphism study

1. Introduction

Feed efficiency (FE) is an important trait that is often related to measures of animal
productivity [1–3]. In the poultry industry, FE represents its competitive position against
other animal protein sources and it can be regulated to effectively increase profit margins [4].
The traditional measures of FE, such as the ratio of feed consumed to observed body weight
(BW) (i.e., feed conversion ratio (FCR)), can be used to successfully select animals that can
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achieve higher growth rates in livestock and poultry. To compensate for the shortcomings
of FCR calculations, residual feed intake (RFI) has attracted significant attention as an
alternative measure for FE assessment, being used as a production performance evaluation
index for poultry since the 1970s and as a measure of feed utilization efficiency index of
livestock in the 1960s [5–7]. RFI is defined as the difference between the actual animal feed
intake (FI) in relation to its growth rate and BW during a specific feeding period, and it
can accurately reflect the metabolic differences among individuals, in which metabolic
differences are determined by genetic background [8,9]. Since individuals with high RFI
have higher feed intake than those with a low RFI, using RFI as a negative selection trait
is more likely to produce populations with low feed intake and high productivity [10,11].
In sheep, the genetic correlation between daily feed intake (DFI) and RFI was 0.61 [12]. In
addition, the genetic correlation was in the range of 0.693 for China’s local chicken breed.
The phenotypic and genetic correlations between feed intake, body weight, and ADG were
all positive and within the moderate to high range with genetic correlations ranging from
0.28 to 0.67. The genetic correlation between feed intake and RFI (0.62) was positive but
the correlation between feed intake and FCR was approximately zero in turkey [13]. In
addition, other reports on turkey suggested the genetic correlation between DFI and RFI
was 0.62 [13]. Hence, RFI is an effective indicator of feed utilization efficiency in livestock
and poultry [6,7,14,15], thereby representing a valuable tool for genetic improvement of
energy metabolism in non-fast-growing livestock and poultry populations.

Advances in diet formulations have significantly improved the FE for poultry pro-
duction [14]. However, with increasing feed costs, further improvement by genetic and
breeding strategies has become a particularly important aspect in the past decades. By
integrating statistical genetics, molecular biology, and sequencing technology in numerous
studies, the genetic determinants for many economic traits of farm animals have been
revealed, such as the eggshell structure, glycogen content of skeletal muscle, body size,
weight, and reproductive traits [15–20]. Genome-wide association studies (GWASs) have
attracted significant attention to investigate the genetic architecture of phenotypic traits
given the increasing availability of whole-genome sequencing data [21]. GWASs are an
efficient approach used to screen and identify candidate genes and variants associated with
traits of interest and diseases [22,23]. In poultry, great progress has been made concerning
growth traits through genetic selection. Indeed, a 50–60% increase in growth rate has been
attributed to genetic selection. Phenotypic and genetic selection for FE can have significant
effects on carcass composition in pigs, cattle, and chickens [1,2,8]; however, information
describing candidate variants associated with RFI and other traits is still lacking. There-
fore, the present study aimed to investigate candidate markers associated with FI, RFI,
FCR, body weight (BW) gain, and BW in ducks, and better understand their underlying
contributions to FE regulation.

2. Materials and Methods
2.1. Ethical Approval

All experiments with ducks were performed in accordance with the Regulations on the
Administration of Experimental Animals issued by the Ministry of Science and Technology
(Beijing, China) in 1988 (last modified in 2001). Experimental protocols were approved by
the Animal Care and Use Committee of Yangzhou University (YZUDWSY2017-11-07). All
efforts were made to minimize animal discomfort and suffering.

2.2. Samples Collection and Phenotype Registry

A total of 308 F2 segregating populations were used for the GWAS. To construct the F2
segregating population, the F1 generation was produced from orthogonal crosses between
86 Chinese Crested and 13 Cherry Valley ducks that were randomly selected and divided
into seven families. The number of offspring in the F1 generation exceeded 500 individuals,
none of which had crest traits, and the male:female ratio was consistent. The F2 generation
was produced from the natural mating of F1 hybrids and mating was internally limited to
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orthogonal experiments. The families were established while considering the following
principles: (1) a male:female ratio of 1:3, (2) males and females in the same family were
not from the same nest, and (3) female ducks within a family were not half-siblings. To
avoid half siblings, we designed a mating system. The F2 generation was composed of
almost 2000 ducks that displayed segregation of various genetic characteristics, including
meat quality-related traits. When the ducklings hatched, they were weighed each week
afterward. Three weeks after hatching, all members of the F2 generation were moved from
the duckling house to a designed individual shed and raised to the age of 6 weeks. A
slaughter experiment was performed with more than 800 ducks and several traits were
measured, including meat quality. In all families, the color (white and black) trait followed
the recessive inheritance of Mendel’s law of separation.

To obtain the RFI data, the BW of each duck at 42 and 21 days of age was measured.
The FCR was calculated as the ratio of the FI using the grDevies R package. Briefly, after
removing outliers (values greater than three standard deviations from the mean), the
random remaining 308 ducks were used to calculate RFI as the residuals from a regression
model of FI on metabolic BW. Finally, RFI was calculated using the previously described
formula [24] (Equation (1))

RFI = FI −
(

a + b1 × BW0.75
21 + b2 × BWG

)
, (1)

where BW0.75
21 is the metabolic weight at 21 days of age, BWG is the weight gain from 21 to

42 days of age, a is the intercept, and b1 and b2 are partial regression coefficients of FI on
BW0.75

21 and BWG, respectively.

2.3. Phenotype Data Correlation Analysis

To help identify candidate variants, a normal distribution test was performed on all
phenotypic data using the stats R package. The quickcor function in the ggcor R package
(https://github.com/hannet91/ggcor, access on 1 February 2022) was used to perform
correlation analysis between all traits evaluated. The phenotypes that did not follow
a normal distribution were transformed using the Johnson method implemented using
the Johnson R package [25]. Then, the transformed data were used in the subsequent
genetic analyses.

2.4. Genomic DNA Isolation and Sequencing

To isolate high-quality genomic DNA, blood samples from F2 ducks were obtained for
DNA extraction and biochemical examination. High-quality genomic DNA was extracted
using the standard phenol-chloroform protocol. The purity and concentration of the
samples were measured using a NanoDrop ND-2000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA) and agarose gel electrophoresis, respectively. The final
concentration was adjusted to 50 ng/µL, and samples with an A260/280 ratio of 1.8–2.0
were finally submitted for sequencing. Two paired-end sequencing libraries with insert
sizes of 350 bp were constructed according to the Illumina protocol (Illumina, San Diego,
CA, USA). All libraries were sequenced using the Illumina NovaSeq platform, with an
average clean read sequence coverage of 11.60.

2.5. Variant Calling, Filtering, and Data Analysis

A total of 308 sequences were aligned to the mallard genome using the Burrows-
Wheeler Aligner (BWA) software (settings: mem−t 4 −k 32−M−R) [26]. The sample
alignment rates were 96–98%. The average coverage depth for the reference genome
(excluding the N region) was between 9.34–15.74×, and the 4× base coverage (≥4) was
greater than 82.64%. The average coverage depths for the reference genome (excluding
the N region) were 6.00× and 17.66×. Variant calling was performed for all samples
using the Genome Analysis Toolkit (GATK) (version 3.7, Broad Institute, Cambridge, MA,
USA; https://gatk.broadinstitute.org/hc/en-us, access on 10 February 2022) with the

https://github.com/hannet91/ggcor
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UnifiedGenotyper method. SNPs were filtered using the Perl script [27]. After filtering,
the sequencing data retained 12.6 Mb of SNPs (filter conditions: only two alleles; single
sample quality = 5; single sample depth: 5–75; total sample quality = 20; total sample
depth: 308–1,000,000; maximum missing rate of individuals and site = 0.1; minor allele
frequency = 0.05).

2.6. Linkage Disequilibrium Decay Analysis and Principal Component Analysis

Linkage disequilibrium (LD) among the markers was calculated for all SNPs using
PLINK [28] (https://zzz.bwh.harvard.edu/plink/, access on 20 February 2022). The
window size for LD calculation was set based on the number of SNPs located in each
genome. Pairwise LD was determined using squared allele frequency correlations, and
assessed by calculating r2 for pairs of SNP loci. Principal component analysis (PCA) was
conducted using PLINK with the 12,201,978 variants of the 308 ducks to estimate the
population structure. The ggplot2 R package [29] was used for the visual analysis of
the results.

2.7. GWAS Analysis

The multilocus linear mixed model of fixed and random model circulating probability
unification (FarmCPU) method was used to conduct the association analysis between the
SNPs and FE traits [30]. The FarmCPU method used iterative fixed and random effect
models to perform the GWAS, and it was able to minimize confounding between the testing
markers and kinship. The fixed-effect model included numerous pseudo-quantitative trait
nucleotides (QTNs) as covariates to control for false positives and test markers one at a
time. In the fixed-effect model, possible association markers were generated in each round,
and in the random-effect model, the Settlement of MLM Under Progressively Exclusive
Relationship (SUPER) algorithm selected pseudo-QTNs among the possible association
markers. To overcome the overfitting problem of the fixed-effect model, pseudo-QTNs
were used to define individual kinships. To reduce the effect of population stratification on
false positives, the first five principal components were employed as covariate variables in
the GWAS models. To calculate the adjusted or transformed phenotype data of the traits,
the fixed effect model was as follows (Equation (2)):

yadj = XbX + Mtbt + Sjdj + e, (2)

where yadj is the vector of adjusted or transformed phenotype data of the traits; X is a
fixed-effects matrix constructed by the five highest principal components; Mt is the matrix
of t pseudo-QTN genotypes, initiated as an empty set; bX and bt are the respective effects
of the three principal components and t pseudo-QTNs, respectively; Sj is the genotype of
the marker; dj is the impact of the marker; and e is a vector of random residuals. A random-
effect model was updated by utilizing the SUPER algorithm to choose pseudo-QTNs in
three steps: (i) the SNPs were sorted by their p-values determined for one characteristic;
(ii) the SNP with the lowest p-value was selected as the sample for each chromosomal
bin. To create kinship, the most important bins were selected. To optimize the constrained
maximum probability for a trait, the size and number of bins used were considered as
parameters. For the subsequent association test, the selected SNPs (each representing a bin)
were used as the basis for the SNP pool. As a result, SNPs that were in LD (r2 > 0.8) with
the tested SNP were not included in the SNP pool. The random-effects model was set as
follows (Equation (3)):

y = u + e (3)

N (0, K2
u), indicating that u is a genetic effect of the individual. The pseudo QTNs

used to make this matrix were called “kinship matrixes,” and this matrix is called “kinship
matrix” because it is made up of kinship matrices that look like real kinship matrices. SNP
genotypes were coded as 0, 1, and 2, which were changed using PLINK.

https://zzz.bwh.harvard.edu/plink/
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The Bonferroni correction method was used to set the significance threshold for
selecting important SNPs. To maintain the type I errors at 5%, the genome-wide significance
threshold was set at 4.097696 × 10−9 (0.05/12201978), and the rate was maintained at
that level.

2.8. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) Analyses

Based on the LD attenuation distance calculated by PopLDdecay [31], annotation of
related genes in a certain region upstream and downstream of the physical location of
significant SNPs was performed. The sequences of the relevant genes were extracted from
the mallard genome and translated into a protein sequence, which was then submitted to
KOBAS 3.0 [32]. Chicken was selected as the reference species, and the hypergeometric test
and Fisher’s exact test were used as statistical methods.

3. Results
3.1. Basic Descriptive Statistics of FE

Descriptive characterization of the 308 ducks concerning BW at 42 and 21 days of
age, FCR, FI, BWG, and RFI is provided in Table 1. Overall, the minimum and maximum
values of RFI were −924.352 and 941.7816 g/d, respectively. The coefficient of variation
of the FCR (12.1329%) was higher than that of the FI (13.897%). Distribution analysis of
the seven FE traits showed that they did not fit the normal distribution (Figure S1). Thus,
Johnson transformation was performed to ensure that all traits fitted a normal distribution
pattern (Figure S2). In addition, Pearson correlation analysis showed significant positive
correlations with varying degrees among all traits. The correlation coefficients between RFI
and FCR and FI were 0.61 and 0.54, respectively. (Figure 1).

Table 1. Descriptive statistics of FE and related traits.

Trait a Mean (g) SD (g) CV b Min (g) Max (g)

42 days BW (g) 2351.83 314.59 0.13 1581 3074
FCR (g:g) 2.77 0.34 0.12 1.77 3.83
RFI (g/d) 24.15 310.86 −12.87 −924.3 941.78

21 days BW (g) 989.61 145.41 0.15 314 1345
FI (g/d) 3735.72 519.15 0.14 2444 5200
BWG (g) 1362.21 226.32 0.17 722 1932

a FI, RFI, FCR, BWG, and BW represent daily feed intake, residual feed intake, feed conversion ratio, body weight
gain, and body weight, respectively. b CV represents the coefficient of variation.

3.2. SNP Distribution, Population Structure, and LD Decay

Among all 308 ducks evaluated, a total of 12,201,978 SNPs with minor allele fre-
quency > 0.05 and maximum missing rate < 0.1 were finally obtained and used for the
subsequent analyses. All filtered SNPs, with an average density of 10,574.9207 SNPs/Mb,
were distributed within the 40 autosomal chromosomes and chromosome Z (Figure 2a).
PCA revealed two potential subpopulations, which indicated that population stratification
existed in our genomic samples (Figure 2b). Nevertheless, this stratification had little effect
on the phenotypes evaluated, since individuals with different traits were evenly distributed
between the two clusters. In addition, the maximum LD was found to be 0.582 and the
LD of the half-maximum LD was 0.291. The threshold for useful LD was set at r2 = 0.1 at
distances of 80,977 (Figure 2c).
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Figure 1. Pairwise Pearson correlation coefficients for the different FE traits analyzed.

Figure 2. Single nucleotide polymorphism (SNP) distribution, study population structure, and
linkage distribution (LD) decay. (a) SNP distribution in the chromosomes. (b) Principal component
analysis (PCA) of all samples (n = 308). (c) LD decay analysis.
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3.3. GWAS for Traits of FE

Next, candidate SNPs related to the seven FE traits in ducks were investigated within
the initially detected 12,201,978 SNPs. GWAS results showed that six SNPs located on
chromosomes 4, 7, 16, 22, and 25, which were close to TBC1, INPP5A, STK32C, PRKG1,
WFDC8, RPL37, ROCK2, HOXB3, and HOXB2, were associated with BWG (Figure S3,
Table S1). The four SNPs found nearest to EDIL3, COX7C, and ERCC4, located on chro-
mosomes 15 and Z, were significantly associated with FCR (Figure 3, Table S1). Three
SNPs near OTOL1, SI, which is located on chromosome 9, were found to be related to
FI (Figure 3, Table S1). In addition, 36 SNPs located on chromosomes 1, 3, 4, 8, and 17,
which were near LSAMP, GAP43, B3GNT8, ENSAPLG00020009332, FAM241A, RAP1GDS1,
UNC5C, SUCO, ENSAPLG00020001335, ENSAPLG00020001341, and GSTT1, were found
to be candidate SNPs of RFI in ducks (Figure 3, Table S1). Eight SNPs located on chromo-
somes 1, 5, 7, 9, 11, 13, and 25, and close to CCDC59, PPFIA2, TBC1D4, SUSD6, PNLIPRP2,
NGEF, GABRE, ENSAPLG00020002037, CBLN1, and MRPL10, were candidates associated
with weight at 21 days of age (Figure S4, Table S1). Lastly, 10 SNPs located on chromo-
somes 1, 2, 3, 4, 5, 7, 26, 35, and 40, which were close to EP300,ENSAPLG00020000057,
GBE1,SPRY2,NDFIP2,BCKDHB,IL1RAP,ENSAPLG00020011494,Mdga2,RNLS, ENSAPLG000
20005166, FOXP4, ENSAPLG00020010580, and ENSAPLG00020009757, were found to be
associated with weight at 42 days of age (Figure S5).

3.4. Functional Analysis

To better understand the function of the identified candidate genes related to the
seven FE measures, KEGG and GO enrichment analyses were performed. For the weight at
21 days trait, the candidate genes were mostly enriched in the ribosome pathway, struc-
tural constituent of ribosome, large ribosomal subunit, ribosome biogenesis, translation,
and nucleoplasm (Figure S6). Moreover, the terms phosphatidylinositol dephosphoryla-
tion, embryonic skeletal system morphogenesis, ATP binding, zinc ion binding, inositol
phosphate metabolism pathways, phosphatidylinositol signaling system, and vascular
smooth muscle contraction were enriched by candidate genes related to the BWG trait
(Figure S6). Furthermore, the candidate genes related to the weight at 42 days trait were
involved in the Transforming growth factor beta (TGF-β) signaling pathway, Notch sig-
naling pathway, Wnt signaling pathway, FoxO signaling pathway, negative regulation
of gluconeogenesis terms, fat cell differentiation terms, hydrolase activity, and on ester
bond epinephrine binding terms (Figure S7). Pathways of starch and sucrose metabolism,
galactose metabolism, metabolism, carbohydrate metabolic process, integral component
of membrane, and carbohydrate-binding terms were enriched by the FI-related candi-
date genes (Figure 4a). The pathways of drug metabolism (such as cytochrome P450),
metabolism of xenobiotics by cytochrome P450, glutathione metabolism, drug metabolism
of other enzymes, glycosaminoglycan biosynthesis—keratan sulfate, glycosphingolipid
biosynthesislacto and neolacto series, TGF-β signaling pathway, and the terms of GTPase
activator activity, positive regulation of GTPase activity, ventricular cardiac muscle cell
development, growth cone membrane, positive regulation of myoblast differentiation, and
pituitary gland development were involved in RFI-associated genes (Figure 4b). In addition,
the FCR-associated genes were involved in metabolic pathways, oxidative phosphorylation,
cardiac muscle contraction, the Fanconi anemia pathway, and nucleotide excision repair
pathways (Figure 5).
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Figure 3. Genome-wide association study of the three FE traits in ducks. Manhattan plots in which
the genomic coordinates of the SNPs are displayed along the horizontal axis, the negative logarithm
of the association p-value for each SNP is displayed on the vertical axis. The red line indicates the
significance threshold level after Bonferroni correction.
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Figure 4. Functional enrichment analysis of the FE trait-related candidate genes. (a) Feed in-
take, (b) residual feed intake. Red and blue colored ribbons represent GO terms and KEGG
pathways, respectively.
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Figure 5. Functional enrichment analysis of the feed conversion ratio. Red and blue colored ribbons
represent GO terms and KEGG pathways, respectively.

4. Discussion

FE is an important economic trait for farm animals; thus, the identification of major
genes related to FE measures is of great interest. Some variants, genes, and pathways
are considered to be related to FE traits in poultry and livestock. However, the FE trait
is a complex phenotype that can be difficult to assess as compared with other traits [33].
Some signaling pathways have been related to FE, but very few candidate genes have
been identified [34–36]. One possible explanation for this lack of knowledge is that FE is a
complicated economic trait that may be controlled by many different genes. However, each
gene may not have a significant effect on the functioning of the body. Previous studies of
feed traits and growth in Pekin duck found SNP between the fourth and fifth exon of the
IL1RAPL1 gene could explain 2.5% of FCR phenotypic variation [37]. Some studies about
FE evidence show that some cytokines related to immune response have been found to
locate within the FE QTL regions. In chicken, some interleukins (IL10, IL7R) are associated
with growth and gut length [38]. Cobb chickens and Beijing-You chickens examined here
showed some unique characteristics, and only 127 genes associated with RFI were identified
in both breeds [39]. In addition, 14 differently expressed lincRNAs were found in the high-
and low-FE pigs [40–42]. In ducks, previous studies of feed traits and growth in Pekin duck
found SNP between the fourth and fifth exon of the IL1RAPL1 gene could explain 2.5%
of FCR phenotypic variation [35]. Moreover, few studies have focused on exploring the
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underlying mechanisms of duck FE, and those that have often comprise smaller sample
sizes due the high costs and labor required associated with it.

GWAS and quantitative trait locus mapping have been performed in an increasing
number of studies to identify candidate variants of FE traits. However, the main genes
related to FCR remain unclear and only a few candidate variants of duck FE have been
identified to date [7]. In the present study, descriptive statistics were used to explore
the correlation between seven FE traits. Overall, all traits showed significant positive
correlations of varying degrees. Furthermore, detailed genetic sequencing revealed six
candidate SNPs that were associated with BWG. Functional analysis also showed that
the BWG-related genes were mainly involved in phosphatidylinositol dephosphorylation,
embryonic skeletal system morphogenesis, ATP binding, zinc ion binding, pathways
of inositol phosphate metabolism, phosphatidylinositol signaling system, and vascular
smooth muscle contraction. Concerning FCR, the identified related candidate genes were
involved in the metabolic pathway, whereas those related to the weight at 42 days trait
were involved in the TGF-β signaling pathway, Notch signaling pathway, Wnt signaling
pathway, and FoxO signaling pathway. Noteworthy, after 42 days, ducks are in the fast
growth stage. In addition, one of the most potent inhibitors of muscle growth, MSTN, is
activated via the phosphorylation of Smad2/3 [7]. Lastly, genes related to FI were found to
be more involved in the starch and sucrose metabolism, galactose metabolism, carbohydrate
metabolism, and carbohydrate-binding pathways. The identification of associated SNPs
represented a key pace forward in dissecting the genetic basis of FE-related traits in ducks,
which were also helpful for further demonstrating molecular mechanisms of related traits
and designing better selection methods for these traits.

5. Conclusions

Taken together, this study has shown that 4 (FCR), 3 (FI), 36 (RFI), 6 (BWG), 8 (BW21),
and 10 (BW42) candidate SNPs are associated with the BWG, FI, RFI, FCR, and weight at
21- and 42-days traits, respectively. These findings improve our understanding of poultry
genetics and provide a basis for breeding programs aimed at maximizing the economic
potential of duck breeding and farming.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ani12121532/s1, Figure S1. Frequency distribution of the adjusted phenotypes of (a) weight at
42 days of age, (b) feed conversion ratio (FCR), (c) residual feed intake (RFI), (d) weight at 21 days
of age, (e) feed intake (FI), (f) body weight gain (BWG).; Figure S2. Q-Q plot for trait distribution
visualization. (a) weight at 42 days of age, (b) feed conversion ratio (FCR), (c) residual feed intake
(RFI), (d) weight at 21 days of age, (e) feed intake (FI), (f) body weight gain (BWG); Figure S3.
Manhattan plot of BWG; Figure S4. Manhattan plot of weight at 21 days of age; Figure S5. Manhattan
plot of weight at 42 days of age; Figure S6. GO and KEGG enrichment of candidate genes of weight
at 21 days (top) of age and BWG (bottom). Red and blue colored ribbons represent GO terms and
KEGG pathways, respectively; Figure S7. GO and KEGG enrichment of candidate genes of weight at
42 days of age. Red and blue colored ribbons represent GO terms and KEGG pathways, respectively.
Table S1. The information of all significant SNPs of each trait in duck.
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