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A B S T R A C T

Tobacco (Nicotiana tabacum L.), one of the major crop plants in Tanzania, cropping affects the level of soil fertility,
but the reason has not been known. Plant rhizosphere plays an important role in affecting soil fertility through
changing microbial composition. We planned a pilot study to understand the changes in microbial composition
and soil nutrients in the rhizosphere soils of tobacco in three agro-ecological zone, namely Sikonge, Tabora and
Urambo in Tanzania. This study assessed bacteriota composition using 16S rRNA sequencing and soil fertility in
the rhizosphere of tobacco plants. The results showed that bacterial diversity in tobacco rhizosphere soils
belonged to Proteobacteria phyla, associated significantly (p < 0.05) with solubilization of insoluble P, K and S.
The solubilization of P, K and S in soils facilitates the availability of these nutrients to the tobacco plants (a heavy
feeder crop) allows low levels of these nutrients in the soils for the subsequent crop. The Proteobacteria phyla also
associated with an increase in soil N content through fixation. Therefore, bacteria diversity in tobacco rhizosphere
influence solubilities of macronutrients (P, K, S) and quickly up taken by the tobacco plant and reduces their levels
in soils, some bacteria involved in fixing N and increases total N in the soil.
1. Introduction

Tobacco (Nicotiana tabacum L.) is the major cash crop cultivated
mainly in major three continents, namely Asia, America and Africa
(Lisuma et al., 2019). Tobacco crop is mostly rotated with maize crop and
considered to be the most soil nutrients heavy feeder crop (Sauer and
Abdallah, 2007; Bastani et al., 2018; Moula et al., 2018). Crop rotation
reported influencing soil fertility and rhizosphere microbes (Hauchhum
and Tripathi, 2019; Manpoong et al., 2020). Rhizosphere's narrow zone
around the plant roots, is characterized by the higher bacterial activity
and soil nutrients than the bulk soil. Changes in the rhizosphere soils
nutrients and microbial diversity are faster than the changes in the bulk
soil due to management practices, and rhizosphere soils indicate the
fertility of the soil in the range ecosystems. Tobacco rhizosphere is a
complex and usually associated with bacteria diverse community
involved in stimulating growth through nutrient acquisition, and hence,
the nutrients reported to be depleted heavily from the soil by this crop
a).
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are; P, K and S (Xue et al., 2008; Farooq et al., 2014; Moula et al., 2018).
However, some studies reported the tobacco crop to be associated with
the increasing of Ca, Fe, N, Zn in the rhizosphere (L�opez-Lefebre et al.,
2001, 2002; Farooq et al., 2014; Zou et al., 2018).

Effects of cultivating tobacco crop on either increase or decrease of
some nutrients in the rhizosphere have not been linked with diversity of
soil bacteria and their roles in the rhizosphere (Lisuma et al., 2019). The
bacterial diversity in the rhizosphere are unnumbered, and their
ecosystem roles are associated on improving rhizosphere fertility, how-
ever, yet still, their roles have not been studied to the great depth
(Camenzind et al., 2018). Bacterial phyla belonging to Proteobacteria,
Firmicutes, Actinomycetes, Cyanobacteria and Bacteroidetes are known to be
beneficial as PGPR – ‘plant growth promotion rhizosphere’ (Kyselkov�a
et al., 2009; Kim et al., 2013; Basharat et al., 2018). Soil bacteria play
significant roles in the rhizosphere through solubilization and minerali-
zation of nutrients/organic materials (Masood and Bano, 2016; Bhowmik
et al., 2017). Through this process, soil bacteria contribute a large part in
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nutrient retention, recycling, availability of nutrients for plant growth
(Bhowmik et al., 2017).

Soil fertility is among a critical factor for crop productivity. Primary
macronutrients play a significant role in plant growth, development,
yield and quality increase (Tripathi et al., 2014). Nitrogen (N) is one of
the limiting nutrients in crops and is available in the soil through bio-
logical fixation and atmospheric deposition (Dalling et al., 2016;
Dynarski et al., 2019). Phosphorous (P) is the second essential nutrient
Figure 1. Map of pilot study areas: Sikon
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after N which is released slowly from the parent rocks and depleted over
time through occlusion and run-off (Dalling et al., 2016; Teodoro et al.,
2019). A third essential nutrient in crops is potassium (K) which limits
crop production due to its large portion existing as insoluble forms
despite its reserve being large, and hence little K becomes available to the
plants (Ahmad et al., 2016; Masood and Bano, 2016). Secondary mac-
ronutrients such as Ca and Mg are released in the soil at a steady rate
(Vitousek and Sanford, 1986) and hence always blended concurrently
ge (1), Tabora (2) and Urambo (3).
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with NPK for crop production. Supplementation of the secondary mac-
ronutrients such as calcium (Ca), magnesium (Mg), sulphur (S) and
micronutrients such as boron (B), copper (Cu), iron (Fe) and zinc (Zn) to
primary macronutrients reported to increase significantly crop yields
(Kihara et al., 2017).

Although the role of soil bacteria on solubilization of nutrients is well-
documented (Kyselkov�a et al., 2009; Kim et al., 2013; Masood and Bano,
2016; Bhowmik et al., 2017; Basharat et al., 2018), in our understanding,
linkage of tobacco cultivation with the diversity of soil bacteria on soil
fertility has not been studied. Therefore, a pilot study was conducted to
investigate soil nutrients, and bacterial composition based on the 16S
rRNA V3–V4 regions from tobacco rhizosphere of the three sites varying
with soil texture and cropping systems in Tanzania. This pilot study
involved linking of rhizosphere bacterial composition and soil nutrients
to provide clear insights on the role of soil bacteria in tobacco cultivation
in association with the soil fertility depletion or improvement before
planting a subsequent maize crop after tobacco cultivation.

2. Materials and methods

2.1. Study site, soil sample collection and processing

Three experimental field sites of Sikonge, Tabora and Urambo,
Tabora region, Tanzania with different soil types of loamy sand, sand and
sandy loam, respectively, were selected during the 2018/19 cropping
season (Figure 1). Sikonge site is located at 05� 310 47.400 S, 032� 500

03.200 E; 1,191 m a.s.l. with annual mean rainfall and air temperature of
1050 mm and 29 �C, respectively. Tabora site is located at 05� 030 44.400

S, 032� 400 07.400 E; 1,160 m a.s.l. with annual mean rainfall and air
temperature of 950 mm and 27 �C, respectively. Urambo site is located at
05� 040 33.500 S, 032� 000 09.800 E; 1,108m a.s.l. with annual mean rainfall
and air temperature of 890 mm and 25 �C, respectively.

Plot size was 6 m � 6 m, 1.2 m between ridges and 0.50 m between
plants planted for tobacco (K326 variety) and maize (DKC8053 variety).
The fallow plot as a control had no any crop. A total of 54 soil samples
were sampled using soil core randomly at 2 m away from each replicated
tobacco plot to a depth of 20 cm. Soil adhered firmly to roots was cate-
gorized as rhizosphere soil. With the help of forceps, rhizosphere soil
firmly adhered to fine roots dislodged, then further sieved through a 2
mm sieve and part of it used for bacteria DNA extraction and the deter-
mination of soil pH, organic carbon (OC), total N, available P,
exchangeable K and Ca, extractable S, extractable Fe, Mn, Cu, and Zn
analysis (Moberg, 2000). Since the tobacco root tip region of fine laterals
is known to be themajor site of nicotine synthesis, a second portion of the
rhizosphere soil was further sieved through 1 mm and 0.5 mm in order to
remove fine root tips for the nicotine determination (Figueiredo et al.,
2009). Similar procedures were used to collect rhizosphere soil samples
in maize and fallow plots for the bacteria DNA extraction.

2.2. Bacterial DNA extraction from soil samples

Extraction of bacterial DNA from the rhizosphere soil collected from
the three experimental sites, as stated in section 2.1 was conducted at the
Molecular Biology laboratory of the Nelson Mandela African Institution
of Science and Technology (NM-AIST), Arusha Tanzania. About 0.25 g of
each rhizosphere soil sample was used to extract DNA using DNeasy®

PowerSoil® Kit (Qiagen, Hilden, Germany) as per the manufacturer's
instructions. The extracted DNA was quantified using Qubit™ 3.0 Fluo-
rometer (Thermo Fisher Scientific, Grand Island, NY). To ensure purified
DNA was of high-quality, DNA was visualized through 1.0 % agarose gel
electrophoresis. Extracted DNA was kept frozen at -20 and -80 �C.

2.3. Soil bacteriota composition using 16S rRNA sequencing

The purified DNA transported on dry ice to Inqaba Biotec™, a com-
mercial sequencing service provider located in Pretoria, South Africa for
3

the bacteriota analysis through a run number 190708. The V3–V4 hyper-
variable regions of the 16S rRNA gene were amplified from the DNA
extracts during the first PCR step using the universal primer pair 341F
forward primer (50-CCTACGGGNGGCWGCAG-30) and uniquely barcoded
785R reverse primer (50-GACTACHVGGGTATCTA ATCC-30) for each
sample. Resulting amplicons were gel purified, end-paired and Illumina
TrueSeq adapters were ligated to each amplicon. Then samples were
individually indexed, and another bead-based purification step was
performed. Following quantification and equimolar pooling, amplicons
were then sequenced on Illumina's MiSeq platform, using a MiSeq v3 600
cycles kit. 20Mb of data (2 � 300bp long paired-end reads) were pro-
duced for each sample. The length of the obtained sequences averaged
231 bp.

2.4. Bioinformatics for the bacteriota composition

Due to very low-quality scores of the reverse-end reads, bacteriota
analyses were performed using only forward-end reads. The low-quality
scores can be contributed by the reverse primer linked to barcodes which
help in demultiplexing of the samples in case several samples were
pooled during sequencing. Likewise, the primers, dNTPs, and other re-
agents are almost exhausted in the reaction mixture towards the end of
sequencing runs. Analysis of demultiplexed forward-end 16S rRNA gene
reads was performed based on DADA2 (ver. 1.14.0) (Callahan et al.,
2016) in R software (ver. 3.6.2) (R Core Team, 2019). DADA2 pipeline
includes trimming and filtering of the quality reads, dereplicates se-
quences, learns error rates, generates amplicon sequence variants (ASV)
abundance table, removes chimeric sequences using “bimera denovo”
method, taxonomic assignment and classification of the ASVs using the
SILVA reference (ver. 132) database (Quast et al., 2013). About 427,218
forward-end FASTQ reads generated from 9 samples were pre-processed
in DADA2 pipeline by removing low-quality reads using the truncated
length set at 220 bp and adapters trimmed at less than 10 bp. Reads were
further filtered to remove reads with ambiguous base by setting maxN ¼
0 and maximum expected errors greater than two were discarded by
setting the quality filtering measure (maxEE ¼ 2). DADA2 pipeline
detected 5.8% of the relative abundance in all reads as chimeric and
removed from the datasets. The resulting ASV abundance table contained
375,429 high-quality non-chimeric reads from 9 samples.

2.5. Statistical analyses

Statistical analyses (two-factors: sites; Sikonge, Tabora, Urambo, and
tobacco) for the soil nutrients was done using analysis of variance
(ANOVA). The significant means were compared using Fisher Least Sig-
nificance difference at p < 0.05. The correlation, and multiple regression
analyses at p < 0.05 among soil biochemical properties, and bacterial
diversity in tobacco plots were performed in STATISTICA 8th Ed. (Stat-
Soft, Inc., Tulsa, OK, USA).

For the bacteriota phyla composition from tobacco, maize and fallow
plots, downstream analyses included data inspection, normalization,
abundance visualization, alpha and beta-diversity (observed and Shan-
non) analyses, and heatmaps were generated in R software (ver. 3.6.2) (R
Core Team, 2019). After filtering and normalization of the sequence
reads, 90 % rarefaction depth of the minimum sample depth in the
dataset were used to simulate even number of reads per sample. Results
show that 68 OTUs removed because they were not present in any sample
after random sub-sampling. The alpha-diversity indexes (species rich-
ness) for the study sites and different experimental treatments (fal-
low/control, maize and tobacco plots) at the phylum level were
calculated using the Observed and Shannon Diversity Indexes in phloseq
(McMurdie and Holmes, 2013) package in R. Moreover, the
beta-diversity indexes for the study sites and experimental treatments of
the samples, PCoA with weighted Unifrac at phylum level performed
using phyloseq (McMurdie and Holmes, 2013) package in R software (ver.
3.6.2). Statistical analyses between the groups for the alpha-diversity and
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beta-diversity indexes were performed using the pairwise-wilcoxon test
and the permutational ANOVA (PERMANOVA) analysis using vegan
(Oksanen, 2011) package in R, respectively.

3. Results

3.1. Effects of tobacco cultivation on selected soil parameters and bacterial
diversity

Soil pH was lowered as a result of tobacco cultivation, and soil OC
decreased significantly (p < 0.001) following the cultivation of tobacco
crop. The nicotine released in the soil increased significantly across the
sites. Total soil N, Ca, Cu2þ, Fe2þ, Mn2þ, and Zn2þ increased significantly
(p < 0.001) under tobacco cultivation. While available P, K and S
decreased significantly (p < 0.001) under tobacco cultivation (Table 1).
There were significant interactions between sites under tobacco culti-
vation on measured parameters soil pH, OC, nicotine, Cu, Fe, Mn, Zn, N,
P, K, Ca and S.

Soil measured parameters were correlated with bacterial diversity
(Table 2). Across the site, soil pH was significantly positively correlated
with bacterial diversity (Chao1 alpha-diversity index) to tobacco plots (r
¼ 0.57, p< 0.05). Macronutrient S, P, N and K were positively correlated
with bacterial diversity at p < 0.05; however, N and K showed to have a
low correlation. Calcium and Mn were negatively correlated with bac-
terial diversity. Other micronutrients such as Cu, Fe and Zn were nega-
tively correlated with bacterial diversity, but Zn had the lowest
correlation. The nicotine released in soils by the tobacco plant showed to
be negatively significantly correlated with bacterial diversity.

Association of bacterial diversity and soil parameters was performed
using multiple regression analysis (Table 3). Results showed that bacte-
rial diversity was positively correlated (R2 ¼ 56.57%) with soil pH,
which is a primary determinant of nutrients available to the plants. Soil
pH, along with OC regressed with bacterial diversity, improved R2 value
to 65.40%. However, soil pH along with N, S, P, Ca, K and soil pH along
with Cu, Fe, Mn and Zn significantly improved the R2 values from
94.88% to 96.05%, respectively, in predicting bacterial diversity.

3.2. General distribution of soil bacteria phylum in tobacco, maize and
fallow plots

The 375,429 classifiable sequences in this study, were correlated with
12 relative abundance bacterial phyla from each experimental site
(Sikonge, Tabora and Urambo) covering all crops (Figure 2). To all
cropping systems, the dominant phyla spotted as Actinobacteria and
Proteobacteria, accounting for >60% of all the phyla. Other phyla in
decreasing order were Chloroflexi, Acidobacteria, Planctomycetes, Gem-
matimonadetes, Firmicutes and Bacteroidetes. Bacterial phyla with <1%
abundance were excluded, and not considered as dominant. The bacterial
distribution at the phylum level varied in the different cropping systems
and relative abundance.

3.3. Comparison of soil bacteria phylum diversity from different soil types
and crops

In tobacco rhizosphere, the following phyla ranked in their abun-
dance levels were in order: Proteobacteria (37.7%), Actinobacteria
(27.7%), Acidobacteria (9.0%), Chloroflexi (7.0%), Firmicutes (5.7%),
Planctomycetes (5.3%), Bacteroidetes (4.3%) and Gemmatimonadetes
(4.0%) (Figure 3).

Proteobacteria and Firmicutes for tobacco crop soil were abundant in
Tabora sand soil by 5.36 and 0.92%, respectively; 3.38 and 0.43% in
Urambo sandy loam soil, respectively; 3.15 and 0.42% in Sikonge loamy
sand soil, respectively. Actinobacteria, Acidobacteria, Chloroflexi and
Planctomycetes in tobacco plots were most dominant by 3.64, 1.28, 1.03
and 0.70% in loamy sand soil of Sikonge, respectively; followed by sandy
loam soil in Urambo by 3.59, 1.27, 0.92 and 0.66%, respectively, and



Table 2. Correlation between soil parameters and bacterial diversity indices (p < 0.05).

Chao1 SDI pH Cu
(mg kg�1)

Zn
(mg kg�1)

Mn (mg
kg�1)

Fe (mg
kg�1)

N (%) OC (%) S (mg
kg�1)

P (mg
kg�1)

Ca (cmol (þ)
kg�1)

K (cmol (þ)
kg�1)

Nicotine
(mg kg�1)

1. Chao1 1

2. SDI 0.44 1

3. pH 0.57 0.28 1

4. Cu (mg kg�1) -0.80 -0.23 -0.1 1

5. Zn (mg kg�1) -0.09 -0.48 0.28 0.42 1

6. Mn (mg kg�1) 0.02 0.14 0.27 0.39 0.75 1

7. Fe (mg kg�1) -0.59 0.01 -0.34 0.69 0.39 0.64 1

8. N (%) 0.06 -0.44 -0.25 -0.10 0.61 0.49 0.31 1

9. OC (%) 0.58 -0.21 0.55 -0.26 0.73 0.54 -0.13 0.61 1

10. S (mg kg�1) 0.63 -0.14 0.39 -0.70 -0.22 -0.56 -0.98 -0.16 0.31 1

11. P (mg kg�1) 0.67 -0.02 0.16 -0.89 -0.35 -0.52 -0.89 0.04 0.26 0.89 1

12. Ca (cmol (þ) kg�1) -0.10 -0.08 0.09 0.41 0.76 0.85 0.75 0.55 0.50 -0.62 -0.63 1

13. K (cmol (þ) kg�1) 0.38 -0.53 0.02 -0.39 0.57 0.22 -0.11 0.81 0.80 0.30 0.37 0.39 1

14. Nicotine (mg kg�1) -0.56 -0.4 -0.55 0.40 0.46 0.49 0.77 0.70 0.05 -0.70 -0.48 0.58 0.30 1

SDI ¼ Shannon diversity index.
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Tabora sandy soil by 1.75, 0.43, 0.29 and 0.33%, respectively. Bacter-
ioidetes were 1.23% in abundance for Tabora sand soil and 0.17% in
Urambo sandy loam soil, while Gemmatimonadetes were abundance in
loamy sand soil of Sikonge and sandy loam soil of Urambo by 0.64 and
0.66%, respectively.

In maize rhizosphere, the abundant phyla were in order: Actino-
bacteria (11.74%), Proteobacteria (7.71%), Chloroflexi (3.71%), Acid-
obacteria (3.32%), Planctomycetes (1.99%), Gemmatimonadetes (1.90%),
and Firmicutes (1.86%). In maize plots, the distribution of phyla abun-
dances was as follows; Actinobacteria were 4.77% in loamy sand soil
(Sikonge), 3.99% in sandy loam soil (Urambo), and 2.98% in the sandy
Table 3. Multiple regression between bacterial diversity and soil parameters.

Variables R2

1. BD: soil pH 56.5

2. BD: soil pH, OC 65.4

3. BD: soil pH, Ca, N, P, K, S 94.8

4. BD: soil pH, Cu, Fe, Mn, Zn 96.0

BD ¼ bacterial diversity.

Figure 2. Relative abundances (%) of phylum for each
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soil (Tabora). Proteobacteria was 3.24% in Tabora sandy soil, 2.43% in
sandy loam soil of Urambo and 2.04% in Sikonge loamy sand soil.
Acidobacteria, Chloroflexi and Planctomycetes were mostly abundant by
1.44, 1.39 and 0.80% in Urambo sandy loam soil, respectively; 1.21, 1.27
and 0.60% in Sikonge loamy sand soil, respectively; 0.66, 1.04 and
0.59% in Tabora sandy soil, respectively. Firmicutes and Gemmatimona-
detes were 1.04 and 0.84% in Tabora sandy soil, respectively; 0.43 and
0.61% in Sikonge loamy sand soil, respectively, and 0.40, 0.45% in
Urambo sandy loam soil, respectively.

Fallow plots considered as control plots of which no any planted crops
except weeds in order to study bacteria phyla abundances in their natural
R2 adjusted R2 predicted

7% 27.76% 32.00%

0% 35.14% 42.77%

8% 83.03% 90.02%

5% 89.04% 92.26%

cropping system in Sikonge, Tabora and Urambo.



Figure 3. Relative abundancies of bacteria phyla in different soil types and cropping systems.
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environment. The abundances of phyla in control/fallow plots were;
Actinobacteria (15.48%), Proteobacteria (6.65%), Acidobacteria (3.09%),
Chloroflexi (2.43%), Gemmatimonadetes (2.19%), Planctomycetes (2.10%),
and Firmicutes (1.31%). In control plots the distribution of phyla abun-
dances was as follows; Actinobacteria and Gemmatimonadetes abundance
were dominant by 5.31 and 0.71% in Tabora sandy soil, respectively;
5.21 and 0.77% in Urambo sandy loam soil, respectively; 4.97 and 0.01%
in Sikonge loamy sand soil, respectively. Proteobacteria and Acidobacteria
abundance were 2.25 and 0.89% in Sikonge loamy sand soil, respec-
tively; 2.23 and 0.84% in Urambo sandy loam soil, respectively; 2.17,
0.70% in Tabora sandy soil, respectively. Chloroflexi were 1.06% in
Tabora sandy soil, 1.03% in Sikonge loamy sand soil and 1.00% in
Urambo sandy loam soil. Planctomycetes and Firmicutes were 0.73 and
0.45% in Sikonge loamy sand soil, respectively; 0.69 and 0.45% in
Tabora sandy soil, respectively; 0.67 and 0.40% in Urambo sandy loam
soil, respectively.

3.4. Composition of phyla community variation with crops and locations

Comparison of bacteria phyla community varying with treatments
(fallow, maize, tobacco) performed across the locations. The significant
abundant phyla across the locations along with fallow, maize and tobacco
crops were Actinobacteria, Acidobacteria, Proteobacteria, Chloroflexi,
Planctomycetes, Firmicutes, Gemmatimonadetes and Bacterioidetes
(Figure 4).

3.5. Observed and shannon diversity index showing location and treatment
phylum level diversity

Different crops observed to change bacteria phyla or their proportions
in different locations (Figure 5). The alpha diversity for Tabora versus
Sikonge had p¼0.54; p¼1 value for the observed and Shannon diversity
index, respectively. Urambo versus Tabora had both p¼1 values, while
Urambo versus Sikonge had p¼0.35; p¼1 value for the observed and
Shannon diversity index, respectively.
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Concerning treatment crops, alpha diversity for tobacco versus
control/fallow plots and maize versus tobacco had p¼1; p¼0.8 value for
the observed and Shannon diversity index, respectively. Maize versus
control/fallow plots had p¼1; p¼0.3 for observed and Shannon,
respectively.

3.6. Principal component analysis (PCoA) of bacterial phyla based on
crops and pilot locations

All crops had relative abundance distribution of bacteria phyla
(Figure 3). Bacterial phyla under control plots distributed almost equally
and their relative abundance were significantly higher than bacterial
phyla in tobacco and maize crop. Total bacteria phyla were lowest in the
fallow plots compared to tobacco and maize crops. The PCoA score
revealed that the maize treatment clustered together and separated away
from tobacco treatment with the 70.6% power of separation in the first
principal component (Figure 6).

4. Discussion

4.1. Rhizosphere soil fertility changes along with bacterial diversity

Tabora site had acidic soil pH 5.47 and very low OC (0.14%) in
comparison to Sikonge site with soil pH 5.66; OC of 0.33% and Urambo
which had soil pH and OC of 5.84 and 0.25%, respectively (Table 1). Due
to the high soil pH and low OC in Tabora site, resulted into slightly
decreased bacteria diversity in tobacco plots with the exception of Pro-
teobacteria (11.89%) (Figures 2 and 3). Proteobacteria phylum showed an
increasing higher trends towards the coarse-textured (sandy) acidic soil
in Tabora than other experimental sites. Next to Proteobacteria phylum in
terms of abundance within tobacco plots was Actinobacteria (8.97%),
these two phyla indicating their suitability and withstanding nicotine
levels (Table 1) to the tobacco rhizosphere (Dey et al., 2012; Saleem
et al., 2018). Other phyla were Acidobacteria, Chloroflexi, Firmicutes,
Planctomycetes, Bacteroidetes and Gemmatimonadetes in 2.99, 2.24, 1.77,



Figure 4. Heatmap indicating the phyla relative abundance in ZM (maize), NT (tobacco) and control.

Figure 5. Observed and Shannon Diversity Index showing location and treatment Phylum level diversity. Locations: Sikonge, Tabora and Urambo did not differ
significantly. Treatments: Crops differed significantly on phylum levels. A horizontal line across inside the graphics represents the median.
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1.69, 1.40 and 1.31% proportions, respectively. These bacteria phyla
were identified in the studied tobacco areas for the first time. The trends
showed to increase in abundances towards the fine-textured soils for the
Acidobacteria, Chloroflexi, Bacteroidetes and Gemmatimonadetes. Firmicutes
7

and Proteobacteria showed an increasing trend of their abundances to-
wards coarse-textured soils. The phyla identified in our study areas to the
tobacco plots were almost similar to the phyla reported by Wu et al.
(2016) in tobacco fields.



Figure 6. PCoA of the crop treatments and pilot locations based on bacteria phyla abundance.
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Proteobacteria andActinobacteriawere high in abundance in Tabora site
which had high availability of P and linked to be involved in the solubi-
lization of P and make this nutrient available to the tobacco plant (Man-
poong et al., 2020). Unavailability of P in soils has been reported limiting
bacteria diversity and abundance (Marschner et al., 2004; Leff et al., 2015;
Jing et al., 2017; Camenzind et al., 2018). Initial available P was 33.41,
33.80 and 39.14 mg kg�1 for Sikonge, Urambo, and Tabora, respectively,
depicted the increasing trend of Proteobacteria (Marschner et al., 2004).
Similar results of increasing P levels in soils associated with an increase in
bacteria population was reported by Camenzind et al. (2018).

The Bacteria under Proteobacteria, Actinobacteria and Firmicutes phyla
have been reported to solubilize K, P, S, and increases uptakes of these
nutrients (Alain et al., 2002; Chakraborty et al., 2010; Zeng et al., 2012;
Zhang and Kong, 2014; Subhashini, 2015; Sungthong and Nakaew, 2015;
Saha et al., 2018). Since tobacco is a dense nutrients feeder crop, more
uptakes of P, K and S result in decreasing levels of these nutrients in the
soil (Table 1). On the other hand, bacteria species under Proteobacteria
have also been reported to fix N in the soils and hence increasing soil total
N after tobacco (Table 1; Balsanelli et al., 2015; Trovero et al., 2018;
Zú~niga-Feest et al., 2018). Chloroflexi, another dominant phylum iden-
tified in tobacco growing areas, reported to catalase Mn and also
involved in the nitrification process in soils (Sorokin et al., 2012;
Baginski and Sommerhalter, 2017).

Our study observed that bacterial diversity was highly correlated with
soil fertility in tobacco plots (Table 2). Chao1 and Shannon diversity
index showed bacterial diversity positively influenced soil fertility on P,
S, OC, N, K, and Mn which are mostly required (with exception to Mn) by
tobacco plants. Furthermore, Chao1 and Shannon diversity index showed
bacterial diversity to have a negative correlation with micronutrient Cu,
Fe, Zn, and macronutrient Ca, indicating that micronutrients are required
in trace amount by the tobacco plant. Hence, their levels in soils
increased after tobacco (Table 1). Our study performed soil nutrients
characterization onmicrobial diversity usingmultiple regression analysis
(Table 3) in order to associate on how bacterial diversity are linked to soil
fertility in tobacco rhizosphere. Results showed that microbial diversity
was positively correlated with soil pH and OC (R2 ¼ 56.57 and 65.40%),
respectively. Further correlation with soil pH, a most critical parameter
in soils along with Ca, K, Mg, N, P, S and micronutrients Cu, Fe, Mn and
Zn, significantly improved the R2 values (94.88–96.05%) in predicting
microbial diversity fertility. Thus, our study revealed that an increase or a
decrease of soil nutrients in tobacco plots is not caused by the nicotine
released in soils, but rather by the bacterial diversity in the rhizosphere
with a role of solubilizing nutrients.
4.2. Proportion of bacteria diversity to maize, tobacco and fallow plots

This study revealed a higher proportion of Actinobacteria, and Pro-
teobacteria phyla with the abundance of 11.74 and 7.71% respectively, in
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maize plots. Next to these phyla were Chloroflexi, Acidobacteria, Planc-
tomycetes, Gemmatimonadetes and Firmicutes in the proportional abun-
dance of 3.71, 3.32, 1.99, 1.90 and 1.86%, respectively. With exception
to Proteobacteria phylum, the rest of the phyla increased in their pro-
portion abundance when compared to the tobacco phyla proportions
(Figures 3 and 5). Actinobacteria and Chloroflexi phyla increased signifi-
cantly in the maize plots than tobacco plots by 2.77 and 1.47%, respec-
tively. The small increase in Acidobacteria, Planctomycetes,
Gemmatimonadetes and Firmicutes phyla were by 0.33, 0.30, 0.59 and
0.09% in comparison from the tobacco phyla proportions.

These results indicate maize crop to be a hotspot of bacterial infes-
tation than tobacco crop (Li et al., 2014) and thus maize roots could
exudate metabolites different from tobacco nicotine (Table 1) and in-
fluence an increase of bacteria proportions (Dey et al., 2012; Li et al.,
2014). Maize rhizosphere, as similar to tobacco rhizosphere, showed a
trend of Actinobacteria, Acidobacteria, Chloroflexi, and Planctomycetes
increasing towards fine-textured soils (from sandy soil, sandy loam to
loamy sand soils). On the other side, Bacteroidetes (not reported in this
study had 0.64% abundance, less than 1%), Firmicutes and Proteobacteria
increased in abundance from loamy sand, sandy loam to sandy (coarse
textured) soil. The most abundant phyla reported in this study were
similar with other studies that reported dominant phyla in maize rhizo-
sphere to be Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes
(Pereira et al., 2011; Li et al., 2014; Verma et al., 2017).

In the fallow plots (no-till land) which were control in this study, the
bacteria phyla belonging to Actinobacteria, Gemmatimonadetes and Planc-
tomycetes, their proportions were highest than tobacco andmaize crops by
reaching 15.48, 2.19 and 2.10%, respectively. Other phyla proportions
were at 6.65, 3.09, 2.43 and 1.31% for Proteobacteria, Chloroflexi, Acid-
obacteria, and Firmicutes respectively. Abundances of these phyla in gen-
eral, were in low proportions, indicating that crop rhizosphere influences
large proportions and diversity of bacteria. Acidobacteria, Actinobacteria,
Proteobacteria and Bacteroidetes have also been observed to be abundant in
no-till land (Yin et al., 2010; Figuerola et al., 2012; Aslam et al., 2013;
Dong et al., 2017a, 2017b). In our studies, we observed similar phyla re-
sults, in addition to that Chloroflexi, Gemmatimonadetes, Planctomycetes,
and Firmicuteswere found in the control plots. These phyla have also been
recently observed in no-till land (Dong et al., 2017b; Yin et al., 2017).
Bacteria reported to bemore abundant at the crop rhizosphere than in bulk
soils, the soil types on the other hand also were found to be the significant
parameter affecting bacterial diversity in soils (Grzadziel and Galazka,
2018; Khan et al., 2018). However, Helgason et al. (2009), in their study,
indicated that bacteria phylum was not consistent in no-till soils.

Different crops (maize, and tobacco) revealed to have influences on
the soil chemical properties and exudates of metabolites. Bacteria phyla
proportions and diversity in maize crop were higher than in tobacco crop
across the experimental locations (Figure 5). Thus, different crops may
have variance in their proportions in different locations. Based on the
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Shannon diversity indices (Figure 5), tobacco had bacterial diversity
dominated by Proteobacteria (Figures 2, 3, and 4), while maize crop was
observed to have a significant proportion of Actinobacteria (Figures 2, 3,
and 4) in a wide range. Fallow plots were observed to have bacterial
diversities in equal proportions (Figures 3, 4, and 5). Besides, fallow and
maize plots had bacteria phyla which did not separate widely based on
PCoA results (Figure 6).

5. Conclusion

Proteobacteria and Actinobacteria phyla based on the pilot study
indicated to be the most dominant in tobacco, maize and fallow plots, but
with different proportions. Bacterial diversity correlated with soil
fertility improvements. The bacterial diversity in tobacco plots signifi-
cantly positively correlated macronutrients, but micronutrients were
significantly negatively correlated by the bacterial diversity in tobacco
plots. However, multiple regression analysis revealed that bacterial di-
versity significantly favoured soil fertility to all sites. Therefore, this pilot
study recommends further research that will include a collection of more
soil samples for detailed information regarding soil bacteriota composi-
tion and their roles for conclusive results.
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