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Short amylin receptor antagonist 
peptides improve memory deficits 
in Alzheimer’s disease mouse 
model
Rania Soudy1,6, Ryoichi Kimura4, Aarti Patel1, Wen Fu1, Kamaljit Kaur5, David Westaway   1,2,3, 
Jing Yang1,3 & Jack Jhamandas1

Recent evidence supports involvement of amylin and the amylin receptor in the pathogenesis of 
Alzheimer’s disease (AD). We have previously shown that amylin receptor antagonist, AC253, 
improves spatial memory in AD mouse models. Herein, we generated and screened a peptide library 
and identified two short sequence amylin peptides (12–14 aa) that are proteolytically stable, brain 
penetrant when administered intraperitoneally, neuroprotective against Aβ toxicity and restore 
diminished levels of hippocampal long term potentiation in AD mice. Systemic administration of 
the peptides for five weeks in aged 5XFAD mice improved spatial memory, reduced amyloid plaque 
burden, and neuroinflammation. The common residue SQELHRLQTY within the peptides is an essential 
sequence for preservation of the beneficial effects of the fragments that we report here and constitutes 
a new pharmacological target. These findings suggest that the amylin receptor antagonism may 
represent a novel therapy for AD.

Alzheimer’s disease (AD) is the most common form of dementia that affects over 44 million individuals world-
wide, and its prevalence of this condition continues to rise1. One of the defining features of AD is the presence 
of soluble oligomers of amyloid beta (Aβ) protein that aggregate into extracellular fibrillary deposits known as 
amyloid plaques. Progressive accumulation of intra- and extracellular Aβ within brain regions, that are critical for 
memory and cognitive functions, is linked to the neurodegeneration observed in this condition2–4. Progressive 
accumulation of Aβ is an early pathological event in AD and may precede clinical symptom onset by 15–25 
years5. Recent clinical trials aimed at reducing the levels of Aβ, either through increasing its brain clearance using 
Aβ vaccine-based therapies, or inhibiting its generation by blocking the involved secretase enzymes, have been 
largely unsuccessful6,7. Thus as yet, of the four FDA-approved therapies for AD, none are disease-modifying.

One potentially promising approach for the treatment of AD includes targeting specific receptors that serve 
as mediators of the toxic effects of Aβ oligomers. Multiple receptors (the p75NTR receptor, scavenger receptors 
such as SCARA1/2, neuronal nicotinic acetylcholine receptors), have been implicated in mediating Aβ-induced 
disruption of neuronal and synaptic processes in AD and thus identified as potential drug targets for develop-
ing anti-Aβ therapies, although as yet none have fulfilled this goal8,9. Nonetheless, identification of a target that 
is implicated in the three key aspects of Alzheimer disease pathogenesis, i.e. neuronal loss, inflammation and 
vasculopathy, could offer a promising avenue for the development of therapeutics aimed at mitigating disease 
progression.

Emerging lines of evidence have highlighted the role of amylin receptor (AMY) as a putative target for the del-
eterious effects of Aβ in the context of AD10. Amylin receptor is a Class B G-protein-coupled receptor comprised 
of heterodimers of calcitonin receptor (CTR) and one of three receptor activity modifying proteins (RAMP1-
3) that generate multiple subtypes of amylin receptors, AMY1-311,12. Amylin receptor antagonist, AC253, is a 
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24-amino acid peptide, originally derived from 8-32 fragment of salmon calcitonin hormone13. Data from our 
group and others demonstrates that amylin receptors are abundantly expressed on neurons, microglia, and vas-
culature, three core elements implicated in the AD pathology10,14–16. Furthermore, Aβ-induced dysfunction and 
death of neurons that are preferentially affected in AD is attenuated by administration of amylin receptor antag-
onists, AC253 and AC18717–19. Interestingly, AC253 also effectively reverses the impairment of Aβ- or human 
amylin (hAmylin)-induced depression of hippocampal long-term potentiation (LTP), a recognized cellular 
surrogate of memory20. Most importantly, a recent study demonstrated that intracerebroventricular (icv) infu-
sions of AC253 or intraperitoneal administration of the brain penetrant cyclized AC253 (cAC253), improved 
age-dependent deficits in spatial memory and learning in transgenic AD mice without gross adverse effects21. 
These antagonists improved synaptic markers along with suppression of microglial activation and neuroinflam-
mation21. Other studies have reported that peripheral administration of amylin or its synthetic analog, pramlint-
ide, resulted in improved spatial memory in mouse models of AD22,23. The improvement in behavioral measures 
and accompanying reduction in amyloid burden in the brain in these studies was attributed to an efflux of brain 
Aβ (including monomers and small oligomers) into the blood. Thus, the presence of amylin peptides in the cir-
culation was postulated to serve as a “peripheral sink” for the egress of amyloid across the blood brain barrier and 
deemed to involve amylin receptors located on endothelial cells23. Collectively, these studies identify the amylin 
receptor as a viable and potentially promising target for the development of AD therapeutics.

In order to optimize AC253 based peptides for AD therapy, we generated shorter peptide fragments based on 
the AC253 sequence for additional translational studies. Shorter peptides offer several advantages over longer 
sequences: higher stability and selectivity, better toxicity profile, significant brain penetration when administered 
systemically and a lower cost for both small- and large-scale synthesis and purification24–26. Hence, we screened 
an AC253-based peptide fragment library and identified two promising shorter peptides, R5 (SQELHRLQTYPR), 
and R14 (LGRLSQELHRLQTY), which demonstrate high affinity binding to the amylin receptor subtype 3 
(AMY3) and also recapitulate neuroprotective properties of the full length AC253. In experimental in vitro and 
in vivo transgenic AD models, these peptide fragments show a significant improvement in memory and learning, 
and an attenuation of some characteristic features of AD pathology.

Results
Identification of short peptide fragments that selectively bind to amylin receptor.  In order 
to identify shorter peptides with selective recognition and binding to amylin receptor, enhanced metabolic sta-
bility and brain penetrability than the linear full length peptide, we designed a peptide library comprised of 14 
different sequences, namely, R1-R14. Fragments (R1−R13) are 12 amino acids in length and peptide R14 is 14 
amino acids. The initial fragment comprised the first 12 amino acids from the N-terminus of AC253 sequence, 
and subsequent fragments derived from shifting one amino acid at a time, as depicted in Supplemental Fig. S1A. 
The library was synthesized on non-cleavable cellulose membrane (aminoPEG500) using SPOT synthesis, where 
the C-terminus of the peptide was attached to the surface of the amino-PEG500 cellulose membrane through 
β-ala spacer as described previously27. Each amino acid was added to the free amino functional group using a 
stepwise Fmoc-SPPS procedure. Each peptide was synthesized in duplicate at approximately 50 nmol on a spot 
on the membrane with a diameter of 4 mm (Supplemental Fig. S1B). Since our previous studies identified AMY3 
receptor subtype as the preferential target for the direct actions of Aβ (and hAmylin) at the level of the cell mem-
brane10, we targeted this receptor isoform in the current study. A peptide library membrane was incubated with 
green fluorescent protein (GFP) labeled AMY3-expressing HEK293 cells (HEK-AMY3) to identify the highly 
binding sequences (Supplemental Fig. S1B). The relative binding affinities of peptide fragments were determined 
through measuring and plotting the net fluorescence intensity of the bound GFP labeled live cells on each spot as 
measured with a fluorescence Kodak imager (Supplemental Fig. S1C). Furthermore, to evaluate amylin receptor 
specificity of binding, the library was further screened against transfected CTR, and Wild-type HEK293 cells 
(HEK-WT). (Supplemental Fig. S1C).

The screening identified several peptide fragments that demonstrated significant specific binding to 
HEK-AMY3 cells compared to either HEK-WT or HEK-CTR cells (Supplemental Fig. S1C,D). Fragments from 
the N-terminus domain showed higher affinity binding to the AMY3 receptor compared to those generated from 
the C-terminal region. Among the array of peptide fragments, peptides R5, and R14 were selected as demonstrat-
ing the highest specific binding to HEK-AMY3 expressing cells (Supplemental Fig. S1D). Both peptide R5, and 
R14 bind with 2- fold more affinity to HEK-AMY3 cells based on intrinsic fluorescence measurement compared 
to HEK-WT cells, which confirmed their specificity for the amylin receptor and thus they were chosen for further 
investigation.

R5 and R14 fragments showed significant binding to AMY3 receptor and are neuroprotective 
against Aβ-induced neuronal cell death in vitro.  Peptide fragments R5, and R14 that demonstrated 
specific binding to AMY3 were synthesized for further in vitro studies, and R11, a peptide sequence with minimal 
binding to AMY3 expressing cells, was used as a negative control. Synthetic peptides were obtained in high yields 
(>75%), and purity exceeding 95% (Supplementary Table S1).

Next, we labeled R5, R14 peptides with Cy5.5 to examine their in vitro binding efficacy and specificity com-
pared with AC253 in HEK-AMY3 cells using flow cytometry and fluorescence microscopy (Fig. 1A,C). Flow 
cytometry data (Fig. 1A,B) revealed that R5, and R14 both displayed enhanced binding to HEK-AMY3 cells 
similar to AC253 with mean fluorescence intensity arbitrary units of 70 ± 10, 50 ± 15, and 20 ± 5, respectively. In 
HEK-WT cells, R5, R14 and AC253 demonstrated reduced binding and uptake compared to that for HEK-AMY3 
cells, thus confirming AMY3 binding specificity. The R11 fragment showed minimal binding to AMY3, further 
supporting our library screening results. Uptake of R5 and R14 into HEK-AMY3 cells was competitively inhibited 
when cells were pre-incubated with unlabeled AC253 with mean fluorescence intensity of 1 × 106, 1.5 × 106 for 
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R5, and R14, respectively, thus supporting amylin receptor based peptide cell uptake (Fig. 1B). With fluorescence 
microscopy, we observed strong binding of R5 and R14 fragments to the cell membrane of HEK-AMY3 cells 
compared to AC253, with minimal binding in HEK-WT cells (Fig. 1C,D).

We next examined the antagonistic properties of R5, and R14 at the AMY3 receptors and whether these pep-
tides showed neuroprotective properties against Aβ toxicity. Human amylin is a potent agonist at amylin recep-
tor stimulating cAMP production in cells10. In the first in vitro bioassay, we examined ability of R5 and R14 to 

Figure 1.  Fragments R5 and R14 retain amylin receptor antagonist and neuroprotective properties against Aβ 
toxicity. (A) Flow cytometry histograms showed that Cy5.5 labeled AC253, R5 and R14 have enhanced specific 
binding to AMY3 cells (HEK-AMY3) compared to wild type HEK cells (HEK-WT). R11 showed minimal 
binding activity. (B) Bar graphs showing quantification of flow cytometry uptake of Cy5.5 labeled AC253, R5 
and R14 peptides in HEK-AMY3 compared to HEK-WT cells. There was no significant difference between 
AC253, R5 and R14. The uptake of R5 and R14 was significantly reduced in presence of unlabeled AC253 
peptide (competitive binding inhibitor for amylin receptor). (Data is expressed as mean ± SE, n = 6, one-way 
analysis of variance followed by Tukey’s test, *denotes significant difference between HEK-WT and HEK-
AMY3 cells, p < 0.05). (C) Representative fluorescence microscopy images showing Cy5.5 labeled peptides 
binding to HEK-AMY3 cells compared to HEK-WT cells (scale bar, 10 μm, DAPI = blue nuclear stain).  
(D) Bar graphs summarize the average fluorescent intensity in HEK-AMY3 and HEK-WT cells incubated with 
Cy5.5 labeled AC253, R5 and R14 peptides. The fluorescence intensity is significantly increased in HEK-AMY3  
compared to HEK-WT cells. (E) R5 and R14 peptides (and AC253), but not R11, inhibited the increased 
levels of cyclic adenosine-monophosphate (cAMP) evoked by human amylin (hAmylin) activation of AMY3 
receptors on HEK-AMY3 cells. Graphs shows changes in cAMP levels in HEK-AMY3 cells after exposure to 
different concentrations of hAmylin in presence of peptides (10 µM). (F) In HEK-AMY3 cells, AC253, R5 and 
R14 peptides (10 μM) reduce increases in phosphoERK1/2 evoked by hAmylin (1 μM) (n = 3,*p < 0.05).  
(G) Both fragments block the effect of oligomeric Aβ1–42 (10 µM)-induced cell death in primary cultures of 
human fetal neurons (HFNs) and N2a cells as shown with MTT cytotoxicity assay (n = 5, *p < 0.05).
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block the hAmylin-evoked cAMP generation in HEK-AMY3 cells. R11 peptide served as a negative control. Results 
showed that R5 and R14, but not R11, peptides blocked the cAMP increases in a dose-dependent manner (Fig. 1E). 
Additionally, these peptides also blocked downstream activation of ERK1/2 signaling pathway (Figs 1F and S4A), 
which is activated by hAmylin and Aβ1–42 in HEK-AMY3 cells10. In a second in vitro assay, we examined whether 
peptides R5, and R14 could protect human fetal neurons (HFNs) and N2a (mouse neuroblastoma cell line) from 
Αβ1–42 induced cytotoxicity. Using the MTT assay, we observed that in both cell cultures, R5 and R14 peptides were 
equally effective as the full length AC253 in attenuating cell death induced by Aβ1–42. Cell survival was increased 
from 70% to 90% after pretreatment of cultures with fragments R5 and R14; in contrast, R11 did not show any effect 
in attenuating Aβ neuronal toxicity (Fig. 1G). Thus, these findings validated the library screening results, and indi-
cated that the two fragments not only retained their antagonist activity at the amylin receptor, but also demonstrated 
neuroprotective properties against Aβ toxicity as seen with the full length AC253 peptide.

Fragment R5 has significant blood brain barrier permeability in vivo after ip administration and 
its brain uptake correlates to the degree of amylin receptor expression.  Blood brain barrier (BBB) 
penetration can limit the potential of long sequence peptides as therapeutic agents in central nervous system 
(CNS). Previously, we have reported that a cyclized form of AC253 peptide and to a lesser degree its linear form 
can both penetrate the BBB at therapeutically relevant levels, and are localized to the hippocampus and cortex, 
regions relevant to memory and learning processes21. Therefore, we examined the ability of Cy5.5 labeled peptide 
fragments (R5, and R14) to penetrate BBB in wild-type mice using NIR fluorescence ex vivo brain imaging. Brain 
fluorescence resulting from either R5 or R14 was assessed against full length AC253 2 h after a single intraperi-
toneal (ip) injection of peptides. In an earlier study, using LC-MSMS, we demonstrated the intact Cy5.5 labeled 
cAC253 was present in the mouse brain when injected ip and that the Cy5.5 label was not hydrolyzed off the pep-
tide21. All three peptides had some ability able to penetrate the BBB, but that the fluorescence signal for peptide 
R5 was significantly higher in the brains of these mice compared to either R14 or AC253 with mean fluorescence 
intensity of 9 × 106, 7.2 × 106, 7.0 × 106, respectively (Fig. 2A,B). Fluorescence signals were distributed throughout 
the cortex, but particularly strong within the hippocampal regions, where a very high density of amylin receptor 
expression has been reported15. Histological analysis of ex-vivo imaged brains further confirmed that our peptides 
mainly accumulated in the hippocampal region (Fig. 2C).

Next, we examined the pharmacokinetic profile and the proteolytic stability of R5, and R14 compared to 
AC253 in vitro and in vivo. We analyzed peptides fluorescence levels in wild-type mice that received 0, 0.6, 2, 10, 
20 mg/kg as ip single dose after 2 h. Results demonstrate that accumulation of R5, and R14 peptides in the brain 
appears to be dose-dependent (Fig. 2D,E). Bio-distribution evaluation of R5, R14 compared to AC253 in differ-
ent organs (liver, kidney, spleen, heart, and brain) was investigated 2 h after injecting 20 mg/kg peptide. Ex-vivo 
fluorescence signals from tissues indicated that all peptides were distributed within all organs examined although 
uptake in the lung, spleen, and heart was considerably less than that in the kidney and the liver, which showed 
a strong NIR fluorescence intensity likely reflecting renal and hepatic clearance of the peptide (Supplemental 
Fig. S2A,B).

Subsequently, we investigated the proteolytic stability of R5, and R14 compared to AC253. R5 and R14 showed 
comparable serum stability with half-life of 1 h and 1.5 h, respectively, which is comparable to AC253 (1 h) 
(Supplemental Fig. S2C). By assessing the main degradation fragments for both peptides using MALDI-TOF, we 
found both peptides to be cleaved at the basic arginine amino acids.

In the present study, we also compared the brain uptake of R5 to that of davalintide, a second-generation syn-
thetic amylinomimetic peptide possessing pharmacological properties superior to those of its congener, pramlin-
tide28. We used heterozygous CTR mice that exhibit 50% CTR expression (“het CTR”) and hence 50% reduction 
in the functional amylin receptor29, and Wild-type mice, both groups receiving ip injections of either R5, or 
davalintide (0.1 mmole). Imaging of the intact brain at 2 h post-injection showed greater brain permeability of R5 
compared to davalintide. As anticipated, CTR (amylin receptor) hemizygous mice showed significantly reduced 
peptide concentrations in comparison to the Wild-type mice (Supplemental Fig. S3).

R5 and R14 fragments, but not R11, antagonize Aβ and hAmylin-induced depression of hip-
pocampal long-term potentiation (LTP).  We examined whether the peptide fragments were capable 
of influencing Aβ- or hAmylin-induced reduction of hippocampal LTP in mice. Exposure of hippocampal slices 
from wild-type mice to hAmylin (50 nM) or Aβ (50 nM) depressed LTP induced by a weak tetanization protocol 
at the CA1 region as previously reported20,30. To determine whether peptides affected hAmylin or Aβ- induced 
depression of LTP, we applied 250 nM R5 or R14 continuously for 5 min prior to exposure of the hippocam-
pal slices to 50 nM hAmylin or Aβ and the subsequent LTP induction. Both R5 and R14, but not R11 peptide, 
reversed hAmylin and Aβ-induced depression of hippocampal LTP, while application of any of the three peptides 
alone did not affect basal hippocampal LTP levels (Fig. 3A–C). The composite data from these experiments are 
shown in Fig. 3E. In a prior study we had demonstrated that in aged TgCRND8 mice, which demonstrate an 
over-expression of Aβ, AC253 substantially improved the normally depressed basal levels of hippocampal LTP 
in these mice21. We therefore sought to determine whether peptide fragments were also capable of improving 
LTP levels in the same TgCRND8 AD mouse model. In 8 month old TgCRND8 mice, R5 and R14, but not R11, 
applications resulted in significant increase in LTP to levels approaching those recorded from age-matched wild 
type littermates (Fig. 3D,F). Importantly, doses of the short peptide fragments used in these experiments were 
equimolar to those used for AC253 and pramlintide in our previous studies20,30.

Treatment with R5 peptide improves spatial memory and features of AD pathology in 5XFAD 
mouse model.  To evaluate the effect of amylin treatment on learning and spatial memory, we employed 
established methods using the Morris Water Maze in an aggressive mouse model of AD, the 5XFAD. The 5XFAD 
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mouse model is widely used as it recapitulates many AD related phenotypes with a relatively early onset and 
aggressive presentation of pathology and cognitive impairment31. The initial amyloid deposition begins by 2 
months, and by 6 months the brain is characterized by the presence of a large number of amyloid plaques and 
other features of AD pathology31. At 6 months of age, these mice showed a significant difference in spatial mem-
ory, as measured by escape latencies, compared to wild-type mice (Fig. 4A). We therefore chose this mouse model 
for our in vivo studies to examine the efficacy of R5 peptide after the onset of cognitive deficits and AD pathology.

In addition to testing the R5 peptide, we also used cAC253 as a comparator peptide since we have previously 
shown it to have superior blood brain barrier penetration compared to its linear form. The determination of 
injection amount of R5 (200 µg/kg) was based on achieving equimolar concentrations as the full length peptide, 
cAC25321 and prior studies that used pramlintide injections22,23. The normal mouse circulated endogenous amy-
lin level is 0.7 ± 0.4 pmol/L in plasma32 and based upon our in vitro data (Fig. 1E) unlikely to perturb the function 
of peptides in vivo at these concentrations. After 5 weeks of treatment with ip injections of R5 and cAC253 three 

Figure 2.  Fragments R5, R14 and AC253 demonstrate brain permeability in vivo. (A) Representative ex vivo 
fluorescence brain images for Cy5.5 labeled peptides (0.1 mmole in 200 μl normal saline) demonstrating their 
accumulation in the mouse brain 2 h after intraperitoneal (ip) injection. Scale bar = 1 mm. (B) Histograms 
showing brain fluorescence intensity was significantly increased 2 h following a single ip injection with labeled 
peptides (AC253, R5 and R14) compared to saline injection, but there was not difference between these 
peptides. (Mean ± SE, n = 10 in each group, one-way ANOVA followed by Tukey’s test, *p < 0.05). (C) Brain  
sections from ex vivo experiments in (A) showing AC253, R5 and R14 fluorescent labeling with Cy5.5 (red) 
within the hippocampal region, and nuclear staining with DAPI (blue). Scale bar = 200 µm. (D) Ex vivo 
fluorescence brain images showing dose-dependent accumulation of R5, R14 and AC253 after a single ip 
injection with different doses of the peptides in 200 µL saline. (E) Quantification of brain accumulation of 
labeled peptides at different concentration (n = 3 for each concentration).
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times a week, 5XFAD mice showed a marked improvement in spatial memory compared to the transgenic litter-
mates receiving sterile saline (Fig. 4B); Age-matched wild-type control mice showed no alterations in the memory 
task with systemic administration of either AC253, R5 or saline (Fig. 4B). Additionally, 5XFAD mice that were 
treated with cAC253 or with R5 showed improved retentive memory for location of the target quadrant (Probe 
Test) compared to transgenic mice receiving saline (Fig. 4A,B). None of the mice receiving cAC253 or R5 showed 
any signs of off-target effects (e.g., sedation, impairment of gait, abnormal feeding or drinking behavior, weight 
loss, changes in gross appearance such as hair loss, and lack of grooming) throughout the 5 weeks of treatment, 
and no significant changes in body weight.

We initiated treatment of 5XFAD and wild-type control mice at 6 month age at a time point when they had 
also developed very significant amyloid burden in addition to the spatial memory deficits noted above (Fig. 4A). 
Compared with saline treated controls, a 5-week treatment regimen (ip injection three times a week) with either 
cAC253 or the shorter peptide (R5) significantly reduced amyloid pathology in the cortex, hippocampus and thal-
amus (Fig. 5A). There was significant reduction in the amyloid plaque numbers, and the overall amyloid burden 
(as judged by the area covered by plaques) in these brain regions in the peptide treated mice (Fig. 5B, p < 0.05). 
Western blot data also showed significant decrease in Aβ proteins from cortical tissue (Fig. 5C, p < 0.05). 

Figure 3.  R5 and R14 peptides improve hippocampal long term potentiation (LTP). (A) The fragments R5, 
R14 and R11 (250 nM) alone did not impair LTP in hippocampal slices from wild type mice. (B) R5 and 
R14 but not R11 reverse human amylin (50 nM) and (C) Aβ1–42 (50 nM)-evoked reduction of LTP. (D) In 
hippocampal brain slices from 8 month old of TgCRND8 mice in which LTP is chronically depressed, R5 and 
R14, but not R11, restored LTP levels comparable to those observed in age-matched wild type littermate control 
mice. (E) Summary of the effects of R5, R14, and R11 fragments on hippocampal LTP in wild type mouse and 
(F) TgCRND8 AD mice. All data are presented as mean ± SEM. (n = 6 recordings for each group*p < 0.01, 
**p < 0.05; one-way ANOVA followed Tukey’s test).
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Furthermore, activated microglia CD68, the inflammasome NLPR3 and caspase-1, which are markers of neu-
roinflammation that is observed in AD pathology, were also significantly attenuated in 5XFAD that received 
either cAC253 or R5 peptides. (Fig. 5C,D, p < 0.05).

Discussion
Our results show that short sequence peptide fragments (Fig. 6), which are derived from the amylin antagonist, 
AC253, retain the antagonist activities of the parent peptide, are neuroprotective against Aβ toxicity in cell cul-
ture paradigms and improve hippocampal LTP in transgenic AD mice. Importantly, one of these fragments, R5, 
administered systemically not only improves spatial memory and learning in a transgenic AD mouse model, but 
also attenuates Aβ plaque load and neuroinflammation in the brain. This R5 peptide shows significant penetrabil-
ity across the BBB and binding in the brain when administered systemically in mice. The improvements in spatial 
memory, reduction of amyloid load and neuroinflammation in the brain are noteworthy in two other respects. 
First, the improvement in spatial memory is apparent after a relatively short treatment in the AD mice (three 
ip injections per week for 5 weeks). Second, R5 treatment conferred benefit in 5XFAD mice that are 6-month 
old, an age at which both the AD pathology and behavioral deficits are well established. The latter observation is 
particularly relevant for clinical application since past and current anti-amyloid therapeutic interventions in AD 
patients after disease onset have been unsuccessful6. Thus, R5 or drugs based upon this peptide may represent an 
important advance in mitigating AD disease progression across a significant age span of the condition.

There are several potential mechanisms whereby R5 administration could improve measures of cognition 
and pathology in AD mice. First, R5 confers neuroprotection against Aβ in neuronal cell cultures and restores, in 

Figure 4.  Systemic administration of R5 peptide improves cognitive function in transgenic AD mice.  
(A) Morris Water Maze (MWM) testing and Probe Test show significant cognitive function impairment in 
escape latencies and quadrant preference in 6 month old 5xFAD mice compared to their age-matched wild type 
(WT) littermate control mice before initiation of treatment. However, no difference was observed within the 
5XFAD or WT groups destined to receive intraperitoneal (ip) injections of either R5, cyclized AC253 (cAC253) 
or normal saline (NS). (B) 5XFAD mice that either received R5 or cAC253 ip injections three times a week for 5 
weeks demonstrated a marked improvement in escape latencies over those 5XFAD littermates receiving NS. In 
Probe trials, 5xFAD mice that were treated with R5, or cAC253 also showed preference for the target quadrant 
where the platform had been located. Wt littermate controls showed no memory deficits with either groups 
(n = 9 mice in each group; *p < 0.05, **p < 0.01).
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Figure 5.  R5 peptide administration attenuates amyloid pathology and neuroinflammation in AD mice.  
(A) Brain amyloid plaques are significantly reduced after 5 weeks of ip injections of the R5 fragment or cAC253 
in 5XFAD mice. Scale bar = 1000 μm. (B) Quantitative analysis revealed brain amyloid plaque number and 
density were significantly reduced in AD mice compared to normal saline (NS) control group (*p < 0.05).  
(C) Composite of Western blots showing amyloid proteins (Aβ, 6E10), CD68 (to identify activated microglia), 
and markers of inflammasome activation and neuroinflammation (Caspase-1, NLRP3) were all significantly 
reduced after a course of cAC253 or R5 ip injections compared to normal saline (NS). The full gels for CD68, 
Caspase-1 and NLRP are provided under Supplementary Information (Supplementary Fig. S5). Data shown in 
histograms (D) are normalized to β-actin signal (n = 6, *p < 0.05).
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part, the disruption of hippocampal long term potentiation observed in AD mice as shown in the present study. 
Second, in vitro blockade of microglial amylin receptors, which we have shown to reduce recruitment of the 
inflammasome, NLRP3, and the secretion of pro-inflammatory cytokines14, explains our observations of attenu-
ation of neuroinflammatory markers consequent to R5 administration in 5XFAD AD mice. Cytokines have been 
shown to upregulate APP processing and hence increase the generation of Aβ33 that could serve as a source for 
amyloid plaque formation. Thus blockade of microglial amylin receptors by R5 (and AC253) could attenuate Aβ 
production. Finally, administration of amylin based peptides have been shown to promote of efflux of Aβ from 
the brain through increased expression of LRP121,23,34 and would explain the reduced amyloid burden following 
R5 treatment in our study.

Peptide-based therapeutics display favorable attributes because of their high potency and selectivity for their 
receptor targets, and often demonstrate a lower incidence of off-target effects compared with small molecule com-
pounds35. As a step towards generating and identifying shorter peptide fragments based on AC253 sequence that 
demonstrate improved pharmacokinetic and/or pharmacodynamic profile, we used a cell-based peptide library 
screening assay36. This screening identified two peptides, R5, and R14, which retain not only the antagonist activ-
ity of the full length peptide, but also demonstrate comparable bioavailability, stability and brain penetrability. 
Our study also identifies regions within the AC253 peptide sequence that are likely responsible for amylin recep-
tor binding and antagonistic activity (Fig. 6). Based upon the chosen cell-based screening assay, it appears that it 
is the short peptide sequences (R5 and R14) containing sequences derived from the N-terminal and middle rather 
than the C-terminal region of parent peptide (AC253) that demonstrate selective binding to the AMY3 receptor 
subtype (Supplemental Fig. S1). The three bioactive peptides (AC253, R5 and R14) share a common 10 amino 
acid sequence (SQELHRLQTY, Fig. 6), which not only confers the antagonistic activity at the AMY3 receptor, but 
also improves spatial memory and aspects of AD pathology in amyloid precursor protein (APP) over-expressing 
AD mice

The relationship of R5 and R14 peptides, which both demonstrate neuroprotective activity against Aβ evoked 
toxicity and improvement in spatial memory in transgenic AD mice, to other synthetic amylinomimetics such as 
pramlintide and davalintide deserves comment. Systemic injections of pramlintide have been shown to improve 
spatial memory in AD mouse models, a benefit that is presumably attributable to its amylin mimetic properties 
at the receptor22,23. However, in other experimental paradigms, pramlintide demonstrates an antagonist activity 
at the amylin receptor in a manner similar to AC253, R5 and R14 peptides14,21. Interestingly, davalintide, also an 
amylinomimetic, was synthesized to improve upon pramlintide’s pharmaceutical properties (short half-life and 
low bio-availability)28. However, our data indicate that davalintide, and in an earlier study pramlintide21, both 
demonstrate lower brain permeability after systemic administration than either cAC253 or R5. Thus, although 
longer half-life, stability and bioavailability are desirable attributes in the search for amylin based peptides as ther-
apeutic agents for diabetes and other systemic conditions, in the case of AD, the ability of such peptides to cross 
the blood brain barrier is an important consideration for their therapeutic potential in the CNS. Hence, based in 
part on its superior brain permeability, we selected R5 to test its potential in reversing spatial memory deficits in 
transgenic AD mice. Salmon calcitonin (8–32), was the first peptide of the amylin family to be recognized for its 
antagonist activity at the amylin receptor and has been well recognized as having a slow receptor dissociation rate 
from receptors37. R5 sequence is embedded in a portion of the salmon calcitonin (8–32) sequence (Fig. 6) and 
would be consistent with demonstration of its antagonist activity at the amylin receptor that we have observed in 
vitro and in vivo.

In summary, we describe the synthesis and testing of short sequence amylin based peptides that demonstrate 
selective and full antagonist activity at the amylin receptor, are capable of attenuating the deleterious effects of Aβ 
on neurons and improve spatial memory and features of pathology in transgenic AD mice. The R5 peptide and 
its pharmacological characteristics described in this study offer many therapeutic advantages and could serve as 
platform for the design of novel non-peptide mimetics using computational modeling to treat AD.

Methods
Detailed materials and methods are presented in the Supplementary Information. All in vivo experiments were 
carried out in accordance with the relevant laws and guidelines set by the Canadian Council for Animal Care and 
with the approval of the Animal Care Use Committee (Health Sciences) at the University of Alberta.

Figure 6.  Alignment and comparison of sequences for amylin peptides. The amylin peptide sequences were 
aligned according to their known activity related to amylin receptor. The block of residues SQELHRLQTY 
comprises a common sequence amongst peptides that demonstrate antagonist activity at the amylin receptor 
and mediate their beneficial effects; this makes it an attractive potential therapeutic drug targets for AD.
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A shorter peptide library was derived from AC253 peptide sequence comprising 12–14 amino acid peptides. 
These shorter peptides were synthesized on a cellulose membrane using SPOT synthesis and screened for amylin 
receptor binding affinity with stable expressed amylin receptor GFP-positive cells. The effected shorted peptides 
from the library were labeled with a near-infrared fluorescent dye Cy5.5-NHS ester and further screened the 
receptor binding and uptake used AMY3 receptor and wild type control cells. To determine the activity of these 
shorter peptides to block AMY3 receptor signaling, cellular cAMP levels (measured using a parameter cyclic 
AMP assay kit, R&D Systems) and phosphorylation ERK1/2 (Western blot) were measured. We assessed neuro-
protective properties of the peptide fragments against Aβ cytotoxicity in vitro using the MTT assay in N2a cell 
line and human fetal neurons (HFNs), which were prepared from 12- to 15-gestational week fetuses with approval 
of the Human Ethics Research Board at the University of Alberta as previously reported17,19.

In vivo brain penetration and pharmacokinetics of the peptides were determined in 6-month-old male or 
female wild-type (C57BL/6 background) and heterozygous CTR mice (het-CTR). Het-CTR mice (on C57BL/6J 
background) demonstrate a 50% depletion of CTR expression29. Excised mouse brains were imaged in Kodak 
imager at 2 h after ip injection with Cy5.5 labeled peptides at 0.2 nano-moles of peptides. These brains were then 
embedded in OCT and sliced into 20-μm slices, fixed with 4% paraformaldehyde, stained with DAPI and imaged 
Axio Zeiss fluorescent microscopy.

For electrophysiology experiment, hippocampal slices (400-μm thick) were prepared using a vibratome from 
wild type and TgCRND8 mice (8 month of age, male or female). For long-term potentiation (LTP) measurement, 
the stimulus strength was set to elicit 40–50% of the maximum fEPSP (field excitatory postsynaptic potential) 
amplitude and test pulses were delivered once every 30s. LTP was induced by 3-theta-burst stimulation protocol 
(each burst consisted of four pulses at 100 Hz with a 200-ms interburst interval). All drugs and chemicals were 
applied directly to the slice via bath perfusion.

For in vivo studies, 5XFAD mouse breeding stocks were obtained from the Jackson Laboratory (JAX #006554). 
Intraperitoneal injection (ip) administration of fragment R5 and cAC253 was carried out in 5XFAD mice and 
wild-type littermate control mice (both male and female). These mice were equally and randomly distributed into 
6 groups (n = 10 for each group), and received either normal saline (NS), cAC253 or R5 fragment (200 µg/kg) i.p. 
injections 3 times a week starting at 6 months of age for 5 weeks.

The Morris Water Maze (MWM) and probe test were carried out for behavioral testing. The mice were trained 
for 3 days (4 trials per day) to find a submerged platform (target quadrant, TQ). The trial ended when a mouse 
found and climbed onto the platform within 120s. Mice were tested with inter-trial interval of 50 min. Memory 
was evaluated in probe trial, administered on day 4 as the first trial of the day. During probe trial, the platform 
was removed from the pool. Memory for the platform location was expressed as the percent of time spent in TQ.

After completion of treatments, the mouse brains were harvested and the right hemisphere was frozen for 
biochemical analysis (Western blot, ELISA), and the left hemisphere was fixed with PAF for further processed. 
The thicker brain sections were stained thioflavin-S for detecting Aβ plaques.

For statistical analysis, all values are present as means ± SD. Significance was determined using either student 
t test, or one-way analysis of variance, followed by Tukey’s test when appropriate, with Prism software (GraphPad 
Prism 5, GraphPad Software, San Diego, CA). p < 0.05 was considered significant.
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