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Abstract: We demonstrate a method of neurostimulation using implanted, free-floating, inter-neural
diodes. They are activated by volume-conducted, high frequency, alternating current (AC) fields and
address the issue of instability caused by interconnect wires in chronic nerve stimulation. The aim of
this study is to optimize the set of AC electrical parameters and the diode features to achieve wireless
neurostimulation. Three different packaged Schottky diodes (1.5 mm, 500 µm and 220 µm feature
sizes) were tested in vivo (n = 17 rats). A careful assessment of sciatic nerve activation as a function
of diode–dipole lengths and relative position of the diode was conducted. Subsequently, free-floating
Schottky microdiodes were implanted in the nerve (n = 3 rats) and stimulated wirelessly. Thresholds
for muscle twitch responses increased non-linearly with frequency. Currents through implanted
diodes within the nerve suffer large attenuations (~100 fold) requiring 1–2 mA drive currents for
thresholds at 17 µA. The muscle recruitment response using electromyograms (EMGs) is intrinsically
steep for subepineurial implants and becomes steeper as diode is implanted at increasing depths away
from external AC stimulating electrodes. The study demonstrates the feasibility of activating remote,
untethered, implanted microscale diodes using external AC fields and achieving neurostimulation.

Keywords: wireless; implantable; microstimulators; neuromodulation; peripheral nerve stimulation;
neural prostheses; microelectrode; neural interfaces

1. Introduction

Neuromodulation for peripheral nerve stimulation (PNS) applications is increasingly being
used to treat and manage chronic diseases (i.e., epilepsy, micturition, pain, etc. [1–4]). A major
problem with chronic neurostimulation of peripheral nerve for purposes of neural interfacing is that
of lead wires tugging on microelectrodes penetrating into the body of a nerve. This becomes a more
severe problem when large numbers of wires are used for advanced multichannel neural interface
systems needed for both sensory and motor control of prosthetics [5]. Such systems require more
channels than can be provided by most nerve cuff systems and need to contact or stimulate nerves
lying deeper at the fascicular and subfasicular level. Penetrating needle electrode arrays such as the
Utah array (USEA), flat interface nerve electrodes (FINE), transverse intrafascicular multi-channel
electrodes (TIME), and longitudinal intrafascicular electrodes (LIFE) [6,7], are increasingly being
used to make this connection but lead wire ribbon cables create differential inertia during sudden
movement and the potential for damaging nerves during normal nerve movement with the limb.
Wireless systems using RF, optical, heat, magnetic and ultrasound energy are increasingly being
considered for neuromodulation [8–15]. The present work suggests the potential use of free-floating,
stimulating, diode-electrode systems that are wholly implanted within the nerve and the use of strong
electric field gradients produced by extraneural electrodes to achieve channel selection.
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Excitable tissues of the body are not generally stimulated by short pulses of zero-mean,
high frequency (>100 kHz) electric alternating currents (AC) at typically used amplitudes (10 µA–10’s
of mA). In fact, classic strength-duration curves reflect that nerve excitation at lower durations
(corresponding to high frequency) of stimulus require exponentially increasing monophasic current
amplitudes for stimulation. Recent nerve stimulation studies using transdermal amplitude modulated
signals (TAMS) using computational models and in vivo experiments indicate that sinusoidal carrier
waves of frequencies >20 kHz (variable amplitudes) do not significantly enhance the activation of
neurons [16].

However, it is known that high-frequency, pulsed, monophasic (half wave-rectified) or partially
rectified currents can stimulate a nerve and do so in ways that depend more on the envelope of the
pulse rather than its carrier frequency [17]. Such stimulation currents can be achieved by diodes
that rectify high frequency AC currents driven in tissues by remote electrodes that behave according
to induced field distributions of volume conductors. Diodes placed in tissue rectify the fraction of
high-frequency currents that pass through them relative to that passing through the tissue and can
cause local neural activation, as we demonstrate in this study. Different diode placements on the nerve
elicited selective electromyogram (EMG) responses in different muscle groups. The differential motor
responses suggest the potential for the employment of many very small diodes dispersed around and
within nerve to achieve a multichannel configuration driven by combinations of remote electrodes.

This approach to using volume-conducted currents to power implanted diodes and other devices
in tissue was first explored by Palti [17] and others more recently [18–21] for direct stimulation of
muscles [18] and nerves [19–21]. But a careful assessment of nerve activation using smaller microscale
diodes as a function of the AC stimulation parameters such as frequency, peak-to-peak voltage
amplitudes and diode parameters such as diode–dipole lengths, feature size and relative position of the
diodes with respect to the stimulation electrodes has not yet been done. We find that non-stimulatory
AC currents can be remotely driven in the conductivity of the nerve and a small diode with attached
microelectrodes will allow intra-neural placement. In this situation, there is the potential for highly
localized neurostimulation because of the short dipole spacing of the electrodes on the diode. Therefore,
the key aspects of this design are the electric field gradient in tissue and the geometric factors of the
diode and its electrodes.

The effect of diodes in a volume-conducted AC field has been modeled for various dipolar
configurations in prior modeling studies [22,23]. This study models specific geometric relationships
between the diode’s electrodes, the remote activation electrodes, their proximity, and orientation.
There is particularly a strong dependence on the anode–cathode length of the diode and the distance
of remote activation electrodes. In general, volume conduction of significant amounts of current is
limited by the roughly cubic expanding region of reduced current density around the stimulation
electrodes as a function of separation distance. Even so, relatively high amplitude pulsed AC currents
at high frequencies are well tolerated by tissues and so offer a way to help overcome path losses.
We investigate the potential for energy transfer within constraints acceptable for local power transfer
from outside a nerve epineurium to inside the nerve. The focus of the study here is to partly understand
the limitations on the scheme of placing very short, but untethered diode–dipoles within a nerve
cuff and then using differences in volume conduction and electrode current path lengths to define
diode activation. This is proposed in order to reduce the need for penetrating electrodes and their
potential for damage by lead wires. It is this key aspect of ‘wirelessness’ at this point in the chain of
electrical pulse generators and lead wires that offers an advantage to the development of advanced
nerve interfaces. The concept we are testing is the potential to achieve multichannel stimulation of a
compound nerve by inserting or placing multiple small diodes within or on the nerve such that each
responds to specific combinations of remote electrodes providing different configurations of electrical
fields. Such diodes will not be connected by wires. This concept is enabled for experimentation by
the availability of commercially available Schottky diodes in formats such as the Skyworks CDC-7630
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having a 1.5 mm length and unpackaged silicon diode die of 220 µm square, but we note that diodes
are easily made by modern photolithography at much smaller sizes.

2. Materials and Methods

2.1. In Vivo Rodent Sciatic Nerve Model

All animal procedures were done with the approval of the Institute of Animal Care and Use
Committee (IACUC) of Arizona State University and in accordance with the National Institute of
Health (NIH) guidelines. All efforts were made to minimize animal suffering and to use only the
number of animals necessary to produce reliable scientific data. In all, 17 rats were used in total for
all experiments.

Briefly, 300–600 g male Sprague–Dawley (Rattus norvegicus) rats (n = 17 rats total) were
anesthetized (induction) using 50 mg/mL ketamine, 5 mg/mL xylazine, and 1 mg/mL acepromazine
administered via intraperitoneal injection and maintained with 0.5–1% isoflurane. The left hind legs
were shaved and residual hair was removed using hair removal cream. The animal was mounted
on a stereotaxic frame and heart rate (~280–350 beats/min) and breathing (~60 breaths/min) were
monitored using SurgiVet™ (Smith Medical Systems, Dublin, OH, USA). Aseptic techniques to disinfect
the skin (i.e., application of isopropyl alcohol or betadiene) were used to ensure sterility. After skin
incision and dissection of the muscle planes, the sciatic nerve was identified and isolated. Connective
tissue surrounding the nerve was gently removed using iris microscissors at least 1 cm distal from the
trifurcation point. The nerve cuff described previously was placed approximately 1 cm distal from the
trifurcation point where the sural, peroneal and tibial bundles split. The cuff was placed such that the
insulating silicone bottom under the rings as the only contact point with the rat body to ensure no
contact with surrounding muscle groups to prevent potential off-target stimulation effects. A total of 10
(out of 17) animals were used for characterizing the performance of remote diodes with a stimulation
threshold as a function of AC stimulation parameters (i.e., frequency, AC burst duration, measurements
of diode current amplitudes based on relative position of remote diodes from stimulating electrodes,
diode–dipole length and implantation depth).

To demonstrate that modified, implanted mini-, and micro-diodes can stimulate the nerve,
needle-based electromyography (EMG) was used. Disposable monopolar needle electrodes
(Rhythmlink™, Columbia, SC, USA) were placed in digit 5 of the rat hind leg paw (either left or
right) for nerve cuff based experiments. The animal was grounded with a needle electrode in the
opposite hind leg. EMGs were recorded using Intan™ recording system (Intan, Los Angeles, CA, USA)
and analyzed in MATLAB offline. The recordings were digitally filtered on the Intan™ system using a
bandpass filter from 100–3000 Hz to remove motion artifacts. EMG recordings were analyzed for 10
repetition trials of each stimulation condition.

Large SC-79 package diodes were also used to test selectivity. Multiple EMG electrodes at
different sites (ankle/plantar, biceps femoris, and tibalis anterior) were placed in 3 (out of the total
of 17) additional animals to test for muscle selectivity using AC excitation at 300 kHz or 1 MHz.
Muscle response was recorded using needle-based EMGs.

Mean ± standard deviation of the EMG amplitude was calculated and muscle recruitment curves
were plotted for nerve stimulation using diodes placed subepineurally and diodes implanted in the
sciatic nerve. A total of 4 additional animals (out of the total 17) were used for the in vivo validation
(2 for subepineurial and 2 for deep nerve implants). For stimulus threshold voltage measurements,
mean ± standard error (SE) was plotted and statistical analysis was performed using one-way analysis
of variance (ANOVA) and if found significant, the maximum and minimum values were evaluated for
significance (α = 0.01) using the Student’s t-test.
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2.2. Diode Packaging and Modification

Ultra-small, commercially-available Schottky diodes (Skyworks 7630, Woburn, MA, USA) were
purchased in three different packages (SC-79, 0201 SMT, and bare die CDC7630)). The diode lengths
were 1.5 mm, 0.5 mm and 0.22 mm respectively, with the first diode capable of stimulation on or
outside the nerve, while the second and third diode packages offered intraneural, implantable sizes.
The implantable 0201 SMT and bare die (hereafter referred to as mini- and micro-diodes respectively)
were connected with 50 µm diameter platinum leads for nerve tissue contact that could be trimmed to
desired diode–dipole lengths. Mini- and micro-diodes were dipped in a fluorosilane-based coating
(3M-Novec EGC-1720) for 2 min and dried at room temperature for insulating electrically sensitive
portions of the device. An additional, ethyl-cyanoacrylate based layer (Gorilla™ impact tough super
glue) was added to strengthen the bond between the platinum leads and the diode bond pads to
withstand mechanical stresses from the animal for durable implantation. The three packaged diodes
are shown against the tip of smallest finger of a human hand in Figure 1.
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Figure 1. Pictures of the modified Skyworks 7630 diodes placed on an adult (digit 5) finger that were
used for wireless neuromodulation. Images of the mini- and micro-diodes are prior to lead trimming
and subsequent implantation into the peripheral nerve. The mini-diode is capable of placement
under the epineurium, while the micro-diode is capable of both subepineurial and deep nerve tissue
placement. Scale bar is 0.5 mm.

Current–voltage characteristic (I-V) curves of all three packages shown in Figure 2 were
generated (10 kHz–1 MHz) using a Siglent™ function generator and oscilloscope to ensure that
post-modifications did not affect diode characteristics such as threshold voltage as a function of
frequency. Typical thresholds ranged from 150–180 mV at different frequencies, which is comparable
to manufacturer datasheets.
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Figure 2. Current–voltage (I-V) characterization of modified, mini- and micro-diode packages—(a)
SC-79, (b) 02-01SMT, (c) CDC 7630–for 10 kHz–1 MHz expectedly showed no significant electrical
deviations due to frequency. Peak-to-peak, rectified current was measured across a load of
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2.3. Nerve Cuff Testing Platform

A cuff-electrode was used as a platform to generate AC fields in the sciatic nerve. A nerve cuff
with 100 µm diameter platinum electrodes with 9 rings spaced 250 µm apart as shown in Figure 3a
was custom fabricated by Microprobes (Gaithersburg, MD, USA). The total distance between the inner
edge of electrode rings ‘1’ and ‘9’ was 2.7 mm. Each ring on the cuff had an impedance of ~2 kΩ at
1 kHz. This set-up was used to measure currents through a diode that is superficially placed on the
sciatic nerve between two electrodes with AC excitation.
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Figure 3. Nerve cuff-based platform was used to test currents through a diode placed superficially on
a nerve for different diode–dipole lengths and placement of diodes relative to the external alternating
current (AC) excitation voltages. (a) Image of a 9-ring nerve cuff with 100 µm diameter platinum
leads spaced 250 µm apart. (b) Rings ‘1’ and ‘9’ were used to supply AC stimulus drive voltage
(10 kHz–1 MHz) on the nerve. Rings ‘2’ through ‘8’ were used to test different combinations of
diode–dipole lengths and the position relative to the AC drive voltages.

To study the impact of diode–dipole length and placement of the diodes relative to the excitation
electrodes on nerve excitation, the outer rings ‘1’ and ‘9’ were used to deliver AC stimulation
(peak-to-peak voltage of 0–20 V sine waveform) to the sciatic nerve in vivo. The mini- or micro-diode
was wired to any 2 of the remaining rings (rings 2 through 8). Different combinations of the inner rings
were used to test different diode–dipole lengths with the externally attached, mini- or micro-diode as
illustrated in Figure 3b. A 510 Ω resistor was placed in series with the diode for current measurements
through the diode and in series with the function generator for current measurements through rings
‘1’ and ‘9’ in the cuff for comparison (Figure 4a). The AC stimulation leads were electrically isolated
using a custom-built transformer with a broad frequency range (10 kHz–2 MHz) to prevent ground
loops. At 10 kHz, the output was slightly attenuated by 25% and was adjusted in current calculations.
Figure 4a shows the setup for drive current measurements with a 510 Ω resistor placed in series
with AC input. As seen in Figure 5, the current through the nerve was between 1–2 mA and fairly
stable across frequencies. At lower frequencies (10–20 kHz), a marginal dependence on frequency
was observed.

To measure typical currents through a microdiode that is implanted in a nerve, the anode and
the cathode of the diodes were connected to Teflon-insulated platinum wires (~110 µm diameter,
A–M Systems) spaced 1 mm apart as shown in Figure 4a,b. The diode was then mounted on a
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micromanipulator and the ends of the platinum wires were then used as probes to measure current
through different depths in the nerve, namely (a) on the surface of the epineurium, (b) subepineurial
placement (c) ~500 µm deep in the sciatic nerve, and (d) ~1 mm deep inside the nerve. Two different
diode positions—‘edge’ which is ~250 µm away from the stimulating electrode, and ‘center’ which is
1 mm away from the stimulating electrode)—were assessed for current flow. Examples of partially
rectified output for a 1 Vpp (peak-to-peak amplitude) input AC burst at 50 kHz and 500 kHz are shown
in Figure 4c.
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Figure 4. Experimental setup to measure current through remote mini-diodes whose cathode and anode
are implanted at different depths (0, ~500 µm, ~1 mm) inside the sciatic nerve. (a) An AC stimulus
(1 Vpp, peak-to-peak amplitude) is placed on rings ‘1’ and ‘9’ spaced 2.7 mm apart. (b) Insulated,
platinum microwires (~110 µm diameter) spaced 1 mm apart and externally connected to a mini-diode
are placed on the ‘edge’ (~250 µm) away from a stimulus ring electrode or near the ‘center’, which is
~1 mm away from the stimulus electrode. In this image, the probe is placed at the edge. The output is
recorded via an oscilloscope and the current is calculated from voltage measurements across a 510 Ω
resistor. (c) Examples of the partially rectified diode output for 50 kHz and 500 kHz waveforms with
1 msec burst.
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Figure 5. Representative currents measured through a sciatic nerve with a cuff in vivo. Variability in
current amplitudes across animals was within ~15%. Currents were measured through a 510 Ω resistor
for a 1 Vpeak-to-peak (1 Vpp) input voltage.

3. Results

3.1. Stimulus Voltage Threshold for the Muscle Increases Non-Linearly with Frequency of Alternating
Current (AC) Stimulation but the Presence of the Diode Microstimulator on the Nerve Lowers the
Stimulus Voltage Threshold

Large (1.5 mm diode–dipole length) diodes placed on nerve tissue rectify the fraction of high
frequency currents that pass through them and can cause local neural activation, an example of which
is shown in Figure 6. EMG responses recorded via needle electrodes placed downstream in three
muscle locations (ankle, biceps femoris, tibialis) (Figure 6g) showed different amplitudes at a stimulus
required for 50% of maximum response (Figure 6a–f). The diode was placed close to platinum hook
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electrodes, as seen in Figure 6. In additional animal experiments (Figure 7a), placement of the diode
in a different location between the hook electrodes resulted in variable responses at the three muscle
locations (ankle, biceps femoris, tibialis), with the ankle/plantar location showing no EMG response.
Increasing the diode length by placing two diodes in tandem resulted in increased EMG amplitudes
and a differential activation pattern (Figure 7b). Although the largest responses were seen in the biceps
femoris muscle group, the tibial and plantar showed different activation patterns (Figures 6 and 7)
depending on location and form factor of diodes.
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Figure 6. Representative electromyographic (EMG) responses from different muscle groups due to a
single, remote, SC-79 packaged Skyworks diode stimulated with a high frequency (1 MHz) AC field
by platinum hook electrodes. (a,c,e) are EMG responses at 1 Hz repetition rate. (b,d,f) are close-up
of waveforms in (a,c,e) showing single EMG response with stimulus artifact indicated by an arrow.
(g) Locations of EMG electrodes for the measurements in (a,c,e) in the hind limb. Inset shows a picture
of a remote diode in free-floating placement on top of the nerve between two platinum based hook
electrodes. Scale bar is 1 mm.
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Figure 7. Variable EMG responses from different muscle groups due to (a) single, free-floating, SC-79
packaged Skyworks diode stimulated with a high frequency (300 kHz) AC field by platinum hook
electrodes and (b) two, free-floating SC-79 packaged Skyworks diode stimulated at 1 MHz. The burst
repetition rate was 1 Hz for both diode configurations. Relative locations of diodes are shown below
the respective EMG responses. Scale bar is 1 mm.
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To better understand the ability to activate remote diodes, a nerve cuff-based platform was
utilized. The outer rings of the nerve cuff platform was used to deliver an AC stimulation burst with
varying frequencies (0–500 kHz) and durations (33 µsec–1 msec) to an in vivo sciatic nerve preparation
with a repetition rate of 1 burst/second in 2 animals. As frequency of the AC stimulation increases,
the stimulation drive voltage for muscle twitch threshold increases exponentially as shown in Figure 8a.
For increasing burst durations of AC, the threshold for muscle twitch decreases monotonically as shown
in Figure 8b. When diodes are wired between two rings closest to the stimulation electrodes (rings ‘2’
and ‘8’) as illustrated in Figure 3b, the stimulus voltage threshold decreases over all frequencies
20–50 kHz as shown in Figure 8c. Interestingly, the stimulus threshold plateaus for frequencies
>100 kHz ranging 1.5–5 V stimulus drive voltage as shown in Figure 8d. In contrast, the stimulus
threshold in the absence of the diode continues to increase exponentially reaching ~45 V for 500 kHz
bursts. This significant decrease in stimulus voltage threshold in the presence of a diode in the current
paths in the nerve will be the key property that will help us achieve a spatially selective neural
stimulation that is localized in the vicinity of the diodes themselves. Switching the anode–cathode
orientation of the diode between the same 2 cuff rings results in only a marginal change in the stimulus
voltage threshold as shown in Figure 8d.
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Figure 8. Representative stimulus voltage thresholds for different frequencies of AC stimulation.
(a) and (b) show that the stimulus voltage threshold is dependent on the AC frequency and the burst
duration, which is generated by variation in the number of periods (T) or full cycles as seen for 20,
40, and 50 kHz in (b). At 20 kHz, increasing burst duration from 50 µsec (1 T) to 1 msec (c) decreased
the threshold stimulus by 45–55%. The trends observed in the curves in (b) are best fit to a power
relationship (R2 > 0.99). (c) The presence of the diode decreases stimulus voltage threshold in a
frequency-dependent manner (≥20 kHz). At higher frequencies (d), the stimulus voltage threshold
increases non-linearly with the input AC frequency in the absence of a diode. The blue (forward bias
away from cathode) and red (forward bias toward cathode) lines indicate the presence of a diode in
two different orientations.

The best fit suggests a quadratic relationship (y = 0.1199x2 + 28.829x + 371.27, R2 > 0.99). However,
with the introduction of a diode in the current paths (between rings ‘2’ and ‘8’), the stimulus voltage
thresholds are significantly reduced, particularly for frequencies >100 kHz (1.5–5 V drive stimulus).
While noting the stimulus is AC, switching the diode orientation toward the cathode (defined as the
lead that connects to instrument ground) only changed the stimulus voltage threshold marginally
(red versus blue line). Note that the stimulus voltage threshold 500 kHz in the absence of a diode was
determined using an additional amplifier to the input signal to achieve high voltages.
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3.2. Diode–Dipole Length, Relative Position to the Stimulation Electrodes, and Implantation Depth within the
Nerve Are Major Factors in Determining Stimulation Thresholds

The stimulus voltage threshold for a visible muscle twitch was assessed as a function of
diode–dipole length (based on the setup illustrated in Figure 3b) in 4 additional animals (n = 6 sciatic
nerves for 20 and 500 kHz and n = 5 sciatic nerves for 50 kHz). The average stimulus voltage threshold
was inversely proportional to the diode–dipole length. In negative control experiments without diodes,
stimulus voltage thresholds were 876 ± 94 mV at 20 kHz and 2.85 ± 0.5 V at 50 kHz. At 500 kHz,
the stimulus voltage threshold exceeded instrumentation range. Previous work in Figure 8d suggested
the stimulus voltage threshold for 500 kHz to be approximately ~45 V.

Stimulus voltage thresholds decreased with increasing diode–dipole lengths as shown in
Figure 9a–c. At 20 kHz, the change in stimulus voltage threshold with respect to dipole length
was less pronounced (~20% decrease at 2 mm diode–dipole length) and was found not statistically
significant (one way-ANOVA) as shown in Figure 9a. At 50 kHz, the stimulus voltage threshold for
a diode–dipole length of 2 mm was ~55% of that during control AC stimulation (without a diode)
and were found to be statistically significant (p < 0.01) as shown in Figure 9b. At 500 kHz, the effects
of diode–dipole lengths were more pronounced were found to be statistically significant (p < 0.01).
Even the smallest diode–dipole length (250 µm) at 500 kHz resulted in stimulus voltage threshold that
is ~20–50% of that of control experiments with no diode. The larger dipole lengths (>500 µm) resulted
in stimulus voltage thresholds that were <10% of that of control experiments with no diodes as shown
in Figure 9c.
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Figure 9. Stimulus voltage thresholds as a function of diode–dipole lengths for different frequencies
−20 kHz in (a), 50 kHz in (b) and 500 kHz in (c) and relative position of the diode with respect
to the stimulus cathode. Stimulus AC input was delivered on rings ‘1’ and ‘9’ (2.7 mm distance).
Stimulus thresholds for conditions with no diodes are shown as the mean (solid black line) with 95%
confidence levels (dashed, black lines) in (a,b). Stimulus voltage thresholds in control experiments with
no diodes at 20 kHz (n = 6 sciatic nerves, 3 left and 3 right nerves from hind limb) and 50 kHz (n = 5
sciatic nerves 2 left and 3 right side) are 876 ± 94 mV and 2.85 ± 0.5 V respectively. At 500 kHz no
visible muscle response was observed up to 20 V (instrument limit) (d–f) show the change in stimulus
voltage thresholds due to relative position of the diode with respect to the stimulating electrodes when
the diode–dipole length was fixed at 600 µm. The illustrative inset in (d) shows the change in position
of the fixed diode length relative to the stimulating electrodes. All experiments were conducted with
1 msec AC burst duration. All data are expressed as mean ± SE. Significance was assessed by one-way
analysis of variance (ANOVA), followed by Student’s t-test (α = 0.01) between the maximum and
minimum in (a–f).
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In addition to the diode lengths, diode position and relative placement with respect to the
stimulating electrodes played a role in determining threshold stimulus value. In Figure 9a–c, multiple
data points at each diode length correspond to different positions of the diode relative to the stimulus
electrode. Figure 9d–f shows a representative example of how stimulus threshold changes as a function
of diode position for different frequencies when the diode–dipole length is fixed at 600 µm. A schematic
of the relative diode position with respect to the cuff leads is shown in the inset in Figure 9d. At all three
frequencies (20, 50, 500 kHz), the proximity of the diode to the stimulus electrodes decreases stimulus
threshold, while diode placement toward the center increases the stimulus threshold maximally by
~10% and was not found to be significantly different for 20–50 kHz. At higher diode lengths (>1 mm),
the relative change in threshold due to position was minimal. At 500 kHz, the minimum (near
stimulation electrodes) and maximum values (closer to center) were found to be statistically significant
for diode position in an AC field. It should be noted while the differential trends due to diode position
are evident at 500 kHz, there is large variation between samples, suggesting the field lines within the
nerve are variable. At 20 and 50 kHz, the contributions of the AC field from the external electrodes
towards stimulating the nerve diminish the effect of diode position within the AC field.

In an effort to assess the typical currents that flow through the diode, a total of 3 animals were
used to test different diode–dipole length configurations in Figures 10 and 11. To better understand the
currents that flow through a diode using remote AC stimulating electrodes, current through the diode
was measured for different diode lengths and positions (Figure 10a) for a 1 V (peak-to-peak amplitude)
AC drive voltage through rings ‘1’ and ‘9’. Interestingly, the current flowing through the diode was
generally invariant in the employed frequency range (up to 500 kHz), suggesting that interactions of
diode–electrode impedance and tissue impedances were responsible for this effect.
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Figure 10. Typical current measurements through the diode for different diode lengths and positions
for a 1 V (peak-to-peak amplitude) AC drive voltage. The experimental setup and the different diode
lengths and positions that were tested are shown in (a). The diode was externally attached to different
cuff leads as indicated to emulate different diode length and position relative to stimulating electrodes.
(b) Larger diode–dipole lengths and placement within 250 µm of a stimulating AC electrode resulted
in larger measured currents. (c) Shorter diode–dipole lengths of 250 µm and placement >250 µm
away from the stimulating electrodes showed 20–60 fold less current through the diode. (d) Current
measurements for diode–dipole lengths of 600 µm and 950 µm and placement >250 µm away from the
stimulating electrodes.
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While the experiments in Figure 10 represented currents through ring electrodes with large surface
areas, the experimental setup described in Figure 4 measured currents through a ‘remote’ microdiode
with a small electrode surface area (cross-sectional face of ~110 µm diameter wire) at various positions
and implantation depths. The platinum leads spaced 1 mm apart (for a diode–dipole length of 1
mm) were placed at the “edge” and “center” of the nerve encompassed by the nerve cuff are shown
in Figure 11 for 2 animals for a peak-to-peak excitation voltage of 1 V applied across rings ‘1’ and
‘9’ of the cuff electrode. In one of the animals, measured currents through the diode placed on top
of the epineurium (0+) was marginally higher than the currents measured from implanted diodes.
Similarly, only marginal differences were observed between currents through diodes placed at the
“edge” (or closer to the excitation electrodes) versus currents through diodes placed at the “center” of
the cuff.
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Figure 11. Characterization of current through a remote diode at 3 different implantation depths and 2
different lateral positions along the cuff. All currents were measured in response to a peak-to-peak
excitation voltage of 1 V applied across rings ‘1’ and ‘9’ of the cuff electrode. (a,d) Current through
diodes placed at the ‘edge’ of the cuff in 2 different animals and (b,e) ‘center’ of the cuff for 3 different
depths—above the epineurium (0+), just below the epineurium (0−), at 500 µm and 1 mm implantation
depths. (c,f) Representative currents through the diodes at 500 kHz are shown for different implantation
depths and position. The highest currents were attained closer to the epineurium (0 or 1 mm depth) of
the nerve and closest to the stimulating electrodes.

Experiments were also conducted in one animal to test the minimum monophasic current pulse
through the diode required to achieve the stimulus current threshold. The stimulus current threshold
for the diode was 17 µA at 10 kHz frequency for 1 msec burst duration. Similar experiments at 900 mV
drive voltage at 10 kHz frequency with 1 msec burst duration showed that 19.6 µA would be required
to reach stimulus threshold. In an additional separate control animal using hook electrodes spaced
3–4 mm apart, 15 µA was required to achieve stimulus threshold at 500 kHz, 500 µsec burst duration.
The currents through the remote diode in Figure 10 for the different implantation depths have similar
µA range, suggesting remote neurostimulation is feasible for microscale diode implants. Low µA
range currents are also reported for stimulators placed close to the nerve [24,25].

3.3. Validation of Remote Neurostimulation Using Implanted Mini- and Micro-Diodes Using the Optimal
Stimulation Frequency, Diode Dimensions and Placement Determined

Remote, free-floating, implanted mini- and micro-diodes with modified lead lengths to match
the length of the stimulating nerve cuff (~3 mm) were demonstrated to stimulate the sciatic nerve.
Figure 12 shows representative micro-diodes implanted deep into the nerve and hence not visible
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in the images (Figure 12a,b) and mini-diodes placed subepineurially (Figure 12d,e), where the outer
sheath held the diode in place even when subjected to mild shear forces.
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Figure 12. Representative images of implanted micro- and mini-diodes. (a–c) represent an example of
a diode with a 220 µm feature size and lead lengths to match the length of the cuff implanted deep
inside the nerve. (d,e) show an example of a diode with 0.5 mm feature size with 3 mm long leads,
the entirety of which is implanted subepineurally.

When a diode was placed on the nerve or implanted in the nerve between the two stimulating
electrodes and activated using the ring electrodes ‘1’ and ‘9’ of the cuff electrode at 500 kHz and 1 msec
pulse duration, a visible muscle twitch was visually observed and a corresponding, typically biphasic
EMG response was recorded (Figure 13). Representative EMG signals in response to activation of
a deeply implanted diode and another subepineurial diode are shown in Figure 13. Control AC
stimulations in the absence of any implanted diodes showed only the stimulus artifact, which has a
duration of 1 msec. Needles for EMG recordings were placed in digit 5 of the hind paw. A similar
range of latencies was seen across 3 implanted animals (5.8 ± 1.3 msec) in response to activation of
both subepineurially implanted diodes and diodes implanted deep in the nerve. The EMG waveform
has a peak-to-peak duration of 2.6 ± 0.55 msec in all animals.

Muscle EMG recruitment curves for subepineurial diode implants and deep nerve diode implants
(n = 4 additional animals for all implants) are shown in Figure 14. Subepineurial implants in 2 animals
had thresholds in the range ~2.8–3.0 V and had recruitment curves comparable to those obtained for
diodes just placed on the nerve implants with 1.5–2.8 V threshold stimulus. It was noted that during
the recording of the second recruitment curve for the subepineurial implant #2, the stimulus was
selective to movement of only digit 5 suggesting recruitment of localized axonal fibers; whereas with
the placement of the diode on the nerve in the same animal or in the case of the subepineurial implant
#1 a larger recruitment was seen, causing the whole hind leg to move at higher stimulus voltages.
Deep nerve implants in 2 animals had a higher stimulus voltage threshold (6.0 V in one case and 20 V
in the second case). The EMG recruitment curve for the first diode implanted deep in the nerve is
shown in Figure 14. The recruitment curves for the second implanted diode could not be obtained
due to high activation voltages that were needed. EMGs for this animal had a large peak-to-peak
amplitude (~12 mV) for the diodes implanted deep in the nerve (data not shown).
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animals) and deep in the sciatic nerve (one animal shown). A second animal with a deep nerve 
implant showed a response only at 20 Vpp (not shown). In addition, EMG recruitment curves of 
three diodes placed on the sciatic nerve is also shown labeled “epineurium surface #1’ and 
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Figure 13. Activation of remote diodes using AC stimulation waveforms induces distinct
dose-dependent EMG responses. (a,b) EMG responses are not observed in the absence of any diodes to
AC stimulation of 4 V and 8 V. (c) Distinct EMG peak amplitudes are seen ~7 msec after the stimulus
artifact in response to activation of diodes placed subepineurially and ~5.5 msec after stimulus artifact
in response to activation of diodes placed deep in the nerve (d). These representative EMGs were
recorded in response to an AC stimulus of 500 kHz frequency with a 1 msec stimulus duration.
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Figure 14. EMG recruitment curves for diodes implanted that are implanted subepineurially (2 animals)
and deep in the sciatic nerve (one animal shown). A second animal with a deep nerve implant showed
a response only at 20 Vpp (not shown). In addition, EMG recruitment curves of three diodes placed on
the sciatic nerve is also shown labeled “epineurium surface #1’ and ‘epineurium surface #2’. Each data
point is represented by the mean ± standard deviation of EMG responses to 10 stimulations at a
given amplitude.
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4. Discussion

The primary goal of this study was to determine the set of stimulation parameters,
diode dimensions and placement that would enable microscale, implantable diodes to function as
wireless neuromodulators. The working principle was to use the volume conduction properties of
tissue as a method of transferring power from non-contacting but nearby electrodes to free-floating
diodes placed on or inside the nerves. The initial concept of using a rectifier (germanium diodes
with silver leads (1–3 cm long) to stimulate external organs was demonstrated by Palti in 1966 [17].
Recent work reiterated the concept by placing leads from a full-wave bridge rectifying circuit prototype
(eAxon) into selected muscle fibers that are stimulated using a 1 MHz sinusoidal input [18]. In this
study, we demonstrated remote neurostimulation using microscale, silicon diodes directly implanted
in the nerve in at least 13 animals (Figures 6–9, 12 and 13). This approach allowed neurostimulation
without wires traversing the epineurium to contact electrodes. Thus, there is a wireless bridging of the
last millimeter of distance between the local environment outside of the nerve body and its interior.
Using different feature sizes (1.5 mm, 0.5 mm, and 0.22 mm) off-the-shelf, commercially-available,
Schottky diodes (Skyworks 7630), we assessed the parameters of the external stimulating AC signal
(such as frequency 10–500 kHz, drive voltages, and currents), diode dimensions and relative position
of the diode with respect to the external AC stimulating electrodes that would be required to achieve
wireless neurostimulation for microdiodes implanted in the sciatic nerve. We found AC stimulating
frequency and diode length to be major factors in diode performance in vivo, followed by proximity
of the diode to the stimulating electrodes and implantation depth.

Application of 1 msec bursts of zero-offset, sinusoidal AC waveforms via a nerve cuff platform
by itself stimulated the sciatic nerve in a frequency-dependent manner from 10–500 kHz (Figure 8).
The non-linearly increasing thresholds required to achieve a visible muscle twitch at higher frequencies
can perhaps be explained by earlier observations of classic strength–duration relationships for nerve
stimulation. Such strength–duration curves for nerves have demonstrated a non-linear, hyperbolic
relationship between strength and duration required to achieve threshold. High frequencies correspond
to lower durations and hence threshold for AC stimulation of nerves can be expected to increase
non-linearly with frequency. In addition, high frequency AC stimulation that exceed the kinetics of
the ion channels in the cell membrane, will result in significantly higher voltage thresholds (such as
~45 Vpp at 500 kHz). In fact, pure sinusoidal AC continuous waveforms up to 40 kHz have been used
effectively in nerve conduction block applications, such as relief from phantom limb pain [26–28].

Placement of a wireless, remote diode in AC electric field is expected to fully or partially rectify
the input sinusoidal wave and generate a DC component that is proportional to input Vrms and
large enough to stimulate a nerve. Above 20 kHz, the addition of a wireless diode between the
stimulus electrodes achieved increasing reductions in the stimulus voltage threshold. For instance,
the stimulation voltage thresholds at 20 kHz and 50 kHz were ~700 mV and ~1.5 V with a wireless
diode compared to ~900 mV, ~3 V without diode, respectively. Beyond 100 kHz, the stimulus voltage
threshold plateaued (<5 V) and was fairly independent of frequency. We speculate that between
20–100 kHz, the rectified signals of the diode augmented the neurostimulation of the applied external
AC signal in achieving the threshold. Below 20 kHz, the augmentation effect of the diode presence
was not significant, suggesting the neurostimulation was dominated primarily by the external AC
stimulation. Frequency-dependent effects are not expected from diodes since current-voltage (I-V)
characterization of modified diodes show similar diode threshold values and rectification properties
across a range of frequencies (10 kHz–1 MHz, Figure 2).

In this study, the measured currents through the diode were at least 100-fold less (Figure 10)
than the currents through the rings ‘1’ and ‘9’ of the cuff electrode (Figure 5), suggesting high levels
of volume conduction loss. Increasing the diode–dipole length from 250 µm to 2 mm reduced the
threshold by ~10–20% and ~55% at 20 kHz and 50 kHz, respectively, as shown in Figure 9. Significant
improvements in stimulus voltage thresholds were seen for diode–dipole lengths >1 mm at 50 kHz,
while the effect of diode length was only marginal at 20 kHz. The effects of diode–dipole lengths
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were more pronounced for 500 kHz stimulation frequency. The stimulus voltage threshold lowered
10-fold at 500 kHz as the diode–dipole length changed increased from 250 µm to 2 mm. The smaller
diode–dipole lengths have relatively lower energy transfer efficiency due to less volume-conducted
currents being intercepted by diode–electrodes. At high frequencies, only the current through the
diode that is rectified would be useful for neurostimulation. The results are in agreement with [23],
who theorized that diode designs with long, thin geometry that maximize separation distance with
short electrode leads would have maximum energy transfer efficiency. Sahin et al. [22] showed that
separation distance of remote electrodes more than two times the diode anode–cathode separation
distances (or diode–dipole length) entails high volume conductor losses. The stimulating electrode
in the cuff were separated by 2.7 mm and, indeed, at 500 kHz where the augmentation of the diode
would be most dominant, a diode–dipole length of >1 mm resulted in the lowest voltage thresholds.

For a fixed diode–dipole length, increasing the diode proximity to the stimulating electrodes
reduced the stimulus voltage threshold value by ~10% compared to positions more central between
the stimulating electrodes (Figure 9d,e). Measured currents through a diode reduced 20–60 times
when the diode was placed >250 µm away from the stimulating electrode (Figure 10). A remote
diode with a smaller contact surface area also reduced by up to 2-fold toward the central position
between two stimulating ring electrodes and toward ~500 µm implantation depth (Figure 11). In the
case of implanted microdiodes, a large contact surface area between the anode/cathode and the
tissue is attained via an additional 1 mm extension of bare, uninsulated platinum wire (total length
of the microdiode and wire extension ~3 mm). The larger contact surface area allowed for a lower
interfacial impedance and hence a more conducive current path compared to the typically higher tissue
impedance surrounding the implant. The feasibility of obtaining recruitment curves from implanted
microdiode stimulators (Figure 14) confirmed that having lower contact impedances is an important
design parameter in addition to diode–dipole length and placement in the AC field.

An interesting point was that diodes placed on the nerve and diodes embedded just underneath
the epineurium had similar threshold values, suggesting the epineurium did not impede in the energy
transfer between the stimulating electrode and the diode. It is well known that at high frequencies
(such as 500 kHz) the impedance of electrodes placed above the epineurium and those implanted
just beneath in the nerve (sub-epineurium) would converge, essentially eliminating any impedance
mismatches for energy transfer. However, implants placed deeper in the peripheral nerve tissue would
be expected to have a higher threshold due to higher tissue path impedance. Indeed when comparing
EMG recruitment curves of diodes implanted deep in the nerve and that of subepineurial diodes for
similar diode lengths at 500 kHz input frequency (Figure 14), the stimulus voltage threshold increased
by 2–3 fold from 2.8–3 V to 6 V. In fact, one diode implanted deep in the nerve required a stimulus
voltage threshold of 20 V, suggesting steep recruitment curves (data not shown). It should be noted that
the minimum current needed to achieve the threshold were similar for a monophasic, square pulse with
a 1 msec duration (17 µA) compared to the minimum current through a diode at the threshold (19.6 µA).
Therefore, deep implants require more drive to achieve similar performance. It should be emphasized
the repeatability and robustness of the diode placement would be an important experimental variable
in potential application of this kind of neurostimulation strategy. The repeatability/robustness of
the nerve responses from the diodes from trial to trial is governed partly by surgical technique and
animal-to-animal variations in electrophysiological response. The primary focus of this study was not
to characterize known biological responses to pulsed monophasic but rather the ability to stimulate
them remotely by electric field manipulation. Strategies to optimize positioning and manipulation of
diode lengths will be needed in the future for modulation of deep fibers. Volume conduction models
that assume homogenous and isotropic tissue properties with uniform conduction would predict
the highest threshold to be at the midpoint. However, the data in Figure 8d–f suggested that while
stimulus thresholds trended higher in the region between the edges of the stimulus electrodes, there
was a large variance in the exact position where least current and higher thresholds occur. Considering
that tissue properties have in reality more inhomogeneous composition [29], and the nerve itself has a
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non-spherical, oblong geometry, better mapping of conduction properties inside the nerve would be
needed in the future for the optimal placement of diodes. It should be noted that variance in current
properties outside the nerve epineurium (Figure 10) was possibly due to the presence and effective
concentrations of body fluids over the time course of the experiment. It should be made clear that the
study is not proposing the placing of commercial diodes in nerves, since even at the smallest feature
size of 220 µm, they may cause significant tissue damage due to relative tissue motion. However,
assessment of the biocompatibility of the current remote diode–dipole chips is beyond the scope of this
work since the primary motivation here was to investigate the possibility of inter-neurally, implantable
microstimulators to be remotely activated. The potential advantages of this approach are selective
targeting and decoupling of the physical wire connectivity to mitigate the relative motion between
implanted devices and the nerve tissue. The disadvantages are relatively higher currents applied to
nerve cuffs (currents in the cuffs are in the order of a few mAs to 10’s of mA which are ~100 times
higher than currents through the remote diodes) and limitations in placement of multiple diodes due
to the need for diode electrode lengths in the order of 1 mm.

This often affects the performance of tethered implants in terms of energy usage, targeting
precision and optimal performance since it may require frequent recalibration. This work did not
examine issues of nerve damage due to diode placement. However, we note that to mitigate the
tissue damage due to diode implant itself, design modifications such the use of materials that are
mechanically matched to the tissue, flexible designs and miniaturization may be used to improve
chronic functional performance.

5. Conclusions

We observe that small 220 µm, free-floating, Schottky micro-diodes placed free-floating inside a
rat sciatic nerve can reduce thresholds and stimulate action events using high frequency AC bursts
with 1 msec duration. The advantage is that no chronic trans-epineurial wires to individual nerve fibers
are needed to locally stimulate fibers. This work suggests that free-floating diodes placed internal to
the nerve in combination with nerve cuffs thus can act similarly to penetrating electrodes in achieving
selective (focal) sites of nerve stimulation but without penetrating wires implanted intraneurally.
Experiments show, however, strong sensitivity to diode–dipole length with the minimum values of
in the order of 1 mm, frequency of AC carriers, limits on the distance of diodes from stimulation
electrodes, and thus implantation depths at practical AC drive currents. This places significant limits
on extrapolations of this approach to multiple channels. Currents through implanted diodes within
the nerve suffer large attenuations (~100 fold) compared to AC burst currents requiring relatively high
(1–2 mA) drive currents. Muscle EMG curves with implanted free-floating diodes are intrinsically steep
and get steeper as a diode is placed at increasing depths away from external AC stimulating electrodes.
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