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Transcriptomic and macroscopic architectures of
intersubject functional variability in human brain
white-matter
Jiao Li1,2,3, Guo-Rong Wu4, Bing Li1,3, Feiyang Fan1,3, Xiaopeng Zhao1,3, Yao Meng 1,3, Peng Zhong1,3,

Siqi Yang1,3, Bharat B. Biswal1,3,5, Huafu Chen 1,2,3✉ & Wei Liao 1,3✉

Intersubject variability is a fundamental characteristic of brain organizations, and not just

“noise”. Although intrinsic functional connectivity (FC) is unique to each individual and varies

across brain gray-matter, the underlying mechanisms of intersubject functional variability in

white-matter (WM) remain unknown. This study identified WMFC variabilities and deter-

mined the genetic basis and macroscale imaging in 45 healthy subjects. The functional

localization pattern of intersubject variability across WM is heterogeneous, with most

variability observed in the heteromodal cortex. The variabilities of heteromodal regions in

expression profiles of genes are related to neuronal cells, involved in synapse-related and

glutamic pathways, and associated with psychiatric disorders. In contrast, genes over-

expressed in unimodal regions are mostly expressed in glial cells and were related to neu-

rological diseases. Macroscopic variability recapitulates the functional and structural

specializations and behavioral phenotypes. Together, our results provide clues to intersubject

variabilities of the WMFC with convergent transcriptomic and cellular signatures, which

relate to macroscale brain specialization.
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B lood-oxygenation-level-dependent-functional magnetic
resonance imaging (BOLD-fMRI) has become the method
of choice for evaluating the coherent signal fluctuations

across the brain, because it has high spatial and temporal reso-
lutions and is noninvasive1–3. This intrinsically inter-regional
functional connectivity (FC) architecture is unique among
individuals4–7 and reflects cognitive or population variabilities8,9.
A higher intersubject variability of gray-matter (GM) FC reliably
exists in higher-order cognitive networks, and lower intersubject
variability exists in lower-order perceptual networks, suggesting
intersubject variability gradients10–12. There is intersubject
variability in cortical organization, even after accurate brain
structure alignment of brain functions to structures8. Although
white-matter (WM) comprises half of the human brain, its
variabilities in connectomic organization across individuals have
been relatively unexplored13,14.

Brain WM signals measured using BOLD-fMRI provide
functional information about intrinsic activity and can be used to
characterize its connectivity15,16. WM functional networks that
are aligned and interact across long-distance WM tracts17 and
functional organization of human corpus callosum that is closely
adjacent to resting-state GM networks18, have highlighted the
functional roles of WM. In a recent study, WM functional
topography (e.g., small-wordless and nonrandom modularity)
was computed and its reliability and reproducibility demon-
strated, suggesting that WM functional connectivity (WMFC)
cannot be simply attributed to noise19. In addition, it has been
reported that intersubject variation in WMFC can be used to
estimate individual general fluid intelligence20. Therefore, WMFC
is unlikely to be generated by noise21, and may provide important
information that contributes to the understanding of the under-
lying mechanisms of individual variabilities in cognition and
behavior.

The function of WM often overlaps with and is constrained by the
physical substrate’s known anatomical pathways/microstructures22.
WMmicrostructure is a potential predictor of intersubject variations,
because it is under strong genetic control. The WM associated genes
regulate pathways involved in brain disease pathogenesis and neu-
rodevelopmental processes23. Several genome-wide association
studies24–27 have been conducted to identify loci associated with
interindividual variations in WM microstructure, but these studies
have been impeded by spatial specificities, which have been the
major limitation28. In this study, we used an approach for combining
neuroimaging and spatial patterned gene expression to investigate
the molecular mechanisms of individual variabilities in FC
architecture29,30. The Allen Human Brain Atlas (AHBA) microarray

dataset was used to identify transcriptomes associated with
human neuroimaging with multi-modal evidence, suggesting a link
between conserved gene expression and relevant functional
circuitries31–33. To the best of our knowledge, no study has pre-
viously characterized intersubject variabilities in WMFC-related
genes using transcriptome-neuroimaging association analyses,
therefore, the genetic influences on intersubject variabilities in
WMFC are, thus far, unknown.

Our objective was to identify the intersubject variability of
WMFC-related transcriptional architecture among individuals.
Considering intersubject variabilities in functional organizations,
researchers have further characterized brain networks responsible
for the etiologies of disorders34–36. More recently, Sun et al.37

have reported alterations of intersubject variabilities of the FC in
schizophrenia, suggesting potential implications for under-
standing the high clinical heterogeneity of this disorder. We
therefore hypothesized that this information would increase our
understanding of the genetic causess of intersubject variabilities of
WMFC in healthy subjects, and may be associated with psy-
chiatric and neurological brain disorders. We collected resting-
state BOLD-fMRI data on 45 healthy subjects, and each scanned
four times over ~6 months. This unique data set allowed us to
assess the interindividual variabilities in WMFC, which controlled
intrasubject variabilities10,38. We determined the following: (i)
whether intersubject variabilities in WMFC were hierarchically
organized, and whether the degree of variability varied from
unimodal to heteromodal association networks; (ii) how indivi-
dual variabilities in WMFC were affected by the transcriptome
and specific cell types; (iii) whether clinical significance could be
calculated by the overlap between intersubject variability-related
genes and those involved in diseases; and (iv) whether the
intersubject variability was related with known macroscale indi-
ces, including structural and functional organizations. Our find-
ings will facilitate the study of both the spatial distribution of
intersubject variabilities in WMFC and the multiscale associa-
tions in functional variabilities in brain WM across subjects. The
data generation and analysis schematic are shown in Fig. 1.

Results
Study design and image quality assessment. The current work
used a hybrid design (i.e., within + between design) in which
scans were repeated one or more times on the same day and
across one or more sessions39. All subjects participated in four
sessions (each scanning included two runs) over ~6 months
(Supplementary Result 1 and Supplementary Fig. 1). To measure

Fig. 1 Data generation and analysis pipeline. This study was performed using neuroimaging and six AHBA transcriptomic data. Gene expression maps
were extracted from NeuroSynth (https://www.neurosynth.org). Neuroimaging data were collected from 45 subjects who underwent four sessions within
approciately 6 months. After establishing the relationship between intersubject variability in white-matter functional connectivity and gene expression, the
variability-related highly-ranked gene set was identified. Enrichment analysis of the gene set was used to identify the functions of these genes. The
identified intersubject variability-related genes were annotated by functional, cell types, and disease enrichments.
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the quality of the resting-state BOLD-fMRI data, we calculated a
series of common image quality metrics using MRIQC40. Data
were first visually inspected for the whole brain field of view
coverage, signal artifacts, and proper alignment to the corre-
sponding anatomical images. The image quality metrics for the
spatial information included Entropy Focus Criterion, Fore-
ground to Background Energy Ratio, Signal-to-noise ratio (SNR).
The image quality metrics for the temporal information included
Temporal SNR (tSNR) and Mean Fractional Displacement (mean
FD; Supplementary Result 2 and Supplementary Fig. 2).

Nonuniform distribution of intersubject variability. To study
the organizational patterns of WMFC, we first estimated voxel-
wise interindividual variabilities in the brain WM after control-
ling for intrasubject variability and technical noise (Supplemen-
tary Result 3 and Supplementary Fig. 3). We found that FC
interindividual variability exhibited a nonuniform spatial dis-
tribution across brain WM voxels (Fig. 2a).

We further assessed the variabilities of the WMFC organization
within each of the specific brain WM functional networks17. The
hierarchy of the functional variations in WM across 12 specific
networks was similar to that obtained from the prior gray-matter
FC results10–12,41. Specifically, the frontoparietal control and default
mode networks showed high levels of functional variability, while
the sensorimotor, and visual networks exhibited low interindividual

variations (Fig. 2b). In contrast to the gray-matter FC variations, the
lowest variation was found in the visual and sensorimotor networks,
where the cerebellum network showed the lowest level of functional
variability in WM.

The gene expression patterns associated with intersubject
variability of WMFC. We used the AHBA, a whole-brain tran-
scriptomic dataset, to obtain patterns of gene expression in the
brain for examining the transcriptomes associated with WMFC
intersubject variability (Supplementary Result 4 and Supple-
mentary Table 1). We aligned the nonuniform distribution map
to the atlas of gene expression for ~9000 genes in the adult
human cortex available in the AHBA dataset. Gene expression
maps were obtained from the Neurosynth-Gene database (Sup-
plementary Result 5). We performed partial least square (PLS)
correlation analyses to identify the dominant gene expression
patterns of functional variability (Fig. 3a). PLS correlation ana-
lyses ranked all ~9000 genes by their multivariate correlation with
the variability distributions, resulting in one ranked gene list.
These findings were corrected for spatial autocorrelation using
the Moran Spectral Randomization (MSR)42 implemented in
BrainSpace43, which generated spatially constrained null models
for irregularly spaced data. Clear spatial correlation was evident
between the first PLS (PLS1) component and the intersubject
variability of WMFC (r= 0.30, Pmoran= 0.0001; Fig. 3b), with
high expressions (red areas) in the frontal networks and lower
expressions (blue) in the cerebellum areas. In the gene list,
expression patterns that were more strongly correlated with the
corresponding intersubject variability map had large positive and
negative PLS weights, and therefore, occupied more extreme
ranks (Fig. 3c). Genes with strongly positive PLS weights showed
positive spatial correlations between their expressions and vari-
able WMFC organizations, and vice versa.

To investigate whether molecular biological signatures influ-
enced the variable WMFC organization, we aligned the gene
ontology (GO) biological processes and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways with the positive and
negative PLS1 gene lists, respectively, using Metascape44. The
top-ranked genes with positive PLS1 (PLS1+) weights were
significantly enriched for several synapse-related terms and
glutamatergic pathways (Fig. 3d), such as “chemical synaptic
transmission”, “synapse organization”, “Glutamatergic synapse”,
and “glutamate secretion”. However, the top ranked genes with
negative PLS1 (PLS1–) weights were significantly enriched for
glial cells-related pathways (Fig. 3e), including “ensheathment of
neurons”, “regulation of gliogenesis”, and “axon development”.
All these enrichment pathways were corrected with the false
discovery ratio (FDR) with P < 0.05.

Highly ranked genes expressed in specific cell types. The above
findings indicated that the intrinsic transcriptomic organizations
across the WM in healthy subjects were correlated with inter-
subject variabilities of WMFC. However, brain-wide transcrip-
tional variations may reflect bulk samples of cells such as
neurons, oligodendrocytes, astrocytes, microglia, endothelial cells,
and oligodendrocyte precursors (OPCs)45–47. Therefore, we pre-
dicted that variable WMFC organization may be related to the
expression patterns of variability-related genes across different
cell types with varying spatial distributions. Because spatially
comprehensive maps of cell type densities across the human brain
were not available, we used previously defined cell-class gene sets
to test whether the observed intersubject variabilities of WMFC
were organized to broad cell-classes in the human WM45.

We showed that the top ranked genes in the PLS1+ gene list
were expressed primarily in neurons, both inhibitory (234 genes,

Fig. 2 Nonuniform distribution of intersubject variability of white-matter
functional connectivity (WMFC). a Variability distribution across voxels.
Intersubject variability was quantified at each white-matter (WM) voxel
across subjects after correcting for intrasubject variability and technical
noise. b Intersubject variation in WMFC at the network level based on
previous parcellation of the WM into 12 functional networks17. Network
(Net) 1, frontoparietal control network; Net 2, deep frontal network; Net 3,
inferior longitudinal fasciculus system; Net 4, temporal-orbitofrontal
network; Net 5, dorsal frontoparietal network; Net 6, forceps minor system;
Net 7, superior longitudinal fasciculus system; Net 8, visual network; Net 9
& 10, sensorimotor networks; and Net 11 & 12, cerebellum networks. Source
data provided as Source Data file.
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Fig. 3 Transcriptomic decoding of the intersubject variability of white-matter functional connectivity (WMFC). a Weighted gene expression map of the
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Pperm= 0.0003, FDR-corrected) and excitatory (395 genes, Pperm=
0.0003, FDR-corrected) (Fig. 4a). Genes specific to oligodendro-
cytes (209 genes, Pperm= 0.0007, FDR-corrected) and OPCs (27
genes, Pperm= 0.0007, FDR-corrected) were also overrepresented
in the top ranked PLS1– gene list (Fig. 4b). Confirming our
approach, enrichment analyses using cell type specific genes in
the PLS1+ gene list showed that intersubject variability of
WMFC was significantly enriched for biological processes
associated with neuronal cells. These were enriched for GO terms
such as “Glutamatergic synapse”, “chemical synaptic transmission”,
“synaptic vesicle cycle”, “synaptic transmission, glutamatergic”, and
“synapse organization” (Fig. 4a). In a similar manner, enrichment
pathways identified in cell type genes in the PLS1– gene list were
usually concentrated in glial cells (Fig. 4b). Notably, these
enrichments were more abundant in microglia, endothelial cells,
and oligodendrocytes, suggesting a more pronounced physiological
mechanism in these cells than that of the astrocytes and OPCs.
Together, these results supported the validaty of our indirect
approach in assigning gene expressions to unique cell types, and

allowed us to detect specific cell types encoded in variable WMFC
organizations.

Genes enriched for brain diseases. To further characterize the
importance of the putative variability of genes within the top
ranked PLS1+ and PLS1− gene sets, we tested the hypothesis
that genes related to brain WM disorders were enriched
among genes associated with variable WMFC organizations.
Using WebGestalt48, we combined Over-Representation Analysis
(ORA) and Gene Set Enrichment Analysis (GSEA) of Disease
Ontology (DO) terms based on DisGeNET, OMIM, and
GLAD4U databases in the top-ranked PLS1+ and PLS1− gene
sets. We found a significant overlap between the top-ranked
PLS1+ gene list and genes associated with psychiatric disorders,
such as schizophrenia, bipolar disorder, autism spectrum dis-
order, and depression, all of which were FDR-corrected with
P < 0.05 (Fig. 5a; Supplementary Result 6 and Supplementary
Table 2). The results were consistent with previous studies that
reported functional abnormalities of WM in major depressive
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disorders49, schizophrenia50,51, and autism spectrum disorder52.
The PLS1− ranking genes were also enriched for neurological
diseases, including peripheral nervous system diseases, neurode-
generative disease, polyneuropathies, demyelinating diseases,
hereditary motor and sensory neuropathies, muscle weakness,
and neuromuscular diseases (all FDR-corrected P < 0.05; Fig. 5b;
Supplementary Table 3). These results were accompanied by
enrichment pathways in cell type specific genes, indicating the
different etiological mechanisms in PLS1+ and PLS1− gene sets

and the potential clinical applications of intersubject variability in
WMFC. Considering multiple sclerosis as a typical disorder with
abnormalities in WM, we also determined the relationships
between WMFC intersubject variabilities and differentially
expressed genes in multiple sclerosis53. We found that WMFC
intersubject variability was correlated with dysregulated gene
expression (r= –0.29, Pmoran= 0.0002; Supplementary Result 7
and Supplementary Fig. 4), suggesting that multiple sclerosis
involved differential impacts to areas along the WM distribution.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Peripheral Nervous
System Diseases

Neurodegenerative
Disease

Metabolism, Inborn
Errors

Polyneuropathies

Nervous System
Diseases

Demyelinating
Diseases

Lysosomal Storage
Diseases

Muscle Weakness

Hereditary Motor and
Sensory Neuropathies

Neuromuscular
Diseases

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0.0

Depression

1 2 3 4 5

2

4

6

8

10

12

14

16 Mental Disorders

Schizophrenia
Schizophrenia

Bipolar Disorder

Autism Spectrum
Disorder

Mood Disorders
Bipolar Disorder

Autistic Disorder
Epilepsy

0
0

Enrichment ratio (log2)

-lo
g1

0(
p)

FD
R

co
rre

ct
ed

-lo
g1

0(
p)

FD
R

co
rre

ct
ed

Enrichment ratio (log2)

a Diseases with gene sets over represented in the top ranked genes with positive weights

Mapped input:
956 127 Gene set:

879

C0036341:
Schizophrenia

110 Gene set:
612

PA447208:
Mental Disorders

Mapped input:
879 78 Gene set:

391

PA447216:
Schizophrenia

32 Gene set:
154

Mapped input:
869

PA445301:
Perpheral Nervous
System Diseases

59 Gene set:
444

PA446858:
Neurodegenerative

Disease

27Gene set:
128

PA445380:
Polyneuropathies

b Diseases with gene sets over represented in the top ranked genes with negative weights

Mapped input:
879

Mapped input:
869

Mapped input:
869

Fig. 5 Highly-ranked genes enriched for brain diseases. Disease-association analysis in top ranked genes with PLS1+ (a) and PLS1− (b) weights. Volcano
plots show disorders with gene sets that were overexpressed in top ranked genes of PLS1. Only the top 10 terms were annotated (PFDR < 0.05). Venn
diagrams show the top three overlapped diseases between the top gene set and genes sets for diseases. Source data provided as Source Data file.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02952-y

6 COMMUNICATIONS BIOLOGY |          (2021) 4:1417 | https://doi.org/10.1038/s42003-021-02952-y | www.nature.com/commsbio

www.nature.com/commsbio


Relationship between macroscale architecture and intersubject
variability of WMFC. At the macroscale level, we sought to
understand how variations of WMFC related to the hierarchical
neurobiological organization of brain anatomical topography and
the corticocortical connectivity pattern. Cerebral blood flow
(CBF) regulation, with individual variability, is essential for brain
function8,54. The frontoparietal control regions exhibit higher

variability in CBF (Fig. 6a). Higher WMFC variability has been
spatially associated with the higher variable of CBF (r= 0.33,
Pmoran= 0.0001, FDR-corrected). Specifically, the deep frontal
WM network, temporal-orbitofrontal network, default mode
network, dorsal attention network, superior longitudinal fasci-
culus system, visual superficial WM system and cerebellum sys-
tem exhibited spatial correlations. These results indicated that the
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association regions with the greatest variabilities of WMFC
involved a disproportionate degree of CBF across subjects.

Because almost half of the brain volume is WM, we computed
the variability of WM volumes55, which was spatially correlated
with the variability of WMFC in whole (r= 0.38, Pmoran= 0.0001,
FDR-corrected) and 11 of 12 networks, except for the frontoparietal
control network (Fig. 6b).

Fractional anisotropy (FA) reflects fiber organization and
axonal diameter in WM56,57. The structural variability of WM
was consistent with the previous study reporting that superficial
WM exhibited higher variability, whereas deep WM showed
lower variability (Fig. 6c)58. Analysis of the association between
structural variability of WM findings revealed a positive
correlation in the default mode network, deep frontal WM
network, temporal-orbitofrontal network, dorsal attention net-
work, superior longitudinal fasciculus system, visual superficial
WM system, and cerebellum system. When quantified on the
whole brain surface, structural variability in WM showed a
moderate but significant spatial correlation with the variability of
WMFC (r= 0.23, Pmoran= 0.001, FDR-corrected; Fig. 6c).

The T1w/T2w mapping has been proposed as a reliable method
to measure the myelin content59 and appears related to the
anatomical hierarchy in brain GM architecture60. In this study,
visual and sensorimotor networks in the WM exhibited higher
variable T1w/T2w ratios (Fig. 6d). We also assessed the relation-
ships between variable WMFC organizations and variable T1w/
T2w maps. We estimated the spatial correlations between variable
T1w/T2w and WMFC and found that the deep frontal WM
network, temporal-orbitofrontal network, default mode network,
dorsal attention network, superior longitudinal fasciculus system,
visual network, sensorimotor network, and cerebellum system
exhibited correlations. Notably, a moderate positive correlation
was also observed on a whole voxel level (r= 0.21, Pmoran=
0.0001, FDR-corrected).
The consistent correlations of brain organizations between

variabilities of the four neuroimaging indices and WMFC
intersubject variability involved the deep frontal WM network,
the temporal-orbitofrontal network/default mode network, the
dorsal attention network, the superior longitudinal fasciculus
system, and the visual network. The specificity of correlations in
some brain WM functional organizations among the neuroima-
ging indices might indicate the different roles of brain properties
in WMFC intersubject variability8.

We also assessed the short-range (i.e., local) and long-range
(i.e., distant) corticocortical connectivities at each voxel tested for
associations with intersubject variabilities of WMFC, as pre-
viously reported10. The percentage of local connectivity showed a
moderate but significant correlation with the intersubject
variability of WMFC (r= –0.24, Pmoran= 0.02, FDR-corrected)
across the entire voxels in WM (Supplementary Result 8 and
Supplementary Fig. 5a), while the percentage of distant
connectivity was not correlated with the intersubject variability
of WMFC (r= –0.03, Pmoran= 0.43; Supplementary Result 8 and
Supplementary Fig. 5b).

The role of intrinsic functional variations in behaviors. To
determine whether the variable WMFC organizations (Fig. 7a)
were associated with behavioral performances, we performed a
NeuroSynth meta-analyses. The relationships between cognition
and interindividual variabilities is shown in Fig. 7b. Notably, we
found a positive correlation between the functional variation and
higher-order cognitive qualities (Fig. 7c), such as “phonological,”
“motor imagery,” and “working memory”. Functional variability
was negatively associated with lower-perceptual behavioral mea-
sures. Overall, these results supported the inference that inter-
individual WMFC variabilities had important implications for
cognitive domains.

Reproducibility of intersubject variabilities in WMFC. Because
PLS is a model usually used for a predictive approach61, we
validated the intersubject variability of WMFC based on the
trained PLS predictive model. We used the variability data from
four sessions, and estimated the intersubject variability in each
session based on two runs. We then trained the PLS model on
the first three sessions and tested it on the fourth session in a
leave-one-out cross-validation scheme. We found that the
intersubject variability based on the fourth session correlated
with the predictive intersubject variability based on the first
three sessions (r= 0.88, Pmoran= 0.0001; Supplementary
Result 9 and Supplementary Fig. 6).

In addition, we also verified the intersubject variability of
WMFC using the four resting-state fMRI scans during 2 days, of

Fig. 6 Intersubject variability of white-matter functional connectivity (WMFC) aligning with macroscopic imaging. a The distribution of intersubject
variability of cerebral blood flow (CBF), and the relationship of intersubject variability between WMFC and CBF. b The distribution of intersubject variability
of white-matter volume (WMV), and the relationship of intersubject variability between WMFC and WMV. c The distribution of intersubject variability of
fractional anisotropy (FA), and the relationship of intersubject variability between WMFC and FA. d The distribution of intersubject variability of myelin
content, and the relationship of intersubject variability between WMFC and myelin content. The left panel is the distribution of intersubject variability in
each property. The middle panel is the association between functional variability in WM and variability of each neuroimaging index at the network level.
Right panel shows the association between functional variability in WM and variability of each neuroimaging index at the whole brain WM level. The
asterisk represents that WMFC intersubject variability correlated with the neuroimaging index variability within the WM functional network. Source data
provided as Source Data file.
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Fig. 7 Functional variability in white-matter functional connectivity
(WMFC) highly predictive of individual differences in cognitive traits.
a Intersubject variability of WMFC. b Distribution of intersubject variability-
related behaviors. c Weights of behavior. Source data provided as Source
Data file.
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the Human Connectome Project (HCP) 7 T dataset. We found
that the intersubject variability of WMFC based on the HCP 7 T
dataset showed a similar pattern with the intersubject variability
across 12 WM functional networks in this work (r= 0.60,
P= 0.04; Supplementary Fig. 7).

Discussion
The current study characterized the endophenotyic intersubject
variability of WMFC, revealing how brain function in WM was
associated with phenotypic gene expression. These two biological
parameters are complementary and mutually reinforcing. First,
the spatial distribution was organized along a broadly hierarchical
axis, anchored in unimodal regions and extending into hetero-
modal association regions. Second, the transcriptomic and cel-
lular organizations of high and low variabilities of WMFC were
distinct and specialized. Genes overexpressed in heteromodal
association regions were expressed predominantly in neuronal
cells, involved in synapse-related terms and glutamic pathways,
and associated with common psychiatric disorders. However,
genes overexpressed in unimodal regions were mostly expressed
in glial cells and were associated with neurological diseases.
Furthermore, the spatial distributions of functional variabilities
were recapitulated in multi-modularity brain structural, func-
tional, and behavioral organizations. Our findings provided a
perspective on intersubject variability in brain function, which
has potential implications for understanding brain evolution and
development.

This study built on an earlier hypothesis that functional brain
connectivity varied along with GM cortical gradients8,10,11,38,62.
This variability has potential evolutionary significance, shaped by
genetic and environmental factors10. The evolutionary trajectories
are similar between brain GM and WM, which both originate
from limbic specific and subcortical areas. They later include
more associated networks for higher cognitive functions in
WM58,63. Thus, it is reasonable to conclude that there are the
similar spatially varying gradients of functional variabilities
between GM and WM. However, the absence of an evolutionary
WM expansion map has prevented us from directly verifying
similar principles of functional variability in WM.

The transcriptome revealed variability-related biological pro-
cesses, based on the complex pattern of functional topographies.
Genes overexpressed in high and low variability areas were dis-
tinct and specialized, while genes overexpressed in high variability
areas were enriched for synapse-related terms and glutamatergic
pathways. Synapses in the central nervous system represent the
classic mechanism through which neural cells communicate.
Synaptic-style release of glutamate, the brain’s major excitatory
neurotransmitter, occurs deep in the WM64. Here, glutamatergic
pathways permit communication between axons and glial cells,
enabling axon activity to couple with high fidelity to glial
physiology65–67. The synaptic density changes with age68. Its
overproduction is highest in prefrontal areas and lowest in pri-
mary sensory areas during development69. Thus, a gene over-
expressed in synapse-related pathways may relate to highly
functional variability in heteromodal association areas.

Genes with negatively PLS1 weights were mostly enriched for
glia-related pathways. WM contains numerous glial cells. The
biological process of regulation of gliogenesis results in the
generation of glial cells70. In addition, ensheathment occurs in
neurons in which glial cells envelop neuronal cell bodies and/or
axons to form an insulating layer. This can take the form of
myelinating or non-myelinating ensheathment. Myelin may
serve as an inhibitor of brain plasticity71. This suggests that
early sensory areas may require less plasticity, and therefore
more myelin, whereas higher-order areas have less myelination,

which might enable greater plasticity72. In the present study, we
found that genes, overexpressed and underexpressed in areas
with low and high variability in WMFC, respectively, were
mostly enriched for glia-related biological processes. Together,
this phenomenon may be caused by more myelination of
neurons in low-perceptual areas, and more non-myelination of
neurons in higher-cognitive areas.

The gene expression profiles characteristic of different cell-
types arise because these cells have distinct sets of transcription
regulators. We thus exploited how the cell type-specific manner
affected gene regulation leading to intersubject variabilities in
WMFC. When integrated across levels of cell types, these
variability-related genes from bulk tissues were assigned to seven
canonical cell classes45. Functional variability in WM was asso-
ciated with genes expressed primarily in neurons (both inhibitory
and excitatory) and oligodendrocytes, suggesting that intersubject
variability may partially depend on synaptic transmission and
myelinated processes10,72. The cellular organizations refined our
transcriptomic analyses, suggesting the distinct contributions of
neurons and glial cells, along with an inverse functional varia-
bility gradient. Critically, our analytic workflow identified cell
classes and genes without relying on postmortem tissue from
participants; thus, enabling investigators to make predictions
regarding the human neuroscience or the biology of distinct
human disorders, by using data from native human tissue45.

The clinical relevance of intersubject variability-related genes
was further confirmed by over-representation analyses73. Genes
enriched for synapse-related terms and glutamatergic pathways
were mostly associated with various psychiatric disorders, such as
depression, schizophrenia, and autism spectrum disorder. This
was supported by a previous study linking gene transcription to
synaptic activity processes to major psychiatric disorders74.
Dysregulated synaptic development, properties, and plasticity
have been hypothesized to result in altered neuronal function in
various neuropsychiatric disorder75,76, suggesting that the dis-
rupted neurobiological mechanisms are shared across common
disorders77, and intersubject variability in WMFC may be a
candidate intermediate phenotype for the association between
these genes and some mental disorders.

Genes associated with microglia were significantly overlapped
with neurological diseases. Microglia, the resident immune cells
of the central nervous system, play an important role in main-
taining tissue homeostasis and contribute to normal brain
development78. Therefore, studying microglia provides unprece-
dented insight into mechanisms involved in neurological
diseases79,80. Thus, microglial cells have the potential to act as
diagnostic markers of disease onset or progression, and could
contribute to the outcome of neurodegenerative diseases81. In this
study, genes associated with microglia were overexpressed in low
variability areas, indicating that these brain areas may contribute
to neurological diseases. Our results showed that variability-
related gene data can relate to knowledge about transcriptome-
neuroimaging, and may be clinically translatable.

Leveraging macroscale neuroimaging, we found that inter-
subject variability in WMFC recapitulated the variability of
structural (i.e., WMV, FA, and T1w/T2w) and functional (i.e.,
CBF) organizations. From an evolutionary point of view, the
heteromodal association areas that have undergone dramatic
cortical expansion showed higher metabolic demands, more
structural variability, and greatly reduced myelination, when
compared with unimodal areas8,58. It is striking how well the CBF
and structural variability maps matched the distribution of
intersubject variability in WMFC, as revealed in this study. These
findings suggested that the different scales of human brain
organization are likely not independent from each other during
brain development29.
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The reasons for differences in the molecular hierarchies
observed in the variable functional organizations between WM
and GM are not completely understood. Using transcriptomic
analysis and cellular specificity of the intersubject variability in
WMFC, we found specific and common enrichment pathways of
intersubject variability-related genes between WMFC and gray-
matter FC (Supplementary Result 10 and Supplementary Fig. 8).
Although WM contains a significantly lower neuron-to-glia ratio
than GM82, synapse-related terms are commonly enriched for
functional variabilities both in WM and GM, indicating the
important roles of whole brain functional variability for psy-
chiatric disorders. In addition, intersubject variabilities of WMFC
organization exhibited specific enrichment pathways in glial cell-
related terms, such as ensheathment of neurons and regulation of
gliogenesis, highlighting the importance of functional variabilities
in WM, as compared with GM, for neurological diseases.
Understanding the nuances of shared and specific pathways of
variabilities between WM and GM will increase our under-
standing of human neuroscience and may provide avenues of
treatment for several diseases.

Several methodological considerations are noteworthy. First,
we collected longitudinal, multi-session resting-state BOLD-fMRI
data to ensure stable and reliable intersubject variability in
WMFC. In addition, considering the spatial and temporal lim-
itations of BOLD-fMRI data based on a 3 T machine, we further
used four sessions of the HCP 7 T dataset to verify the inter-
subject variability of WMFC. Second, we used several com-
plementary analysis strategies to obtain clean BOLD-fMRI signals
from the WM, by strictly controlling the boundary between WM
and GM, by separating WM and GM functional signal in pre-
processing, and by identifying participants’ voxels only in WM to
create a WM mask17,19–21,49. Furthermore, from the architecture
of brain venous systems, the possibility that deoxygenated blood
was drained from cortical GM to deep WM was significantly
small83. Moreover, there are two venous systems in normal
neuroanatomy; one is the superficial venous system, which drains
deoxygenated blood in the GM cortex and superficial WM into
pial veins. The other is a deep system draining deoxygenated
blood in deep WM into subependymal veins83,84. Furthermore,
the brain venous architectures are spatially non-overlapping.
Deoxygenated blood drainage from GM cortex to deep venous
system through WM does exist, but the probability of draining is
less than 3%83,84. Collectively, based on brain venous system
architecture, these approaches ensured that BOLD-fMRI signals
analyzed in the present study were from WM.

Several limitations in this study need to be considered. First, all
subjects were college students, so a larger sample from a
community-based population of varying ages is needed to gen-
eralize the current findings. Second, the AHBA gene data were
measured postmortem in six subjects, which limited examinations
of transcriptome-neuroimaging associations across groups and
possibly placed individual effects out of scope. In addition, the
AHBA gene data only included the right hemisphere for two
subjects, and contained relatively small probes in WM, limiting
our investigation between genes and functional variability in
whole brain WM. Finally, the PLS analysis may result in inac-
curate associations when the number of samples per feature is
relatively small. In future studies, we will first perform data
reduction to solve this problem85 by selecting genes based on
prior hypotheses.

In this study, we have proposed a landscape of the tran-
scriptomic decoding and cellular specificity of intersubject
variability in WMFC—high-to-low functional-varying gradients
that were associated with gene expressions, associated with neu-
rons to glial cells. Notably, synapse-related and glia-related genes
were overexpressed in association and low-order perceptual

networks, respectively, which were specifically related to several
neuropsychiatric illnesses and neurological diseases. In addition,
the shared and specific biological processes between WM and GM
highlighted the complementary and reverberating functional
roles. These findings emphasized the clinically translational
relevance for incorporating the specific intersubject variabilities in
WM and GM to determine effective therapeutic targets.

Methods
Study design and participants. This longitudinal study was approved by the Local
Medical Ethics Committee of the University of Electronic Science and Technology
of China (UESTC), China. Written informed consent was obtained from all sub-
jects prior to scanning. Forty-five healthy subjects [age (mean ± SD): 23.67 ± 1.65
years, 20 females, all right-handed] were recruited from and the data were collected
at the UESTC. All subjects had no history of neurological or psychiatric conditions,
and no gross abnormalities on brain MRI.

Each subject underwent four MRI scanning sessions within 6 months (~14, 30,
and 180 days from enrollment). All subjects performed two resting-state fMRI runs
per session to estimate the WMFC. After quality control, 43 subjects who had two
good runs (mean FD < 0.2 mm) in each session and two subjects who had one good
run in one of four sessions were included for subsequent analyses.

Data acquisition. Multimodal neuroimaging battery (resting-state functional,
structural, and diffusion data) were acquired on a 3.0 Tesla MRI scanner (GE
Discovery 750 MRI) at the UESTC. During the resting-state functional scanning,
subjects were instructed not to think of anything particular, to keep their eyes open,
and to stay in a fixed position.

Resting-state BOLD-fMRI scan: To characterize intersubject variability of
WMFC, each subject first underwent two resting-state BOLD-fMRI runs (30 min
10 s with 905 volumes per run) using an echo-planar imaging sequence: repetition
time (TR)/echo time (TE)= 2000 ms/30 ms, flip angle = 90°, field of view
(FOV)= 240 × 240 mm2, in-plane matrix = 64 × 64, slice thickness = 3.2 mm, no
interslice gap, and 43 transverse slices. The identical protocol was used for each
session.

Resting-state arterial spin labeling (ASL) scan: To associate the spatial pattern of
intersubject variability of WMFC, 34 out of 45 subjects underwent one resting-state
ASL run during the last session using a 3D pulsed continuous ASL technique.
Interleaved 30 pairs control and label images were acquired (7.5 min with 50 of
control and label images). We used the following settings: TR/TE= 4632 ms/
10.536 ms, flip angle = 111°, label duration = 1450 ms, post-labeling delay =
1525 ms, FOV= 240 × 240 mm2, in-plane matrix = 128 × 128, slice thickness =
4 mm, no interslice gap, slices = 36, acquisition time = 269 s.

Subsequently, structural, myelin, and diffusion data were obtained. All subjects,
during each session, underwent high-resolution T1-weighted (T1w) structural scans
using a 3D Fast spoiled gradient-recalled echo sequence in the sagittal orientation (TR/
TE= 5.952ms/1.96ms, flip angle = 12°, FOV= 256 × 256 mm2, in-plane matrix =
256 × 256, slice thickness = 1mm, and 154 slices) and diffusion-weighted images
(DWI) using a spin echo-based echo-planar imaging sequence (TR/TE= 8500/64.7ms,
flip angle= 90°, FOV= 256 × 256mm2, in-plane matrix= 128 × 128, slice thickness=
2mm, slices = 78, four volumes without diffusion weighting b= 0 s/mm2, and 60 non-
collinear directions b= 1000 s/mm2). In addition, 44 out of 45 subjects also underwent
T2-weighted structural scans during the last session using a 3D Cube T2 sequence in
the sagittal orientation with TR/TE= 2500ms/60.97ms, flip angle = 90°,
FOV= 256 × 256mm2, in-plane matrix = 256 × 256, slice thickness = 1mm, and
256 slices.

Data preprocessing. Both BOLD-fMRI and ASL images were preprocessed using
the statistical parametric mapping toolbox (SPM12; https://www.fil.ion.ucl.ac.uk/
spm/software/spm12/), as outlined below. The resting-state BOLD-fMRI data were
preprocessed according to our previously described WM functional
procedures19,20,49 based on DPARSF (v4.3, http://rfmri.org/DPARSF). For each
run, slice-timing correction and realignment were applied to the 900 functional
volumes after excluding the first five volumes (10 s). For each subject, the mean FD
was measured to control data quality. Each subject’s structural image was co-
registered to the preprocessed functional images, and was then segmented into GM,
WM, and cerebrospinal fluid (CSF) using DARTEL86. The mean signals from CSF,
24 head motion parameters (Friston 24-parameter model) were regressed out by
multiple linear regression analysis. To avoid elimination of important neural sig-
nals, we did not regress out WM and brain global signals, as previous studies have
suggested17,19–21,49.

To minimize mixing signal (and noise) components from the WM and GM due
to partial volume effect, subsequent processing of the functional images was
performed separately for WM and GM, in accordance with our previous
studies19,20,49. First, each individual mask was generated using a 60% threshold on
the probability map of WM (i.e., produced by structural segmentation). Second,
functional images were spatially divided into WM functional images using the dot
product between functional images and the individual WM mask. Third, the WM
functional images were spatially normalized to a standard space (Montreal
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Neurologic Institute, MNI) by structural segmentation and were resampled to
3 × 3 × 3mm3. Then, only voxels identified as WM across all of the participants
were used to create the group-level WM mask. To minimize the impact of deep
brain structures, the probability (25% threshold) Harvard-Oxford Atlas was used to
remove subcortical structures (i.e., the bilateral thalamus, putamen, caudate,
pallidum, and accumbens) from the group-level WM mask as previous studies
suggested17,19,20,49. Subsequently, functional data preprocessing included
smoothing with 6 mm full-width half-maximum (FWHM) isotropic Gaussian
kernel, and a band-pass filtering (0.01–0.10 Hz).

For ASL images, the absolute quantified rCBF maps were first obtained by
subtracting the label from control images using Functool (v 12.2.01) embedded in
the GE MR-750 scanner system. Then, the z-scored rCBF maps were performed by
SPM12 according to the following steps: firstly, T1w images were coregistered to
their own rCBF maps, and then segmented into GM, WM, and CSF. Second, the
WM maps were nonlinear co-registered to the T1 template in MNI space. Finally,
each rCBF map was normalized into the standard MNI space with 3 mm isotropic
voxels based on the transform parameters that were estimated during nonlinearly
co-registration. he normalized rCBF maps were spatially smoothed by a 6 mm
FWHM Gaussian kernel.

The DWI data were preprocessed on volumetric space using FSL (v6.0, https://
fsl.fmrib.ox.ac.uk/fsl/fslwiki). For each subject’s native space, the DWI images were
corrected for the eddy-current-induced distortions and head movements, and the
diffusion tensor model was estimated using the linear least-squares fitting method,
resulting in the fractional anisotropy (FA) map. Individual T1-weighted images
were co-registered to the images in the DTI native space. Then, the co-registered
T1-weighted image was mapped to the T1 image in MNI space by applying an
affined transformation to obtain the transformation matrix87. Finally, FA maps
were normalized into the standard MNI space and resampled with 3-mm isotropic
voxels based on the inverse transformation matrix.

To obtain myelin enhanced contrast images, the T1w/T2w ratio was calculated
for the same subject using MRTOOL (https://www.nitrc.org/projects/mrtool/)56.
To standardize the T1/T2w image, we created two subject-specific masks by
warping predefined masks in the MNI standard space to individual space. One
mask contained relatively low values on the T1w image and high values on the T2w
image, and the other mask had reversed characteristics. We implemented this
specification by selecting two masks covering the eyeballs and temporal muscles,
respectively56. These masks were defined directly in the MNI space by segmenting
and thresholding the ICBM152 template images56. In parallel, the T2w image was
co-registered to the T1w image. Then, the T1w and T2w images were jointly
subjected to bias correction to ensure that the sensitivity profile was spatially
equalized. After calibrating T1w and T2w images, their ratio was calculated to
produce the calibrated T1w/T2w image as a myelin enhanced contrast image.

Intersubject variability of WMFC. After preprocessing, BOLD-fMRI data were
concatenated into a single run (900 × 2 volumes) for each session10 if the subject
had two good runs. After obtaining an individual WM mask for each subject, these
individual masks were averaged across participants to obtain the percentage of
participants in which it was classified as WM for each voxel. Voxels identified in all
sessions and all participants as WM were considered as a group-level WM mask,
resulting in 7151 voxels19,20,49.

Intersubject variability of WMFC was estimated in line with previous studies on
functional variability in GM10,11,38. To obtain individual WMFC maps, we used
each of the 7151 voxels as the seed, and computed the FC between the seed and the
remaining voxels, resulting in 7,151 maps for each subject and each session. This
individual correlation map based on each seed voxel was vectored as WMFCv(s, t),
where v= 1, 2, …, 7,151, the values represented the FC between the seed v and the
remaining voxels; s ðs 2 1; 2; ¼ ; 45Þ denoted the number of subjects; and t ðt 2
1; 2; ¼ ; 4Þ denoted the number of sessions.

For each session, 45 maps derived from 45 subjects were obtained. For a given
seed voxel, v, the spatial similarity between the 45 maps derived from 45 subjects
was quantified by averaging Pearson’s correlation coefficients between any two
WMFC vectors (total, C2

45 ¼ 990 combinations):

RvðtÞ ¼ E½corrðWMFCvðsp; tÞ;WMFCvðsq; tÞÞ�;
where, p and q indicate two different subjects, p; q ¼ 1; 2; ¼ ; 45; p≠ q. This
resulted in an intersubject similarity map.

To obtain the intersubject variability of WMFC, we first adjusted spatial
similarities between the 45 maps for each session:

R0
vðtÞ ¼ 1� RvðtÞ

Finally, four original (unadjusted) intersubject variability maps were obtained.
The intra-subject variability was measured based on repeated multi-sessions (t= 4)

of a subject. For each subject, four WMFC vectors were obtained from four sessions.
Accordingly, the spatial similarities of intra-subjects were estimated using any two
WMFC vectors (total, C2

4 ¼ 6 combinations). Considering the values of WMFC maps
ranging from ‒1 to 1, we inverted the similarity map by subtracting from one (i.e., 1 –
Rspatial similarity) as the intra-subject variability of each subject:

NvðsÞ ¼ 1� E½corrðWMFCvðs; tmÞ;WMFCvðs; tnÞÞ�;
where m; n ¼ 1; 2; ¼ ; 4;m≠ n.

The intra-subject variability map was then averaged across 45 subjects and
assigned to the seed voxel, v:

Nv ¼ E½NvðsÞ�
“Technical noise” of the voxel v was reflected by the tSNR of the BOLD-fMRI

signal:

tSNRv ¼
<S>t

σt

Where <S>t is the average BOLD signal across time, and σt is the corresponding
temporal standard-deviation map. The technical noise was the inverse tSNR (i.e., 1/
tSNR).

To minimize the effects of confounding factors on intersubject variability, the
intra-subject variability and “technical noise” were regressed out from original
(unadjusted) R0

vðtÞ using a general linear model (GLM) for adjusting intersubject
variability:

VvðtÞ ¼ R0
vðtÞ � β1 ´Nv � β2 ´Noise� c;

where β1; β2; and c are parameters determined via a GLM. Finally, resulting
adjusted maps derived from each session t were averaged for intersubject
variabilities of the WMFC map (Fig. 2).

Functional organization of intersubject variability. To quantify the distribution of
intersubject variability within each of functional network in WM, we used the previous
parcellations based on healthy controls to identity large-scale networks as reported by
Peer et al.17. Considering non-zero voxels of the WM mask in this study, we first
overlapped the WM mask with the previous functional parcellations in WM. We then
assigned each voxel to one of the functional networks based on the MNI coordinate,
and rearranged the network label. According to the previous study17, the function of
each WM network was described as follows: Network 1 was the frontoparietal control
network and default mode network (n = 160 voxels); Network 2 was the deep frontal
WM network (n = 1293 voxels); Network 3 was the inferior longitudinal fasciculus
system (n= 777 voxels); Network 4 was the temporal-orbitofrontal network and default
mode network (n = 112 voxels); Network 5 was the dorsal attention network (n = 717
voxels); Network 6 was the forceps minor system (n = 233 voxels); Network 7 was the
superior longitudinal fasciculus system (n = 2135 voxels); Network 8 was the visual
superficial WM system (n = 40 voxels); Network 9 was the sensorimotor superficial
WM system (n = 90 voxels); Network 10 was the sensorimotor and ventral attention
system (n = 475 voxels); and Network 11 (n = 224 voxels) and Network 12 (n = 873
voxels) were cerebellum systems. Finally, the intersubject variability of voxels within
each WM functional network was averaged as the intersubject variability of the WM
functional networks.

Investigating the gene expression pattern associated with the intersubject
variabilities of WMFC. The AHBA dataset bridged the gap between macroscale
intersubject variability of WMFC and microscale gene expression46. The AHBA
microarray-based gene expression provided high resolution coverage of nearly the
entire brain, with 3702 spatially distinct tissue samples taken from six neurotypical
postmortem brains. The AHBA microarray data were processed including verifying
probe-to-gene annotations, filtering of probes, and probe selection following the
protocol of Arnatkevic et al.88. After preprocessing, 10,027 genes lists were used to
select gene expression maps from Neurosynth-Gene (https://www.neurosynth.org/
genes/). These gene expression maps covered the whole brain and co-registered the
locations of all microarray samples with the MNI stereotactic space. Consequently,
the overlapped 9922 gene list were used for further analyses. In addition, the
number of overlapped voxels between gene expression and intersubject variability
maps was 3415, resulting in a matrix (3415 voxels × 9922 genes) of the brain-wide
gene expression for the WM.

PLS correlation89 was used to determine the relationship between the
intersubject variability of WMFC and transcriptional activity for all 9,922 genes.
Gene expression data were used as predictor variables of intersubject variability in
the PLS regression. PLS1 was the linear combination of gene expression values,
which was most strongly correlated with functional variability in WM. Findings
were corrected for spatial autocorrelation with Moran Spectral Randomization
(MSR)42 implemented in BrainSpace43, which generated spatially constrained null
models for irregularly spaced data. Bootstrapping was used to estimate the error of
each gene PLS1 weight, and the ratio of the weight of each gene to its bootstrap
standard error was used to calculate the Z scores and to rank the genes according to
their contributions to PLS190. The set of genes with a FDR of 5%, either positive
(PLS1+ ), or negative (PLS1−), was identified for the intersubject variability
gene list.

Gene annotation analyses: functional enrichment. Functional enrichment for
GO gene sets and the KEGG pathway search were used to include over 40 inde-
pendent knowledgebases within Metascape44. The lists of PLS1+ and PLS1− genes
were separately analyzed using Metascape (https://metascape.org/gp/index.html#/
main/step1). Based on the well-adopted hypergeometric test, Metascape identified
all ontology terms that contained a statistically greater number of genes in common
with an input list than expected by chance. Briefly, pairwise similarities between
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any two enriched terms were computed based on a Kappa-test score91. The
similarity matrix was then hierarchically clustered to trim the constructed tree into
separate clusters. The resulting enrichment pathways were thresholded for sig-
nificance at 5%, corrected by the FDR.

Genes expressed in specific cell types. To further refine our analysis and con-
sidering cellular diversity in the brain, we took an indirect approach to assign
PLS1+ and PLS1− genes to seven canonical cell classes. To obtain gene sets from
each cell type, we compiled data from five different single-cell studies using
postmortem cortical samples in human postnatal subjects. This approach avoided
any bias based on acquisition methodology, analysis or thresholding, leading to the
initial inclusion of 58 cell classes, which were provided by Seidlitz et al.45. Many of
those cell classes were overlapping based on nomenclature and/or constituent
genes. To avoid any bias based on acquisition, analysis, or thresholding, five dif-
ferent single-cell studies were included in this study92–96. We further organized cell
types into seven canonical classes following Seidlitz et al.45. These cell types
included microglia, endothelial cells, oligodendrocyte precursors, oligodendrocytes,
astrocytes, and excitatory and inhibitory neurons. Only one study included the
annotation of the pericyte type, thus this gene set was excluded. To assign inter-
subject variability-related genes obtained by PLS analysis to cell types, we over-
lapped the gene set of each cell type with the PLS1+ or PLS1− rank gene list. We
resampled the genes involved in cell types 5000 times to test the null hypothesis
that the PLS1+ or PLS1− gene list was randomly assigned to different cell types.
The pperm scores were obtained by the occupied null models (<5th, or >95th
centile) and corrected by FDR.

Genes enriched for brain diseases. Brain disease-related enrichment for inter-
subject variability-related genes was determined using WebGestalt48 (http://
www.webgestalt.org/) to identify disease-association terms based on DisGeNET,
OMIM, and GLAD4U databases. The gene lists of PLS1+ and PLS1− were curated
for brain disease gene associations. The top 10 terms were listed according to the
ranked P < 0.05, FDR-corrected.

Relationship between macroscale functional and anatomical variability and
WMFC variability. The rCBF has received much attention in brain function-
related studies due to its important role in maintaining normal brain function and
its close relationships with brain metabolism and connectivity8. Canonical struc-
tural variability indices in WM were white matter volume (WMV) and FA
variabilities58. The myelin content representing T1w/T2w was an important
component in WM. Thus, intersubject variability in these functional and anato-
mical indices was estimated as voxel-wise using SD across subjects5,55,97. The
Spearman’s correlation coefficient was calculated between the intersubject varia-
bility map in WMFC and these macroscale indices for across-voxel in the WM.

Behavior decoding of the intersubject variabilities of WMFC. Functional acti-
vation probability maps were obtained for multiple cognitive terms using the
Neurosynth meta-analytic database using volumetric “association test” maps98

(https://www.neurosynth.org). Then, each cognitive map was overlapped with the
intersubject variability of the WMFC map to obtain the non-zero voxels between
the two maps. Pearson’s correlation analysis was used to measure the similarity
between the cognitive map and intersubject variability of the WMFC map. Terms
were selected in this study if their thresholds of z-statistic values were above 2.1
(corresponding Pearson’s correlation coefficient: P < 0.05), and if they were not
“noise” terms, which did not capture any coherent cognitive function99.

Statistics and reproducibility. Testing for linear associations between the inter-
subject variability of WMFC and other brain phenotypes may lead to biased testing
statistics due to spatial autocorrelation of MRI data. Thus, we generated random
datasets, with equivalent spatial autocorrelations as the response variables using
MSR and the singleton procedure42 implemented in BrainSpace43. The MSR
methods generated spatially constrained null models for irregularly spaced data. All
linear models were fitted for the original data as well as 10,000 corresponding
simulated datasets. Pmoran-values were obtained by the occupied null models (<5th,
or >95th centile) and corrected by FDR.

Reproducible analyses were used to validate the intersubject variability in
WMFC. We first built trained PLS predictive model based on the variability data
from four sessions, where each session included two runs. The first three session
were trained on the PLS model and the fourth session were uses as test data in a
leave-one-out cross-validation scheme. To test the predictive power, correlation
analysis was used between the predictive and observed intersubject variability. In
addition, HCP dataset was used te test the robustness of the intersubject variability
of WMFC.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Human gene expression maps that support the findings of this study are available
Neurosynth-Gene database (https://www.neurosynth.org/genes/) based on the Allen
Brain Atlas (https://human.brain-map.org/static/download). Compiled cell-specific gene
set list from all available large-scale single-cell studies of the adult human cortex can be
obtained from the raw Seidlitz et al.45 dataset (https://static-content.springer.com/esm/
art%3A10.1038%2Fs41467-020-17051-5/MediaObjects/41467_2020_17051_MOESM8
_ESM.xlsx). Disease-association terms were obtained from WebGestalt website (http://
www.webgestalt.org/). The 7 T Human connectome dataset is available at https://
db.humanconnectome.org/. The neuroimaging data that support the findings of this
study are available from the corresponding author (W.L.) upon reasonable request. The
source data underlying Figs. 2, 3, 4, 5, 6, and 7 are provided as Supplementary Data 1.

Code avaliability
The code for gene expression analysis can be found at https://github.com/BMHLab/
AHBAprocessing. Gene enrichments were analyzed at https://metascape.org/gp/
index.html#/main/step1. The code for spatial permutation testing was implemented in
BrainSpace (https://www.brainspace.com/). The code for preprocessing of WM
functional data can be found at https://github.com/weiliao81/WMFPrep.
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