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Abstract: In this work we report the synthesis of new hybrid nanomaterials in the core/shell/shell
morphology, consisting of a magnetite core (Fe3O4) and two consecutive layers of oleic acid
(OA) and phthalocyanine molecules, the latter derived from cashew nut shell liquid (CNSL). The
synthesis of Fe3O4 nanoparticle was performed via co-precipitation procedure, followed by the
nanoparticle coating with OA by hydrothermal method. The phthalocyanines anchorage on the
Fe3O4/OA core/shell nanomaterial was performed by facile and effective sonication method. The
as obtained Fe3O4/OA/phthalocyanine hybrids were investigated by Fourier transform infrared
spectroscopy, X-ray diffraction, UV-visible spectroscopy, transmission electron microscopy (TEM),
thermogravimetric analysis and magnetic measurements. TEM showed round-shaped nanomaterials
with sizes in the range of 12–15 nm. Nanomaterials presented saturation magnetization (Ms) in the
1–16 emu/g and superparamagnetic behavior. Furthermore, it was observed that the thermal stability
of the samples was directly affected by the insertion of different transition metals in the ring cavity of
the phthalocyanine molecule.

Keywords: nanomaterials; cashew nut shell liquid (CNSL); phthalocyanines; superparamagnetic

1. Introduction

Nanomaterials containing Fe3O4 nanoparticles have received great attention due to their promising
and multifunctional properties, besides potential medical applications in magnetic resonance imaging
(MRI) and for cancer therapy [1], water treatment membranes [2], catalysis [3], magnetic separation [4]
and detection DNA [5]. Previous studies [6] have shown the possibility of forming bifunctional
therapeutic agents for use in photodynamic therapy (PDT) and magnetic hyperthermia. Specifically,
the PDT aims at the treatment of several types of cancer, which combines a photosensitizer drug and
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light to generate active species of oxygen that fight the disease [7]. For this application, phthalocyanines
commonly appear as excellent photosensitizers.

Phthalocyanines and their metal complexes have been considered versatile molecules, with
remarkable optical and lasing properties, thermal and chemical stabilities [8], with maximum light
absorption occurring in the visible region as well as being capable of producing singlet oxygen with
high quantum yields [9]. Moreover, they have shown several extents of applicability in the fields of solar
cells [10], liquid crystals [11] and as systems for fabrication of organic light-emitting diodes (OLED) [12].
Phthalocyanines consist of an aromatic macrocycle with an extensive conjugated π-electron system
that can be readily modified by central coordination of metal atoms and peripheral substitution on the
phthalocyanine ring, either by electron-donating or withdrawing groups [13,14].

The preparation of new eco-friendly fine chemicals derived from renewable and natural sources is
of great interest. In this sense, the synthesis of cardanol-based phthalocyanines has been described in
the literature [15–17]. Cardanol is the main component of technical cashew nut shell liquid (t-CNSL),
obtained as a by-product during the industrial processing of cashew nut (Anacardium occidentale L.).
t-CNSL is considered one of the richest natural sources of phenolic compounds; it is a renewable oil
with low commercial value [18,19]. It consists of a mixture of long alkyl chain phenols (cardanol,
cardol, anacardic acid and 2-methylcardol), with interesting properties and the possibility of chemical
transformation for various applications [20–23].

Many studies related to hybrids have described the chemical interaction between phthalocyanine
molecules and solid-state nanoparticles occurring through phthalocyanine’s peripheral functional
groups that can anchor the particles’ surfaces [24–27]. Other reports have addressed a physical
interaction, including alkyl chains in the phthalocyanine peripheral structure [28–30]. In the
present study we report the successful synthesis of novel magnetic nanomaterials made by
the combination of magnetite Fe3O4 nanoparticles, with the surface functionalized in sequence
with oleic acid and cardanol-derived phthalocyanines; the latter passivation is favored by Van
der Waals interactions between alkyl chains. We show also the influence of different metals
coordinated to the center of phthalocyanines on the thermal and magnetic properties of these hybrid
inorganic–organic nanomaterials.

2. Results

2.1. FT-IR Spectra

FT-IR spectroscopy is usually employed for the fast and efficient identification of chemical
molecules and, in this view, of molecular ligands possibly functionalizing magnetite nanoparticles [31].
FTIR carried out on Fe3O4 sample shows characteristic bands of Fe–O at 580 cm−1, as seen in Figure 1a.
The presence of hydroxyl groups that reside on the Fe3O4 nanoparticles’ surface is attributed to the
synthetic procedure conducted in aqueous media. The vibrational modes assigned to O–H stretching
were observed at 3411cm−1 and the band at 1637cm−1 was attributed to angular vibration of O–H. As
expected, the characteristic bands of Fe3O4 nanoparticles decreased after coating (Figure 1b–f). The
spectrum of the Fe3O4@OA/Pc (Figure 1b) presents a band at 3292 cm−1 attributed to the N–H stretching
of phthalocyanine core [32]. The spectra of other hybrids, based on different metal phthalocyanines
(Fe3O4@OA/CoPc, Fe3O4@OA/CuPc, Fe3O4@OA/NiPc and Fe3O4@OA/ZnPc) are virtually identical;
bands between 2950 and 2850 cm−1 were assigned to the C–H bond stretching from aliphatic groups,
and the bands at 1610 cm−1 to the aromatic C=C bonds stretching. The absence of the characteristic
absorption bands at 3292 and 1014 cm−1, assigned to N–H bond vibration, confirms that no free-base
phthalocyanine is present.
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Figure 1. FT-IR analysis of (a) Fe3O4; (b) Fe3O4@OA/Pc; (c) Fe3O4@OA/CoPc; (d) Fe3O4@OA/CuPc;
(e) Fe3O4@OA/NiPc; and (f) Fe3O4@OA/ZnPc.

2.2. X-Ray Powder Diffraction

XRD analysis was performed to study the crystalline structure of the Fe3O4 nanoparticles. As
shown in Figure 2 nine diffraction peaks were viewed at 2θ = 21.5◦, 35.2◦, 41.5◦, 50.6◦, 63.1◦, 67.4◦,
74.5◦, 88.9◦ and 110.5◦, corresponding to (hkl) Miller indices of (111), (220), (311), (400), (422), (511),
(440), (533) and (553), respectively. All peaks were consistent with the reference pattern of the Fe3O4

cubic inverse spinel structure (JCPDS card # N◦ 08-4611) with spatial group Fd3M. The size of the
Fe3O4 was calculated using the Debye–Scherrer equation (1.0) based on the (311) peak.

D =
K.λ
β.cos θ

(1)

where D is crystal size (nm), K is a constant with value 0.9, λ is the wavelength of the X-ray radiation
source (λ = 0.17889 nm, CoKα1), β is the measure of the width of maximum diffraction peak at the
point where the intensity falls in half or “full width at half maximum (FWHM)”, and θ is the peak
position [33]. The crystal size calculated for magnetite was of 11 nm, a value compatible with those
already reported in the literature [34,35].
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Figure 2. X-ray powder diffraction pattern of Fe3O4.

2.3. Thermal Analysis

Thermogravimetric results of the Fe3O4@OA/Pc, Fe3O4@OA/CoPc, Fe3O4@OA/CuPc,
Fe3O4@OA/NiPc and Fe3O4@OA/ZnPc samples under a heating rate of 10 ◦C min−1, and N2 atmosphere,
are shown in Table 1 and Figure 3. The decomposition of the materials occurred in two different stages
and presented distinct residual masses in the range of 12–48%, which correspond to their metal oxides.
All samples showed gradual weight loss of 34–65% in the temperature range of 167–740 ◦C. This event
corresponds to the degradation of oleic acid and of peripheral chains attached to the macrocyclic
moiety of the macromolecule. Decomposition and smaller weight losses of 13–22%, observed in the
temperature range of 600–800 ◦C, correspond to the oxidative degradation of macrocyclic moiety of
the phthalocyanines. Moreover, it was observed that there was a larger mass loss in Fe3O4@OA/Pc
around 400 ◦C than in the other nanomaterials. This may be related to differences in the stacking
arrangement of phthalocyanine molecules on the nanoparticle surface, which in the case of the free base
forms aggregates, by π–π interaction, more efficiently than metallophthalocyanines when interacting
with Fe3O4@OA, influencing the final mass of nanomaterial. In general, the complex aggregated with
magnetite showed a initial degradation temperature lower than that of the non-metaled macromolecule.
According to Barreto et. al. [34], this behavior is associated with the capacity of the nanoparticles to act
as promoters of the degradation process. The order of observed thermal stabilities of metal complexes
in inert atmosphere was: Fe3O4@OA/Pc > Fe3O4@OA/CuPc > Fe3O4@OA/CoPc > Fe3O4@OA/ZnPc >

Fe3O4@OA/NiPc.
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Table 1. Degradation temperatures, mass losses and mass residues of pyrolysis decomposition at
heating rates of 10 ◦C min−1.

Nanomaterials
First Stage Second Stage Residue/%

Range/◦C Mass Loss/% Range/◦C Mass Loss/%

Fe3O4@OA/Pc 386–603 65.00 615–800 22.22 12.32
Fe3O4@OA/CoPc 292–673 35.39 675–641 12.88 48.71
Fe3O4@OA/CuPc 285–690 42.10 692–725 22.18 34.32
Fe3O4@OA/NiPc 255–673 34.71 675–707 12.53 47.95
Fe3O4@OA/ZnPc 167–740 47.74 741–784 12.07 38.83

Figure 3. Thermogravimetric analysis of the Fe3O4@OA/Pcs under inert atmosphere.

2.4. Transmission Electron Microscopy

The morphology and particle size of the samples were studied in more detail by TEM analysis, as
shown in Figure 4. The TEM images showed that most of nanoparticles exhibited a roughly spherical
shape and the spontaneous tendency to aggregate when deposited out from a solution onto a substrate.
The Van der Waals and π-conjugated macrocyclic interactions of the phthalocyanines in Fe3O4 surface
seem to favor this agglomeration. Moreover, it was possible to observe nanoparticle sizes with diameters
of 12 ± 2 nm, 16 ± 3 nm, 13 ± 2 nm, 15 ± 4 nm and 13 ± 2 nm for Fe3O4@OA/Pc, Fe3O4@OA/CuPc,
Fe3O4@OA/NiPc, Fe3O4@OA/ZnPc and Fe3O4@OA/CoPc, respectively. Fe3O4 isolated with a diameter
of 10 ± 2 nm tended to agglomerate due to strong interparticle magneto-dipole interactions [35], but
the coating with organic molecules noticeably decreased this behavior, as observed for the magnetic
nanomaterials (Figure 4).
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Figure 4. TEM images of (a) Fe3O4; (b) Fe3O4@OA/Pc; (c) Fe3O4@OA/CuPc; (d) Fe3O4@OA/NiPc; (e)
Fe3O4@OA/ZnPc; and (f) Fe3O4@OA/CoPc.

2.5. Magnetic Measurements

For verifying the influence of the different metals of the phthalocyanines on the magnetization
of the nanomaterials, measures of the magnetization were performed as a function of magnetic
field at room temperature using a vibrating sample magnetometer. The magnetization curves are
presented in Figure 5. The magnetization curves of all nanomaterials exhibited a magnetic response
to magnetic field variation and a characteristic superparamagnetic behavior, as evidenced in other
previous works [17,36]. The values of saturation magnetization (Ms) found for Fe3O4@OA/Pc,
Fe3O4@OA/CoPc, Fe3O4@OA/ZnPc, Fe3O4@OA/CuPc and Fe3O4@OA/NiPc were about 16, 11, 5, 3
and 1 emu/g, respectively. In general, the magnetization values obtained from the nanomaterials were
significantly smaller than Fe3O4 nanoparticles (81 emu/g), in total agreement with similar examples
reported in the literature [37]. At first such differences in magnetization values can be explained by
the presence of non-magnetic components, namely oleic acid and phthalocyanines, which adhere
to the nanoparticle surfaces, and by different relative Fe3O4 contents [36,37]. Thus, the reduction in
saturation magnetization is basically due to the fact that these aggregated magnetite materials have
a low magnetic response. Therefore, when phthalocyanine derivatives adhere to the nanoparticle
surface, they contribute to the total sample mass, but do not contribute significantly with magnetic
moments. Thus, like magnetization, the ratio of magnetic moments to mass (emu/g) showed a natural
decreasing trend.
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Figure 5. Magnetization curves of pure (a) Fe3O4 and (b) Fe3O4@OA/Pcs.

2.6. Optical Properties

The absorption and emission spectra of phthalocyanines in the ultraviolet-visible region are
shown in Figure 6. Previous studies have shown that the presence of magnetic nanoparticles do not
affect the absorbance and emission properties of the phthalocyanine derivatives [6]. Phthalocyanine
exhibits typical electronic spectra with two absorption regions (Figure 6a), where the Q band is around
600–700 nm and the B band is near the UV region, around 300–450 nm. In metallo-phthalocyanines,
Q bands consist of one sharp and intense band and two shoulders of low intensity, while in free
base phthalocyanine these are of equal intensity. Figure 6b shows the maximum emission spectra
of the phthalocyanines that occurs after excitation at 595 nm. The excitation spectra were similar to
absorption spectra for Pc and ZnPc with similar wavelengths at 710 and 695 nm, respectively. This may
suggest that the nuclear configurations of the ground and excited states are similar and not affected
by excitation. This behavior is typical of phthalocyanine complexes [38]. The difference between the
fluorescence intensities of the Pc and ZnPc was due to influence of axial metal coordinated to the
center of macrocycle. It is important to note that emission corresponding in this spectral region was
not observed for other compounds (NiPc, CoPc and CuPc), due to paramagnetic behavior of central
metals in the phthalocyanine cavity [39].
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Figure 6. Absorption spectra (a) and emission spectra (b) of phthalocyanines.

3. Materials and Methods

3.1. Synthesis and Metallation of Phthalocyanines from CNSL

Figure 7 shows the synthetic route of phthalocyanines obtained from hydrogenated cardanol;
that is 3-n-pentadecylphenol (1). The compound (1) was preferred as starting material due to its
homogeneous chemical composition [40]. The compounds 4-(3-pentadecylphenoxy)phthalonitrile
(2) and tetrakis-(3-pentadecylphenoxy)phthalocyanine (3) were prepared according to procedures
previously described in the literature [15,16,41] with some modifications. Metal-free phthalocyanine (3)
was prepared by mixing 0.20 g of compound 2 and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (0.70 g,
70.0 µL) that was refluxed in butan-1-ol (10 mL) for 16 h. To obtain metallo-phthalocyanines 0.04 g of an
acetate-based metal salt X(CH3COO)22H2O (X = Zn, Cu, Co and Ni) was added to the reaction batch.
After cooling to room temperature, ethanol was added and the solid filtered. The product was purified
by column chromatography (silica gel) using methylene chloride (CH2Cl2) as eluent. The solvent was
evaporated and the product obtained as a blue solid (3). Metal-free phthalocyanine (Pc): Yield 46%.
1H NMR (CDCl3, ppm) broad signals: −3.65 (2H), 0.84 (t, J = 8.4 Hz, 12H), 1.16–1.38 (m, 96H), 1.76 (m,
8H), 2.76 (t, J = 7.8 Hz, 8H), 7.13–8.62 (m, 28H). FT-IR (KBr, cm−1): 3292, 2922, 2852, 1606, 1583, 1523,
1467, 1249, 1140, 1093, 1012, 742. UV-vis (λmax/nm, CHCl3): 607, 639, 670, 704. LC-MS (m/z): 1724 [M
+ H]–. Cobalt phthalocyanine (CoPc): Yield 68%. 1H NMR (CDCl3, ppm): 0.84 (t, J = 6.9 Hz, 12H), 1.25
(s, 96H), 1.59 (m, 8H), 2.62 (t, J = 7.7 Hz, 8H), 7.70–6.83 (28H). FT-IR (KBr, cm−1): 2922, 2852, 1608, 1583,
1468, 1248, 1142, 960, 750. UV-vis (λmax/nm, CHCl3): 612, 675. Zinc phthalocyanine (ZnPc): Yield 55%.
1H NMR (CDCl3, ppm) broad signals: 0.94–0.86 (m, 12H), 1.65–1.08 (m, 104H), 2.62 (t, J = 7.8 Hz, 8H),
6.81–7.73 (28H). FT-IR (KBr, cm−1): 2922, 2852, 1606, 1581, 1485, 1246, 1142, 948, 744. UV-vis (λmax/nm,
CHCl3): 616, 684. Nickel phthalocyanine (NiPc): Yield 63%. 1H NMR (CDCl3, ppm) broad signals:
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0.84 (t, J = 6.5 Hz, 12H), 1.17–1.27 (m, 96H), 1.74 (m, 8H), 2.72 (d, J = 7.5 Hz, 8H), 7.08–7.76 (m, 28H).
FT-IR (KBr, cm-1): 2923, 2852, 1608, 1583, 1473, 1250, 1143, 961, 751. UV-vis (λmax/nm, CHCl3): 612,
676. Copper phthalocyanine (CuPc): Yield 72%. 1H NMR (CDCl3, ppm) broad signals: 0.87 (d, J =

6.7 Hz, 12H), 1.26 (s, 96H), 1.61 (m, 8H), 2.63 (t, J = 8.6 Hz, 8H), 6.88–7.72 (28H). FT-IR (KBr, cm−1):
2921, 2852, 1607, 1582, 1467, 1250, 1143, 957, 746. UV-vis (λmax/nm, CHCl3): 617, 684.

Figure 7. Synthetic route for phthalocyanines. (1) 3-pentadecylphenol; (2) 4-(3-pentadecylphenoxy)
phthalonitrile; and (3) tetrakis-(3-pentadecylphenoxy) phthalocyanine.

13C NMR (300 MHz, CDCl3), 1H NMR (300 MHz, CDCl3) and Mass Spectra (MALDI-TOF-MS)
of the compounds (a) Pc, (b) CoPc, (c) CuPc, (d) NiPc and (e) ZnPc have been reported in the
Supplementary Materials section respectively in Figure S1, Figure S2 and Figure S3.

3.2. Synthesis of Magnetite

To form the spinel phase Fe3O4 the co-precipitation processing route was followed [34,35]. Thus,
a solution of metal salts containing Fe2+/Fe3+ in the molar ratio of 1:2 was dissolved in Milli-Q water
and heated to 80 ◦C. Then, under to vigorous stirring, a 30 wt% NH4OH solution was added until the
mixture reached pH = 10. The as-obtained black precipitate was washed several times with Milli-Q
water until the residual solution became neutral. Lastly, the magnetic nanoparticles were dried. The
chemical reaction of Fe3O4 formation is written in Equation (2).

Fe2+ + 2Fe3+ + 8O−→ Fe3O4 + 4H2O (2)

3.3. Preparation of Magnetic Nanomaterials

The hybrid nanomaterial consisted of magnetic nanoparticles stabilized by an inner layer of oleic
acid, and an outer layer of phthalocyanine. Initially, magnetite (125.0 mg) was subjected to mechanical
stirring in 50 mL of Milli-Q water, then few drops of NH4OH (30%) were added until pH = 10 was
reached, afterwards, 50 mL of oleic acid (OA) were further incorporated in the batch. Posteriorly, the
ferrofluid obtained was separated from the organic phase by magnetic attraction. The formation of the
second passivation layer was performed through the addition of a solution of phthalocyanine (12.0 mg),
dichloromethane (40 mL) and ethanol (60 mL) under sonication at 40 ºC for 30 min, with subsequent
addition of an excess of ferrofluid (Figure 8a). The magnetic hybrid (Fe3O4@OA/Pc) was separated by
using a magnet (Figure 8b). This methodology was reproduced for the preparation of all nanomaterials
described herein (Fe3O4@OA/CoPc, Fe3O4@OA/NiPc, Fe3O4@OA/CuPc and Fe3O4@OA/ZnPc).
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Figure 8. (a) Schematic representation of preparation of magnetic phthalocyanines: Step 1) ferrofluid
produced with the mixture of Fe3O4 and oleic acid; Step 2) reaction of ferrofluid with phthalocyanines.
(b) Influence of the magnetic field under the suspension of Fe3O4@OA/Pc in ethanol.

3.4. Characterization

FTIR measurements of the samples were performed using a Perkin Elmer 2000 spectrophotometer
in a 400–4000 cm−1 range (KBr pellet). The phthalocyanines were analyzed by 1H NMR spectra recorded
on a Bruker Avance DRX-500 (500 MHz 1H) using CDCl3 as solvent and by liquid chromatography–mass
spectrometry (LC-MS) on a Bruker Microflex LT (Maldi Tof) using alphacyano and dichloromethane as
a matrix, and 5% TFA as mobile phase. Furthermore, UV–Vis absorption was recorded by a Varian
Cary 5000 spectrophotometer (in CHCl3). Photoluminescence excitation (PLE) measurements were
obtained using a Horiba Nanolog fluorometer equipped with a liquid N2-cooled InGaAs detector
with the excitation range from 410 to 550 nm (coming from a Xe lamp) and emission range from
600 to 800 nm. The X-ray powder diffraction (XRPD) analysis was performed in an X-ray powder
diffractometer Xpert Pro MPD (Panalytical) using Bragg–Brentano geometry in the range of 20–120◦

with a rate of 1◦ min−1. CoKα radiation (λ = 1.7889 Å) was used and the tube operated at 40 kV and
30 mA, with the experimental patterns using the Rietveld algorithm to better identify and quantify
crystallographic phases. Thermogravimetric analysis (TGA) experiments of the nanomaterials were
all operated on a Mettler Toledo TGA/SDTA 851e equipment, under nitrogen atmospheres (constant
flow of 50 cm3 min−1), with a heating rate of 10 ◦C min-1, sample mass of 10 mg, and temperature
range from 25 to 800 ◦C. The magnetization measurements were performed at room temperature
with a home-made vibrating sample magnetometer (VSM), calibrated using a pure Ni wire and,
after measuring the mass of each sample, the magnetization was given in emu/g. The morphologies
and microstructures of prepared samples were analyzed by a Jeol JEM-1011 transmission electron
microscope (TEM) operating at 100 kV, equipped with a CCD camera ORIUS 831 from Gatan.

4. Conclusions

In summary, we demonstrated a facile strategy for the development of magnetic nanomaterials
based on Fe3O4 and phthalocyanines derived from biomass. The results of TEM confirmed the
nano-sized particles with spherical morphology. The decomposition temperatures of Fe3O4@OA/Pcs
can reach 380 ◦C, indicating their excellent thermal stability. We also observed that, despite showing
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superparamagnetic behavior, the transition metals of metallo-phthalocyanines appear to negatively
influence the magnitude of the nanomaterial magnetization. Thus, we showed that by Van der Waals
interactions occurring between the phthalocyanines and oleic acid alkyl chains emerging from the
surface of Fe3O4, it was possible to obtain stable and magnetic hybrid nanomaterials.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/18/3284/s1,
Figure S1: 13C NMR (300 MHz, CDCl3) of the (a) Pc, (b) CoPc, (c) CuPc, (d) NiPc and (e) ZnPc, Figure S2:
1H NMR (300 MHz, CDCl3) of the (a) Pc, (b) CoPc, (c) CuPc, (d) NiPc and (e) ZnPc, Figure S3: Mass Spectra
(MALDI-TOF-MS) of the (a) Pc, (b) CuPc, (c) NiPc, (d) ZnPc and (e) CoPc.
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