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Abstract
Purpose: We combined clinical practice changes, standardizations, and technology to automate aggregation, integration, and harmo-
nization of comprehensive patient data from the multiple source systems used in clinical practice into a big data analytics resource
system (BDARS). We then developed novel artificial intelligence algorithms, coupled with the BDARS, to identify structure dose
volume histograms (DVH) metrics associated with dysphagia.
Methods and Materials: From the BDARS harmonized data of �22,000 patients, we identified 132 patients recently treated for head
and neck cancer who also demonstrated dysphagia scores that worsened from base line to a maximum grade �2. We developed a
method that used both physical and biologically corrected (a/b Z 2.5) DVH curves to test both absolute and percentage volume based
DVH metrics. Combining a statistical categorization algorithm with machine learning (SCA-ML) provided more extensive detailing of
response threshold evidence than either approach alone. A sensitivity guided, minimum input, machine learning (ML) model was
iteratively constructed to identify the key structure DVH metric thresholds.
Results: Seven swallowing structures producing 738 candidate DVH metrics were ranked for association with dysphagia using SCA-
ML scoring. Structures included superior pharyngeal constrictor (SPC), inferior pharyngeal constrictor (IPC), larynx, and esophagus.
Bilateral parotid and submandibular gland (SG) structures were categorized by relative mean dose (eg, SG_high, SG_low) as a dose
versus tumor centric analog to contra and ipsilateral designations. Structure DVH metrics with high SCA-ML scores included the
following: SPC: D20% (equivalent dose [EQD2] Gy) �47.7; SPC: D25% (Gy) �50.4; IPC: D35% (Gy) �61.7; parotid_low: D60%
(Gy) �13.2; and SG_high: D35% (Gy) �61.7. Larynx: D25% (Gy) �21.2 and SG_low: D45% �28.2 had high SCA-ML scores but
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were segmented on less than 90% of plans. A model based on SPC: D20% (EQD2 Gy) alone had sensitivity and area under the curve of
0.88 � 0.13 and 0.74 � 0.17, respectively.
Conclusions: This study provides practical demonstration of combining big data with artificial intelligence to increase volume of
evidence in clinical learning paradigms.
� 2020 The Author(s). Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Dysphagia is a significant acute and late toxicity for
patients undergoing radiation therapy for head and neck
cancers, increasing the probability of an aspiration
pneumonia posttreatment, with modern multi-institutional
trials demonstrating 10% to 20% long-term dysphagia.1

Organ sparing of the superior constrictor muscles has
been demonstrated as an advantageous use of intensity
modulated radiation therapy early in application of that
technology.2-6 Owing to the extensive manual effort
required, most single institution studies tend to be modest
in size, examining a limited set of manually selected dose
volume histograms (DVHs) metrics.

Reliance on manual aggregation methods decreases the
likelihood of follow-up studies as findings are imple-
mented, and treatment planning approaches are subse-
quently modified. In addition, the manual effort required
to collect DVH metrics constrains the range of metrics
examined, introducing potential biases in selection of
metrics for testing.

Recently, we have constructed a big data analytics
resource system (BDARS) that automates aggregation,
integration, and harmonization of key data elements and
relationships for all treated patients in a standardized
framework.7,8 Aggregated elements include dose volume
histograms (DVHs) for all treated plans and the course
cumulative as treated plan sum in both physical (Gy) and
bio-corrected (equivalent dose [EQD2] Gy with a/b Z
2.5, 5, 10) doses.8,9 Common Terminology Criteria for
Adverse Events toxicity grades were entered in our
electronic health record (Epic, Verona, WI) using stan-
dardized smart list objects we developed to enable accu-
rate, automated extraction from encounter notes with
aggregation into our BDARS.10

Our objective in this study was to develop an automat-
able, systematic approach that enabled consideration of both
physical and biologically corrected doses to both percentage
and absolute volumes of organs at risk, detailing levels of
evidence for each candidate metric. We developed a novel
algorithmic approach that combined a statistical categori-
zation algorithm (SCA) with a machine learning (ML) al-
gorithm to identify the DVH metrics with the strongest
associations for each structure. From these, a multistructure
predictive ML model, extending the SCA, then was itera-
tively constructed to identify a minimal set of predictive
cofactors. In this approach the end product is not the model.
Instead, the end product is a minimal set of clinically
actionable DVH metric inputs and thresholds, identified
through use of the model, with the strongest levels of evi-
dence for association with worsening dysphagia.

Methods and Materials

Patients

Records were examined for 439 patients treated for
head and neck cancer from January 2014 to September
2018 using either intensity modulated radiation therapy or
volumetric arc therapy treatment plans designed on a
commercial system (Varian Medical System Eclipse, Palo
Alto, CA). Toxicity and DVH curves for patients whose
Common Terminology Criteria for Adverse Events
dysphagia toxicity scores increased from baseline recor-
ded during the first week of radiation therapy was used in
the analysis. Patients were stratified for toxicity by
maximum grade �2. Table 1 summarizes characteristics
of 132 patients identified in this cohort. Three percent of
patients were enrolled on clinical trials. Overall rates of
toxicity that worsened from baseline were 17.8% �grade
2 and 5.5% �grade 3.

Contouring

Structures were contoured in a consistent fashion by a
small number of physicians using agreed upon guide-
lines that have been in place for several years at our
institution. The cervical esophagus was contoured as a
tubular structure beginning at the bottom of inferior
constrictor and extending to the thoracic inlet. The lar-
ynx was contoured extending from inferior border of
hyoid to the inferior border of cricoid, and inferior
constrictors were contoured from bottom of the hyoid to
esophageal inlet, including anterior commissure and ar-
ytenoids. Superior constrictors were contoured from
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Table 1 Characteristics of patients demonstrating wors-
ening dysphagia

Characteristics of 132 out of 439 demonstrating worsening
dysphagia

Sex
Male 35
Female 97

Age (median [25% quantile, 75% quantile]) 62 [53, 67]
Count of patients by diagnosis site
Pharynx 63
Oral cavity 22
Larynx 22
Nasopharynx 8
Other 17
Follow-up days (median [25% quantile,
75% quantile])

152 [52, 270]

Count of patients with dysphagia details
Max dysphagia Z 1 54
Max dysphagia Z 2 54
Max dysphagia Z 3 24
Max-Min dysphagia Z 1 63
Max-Min dysphagia Z 2 50
Max-Min dysphagia Z 3 19
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pterygoid plates to the inferior border of the hyoid.
Inferior constrictors were contoured from inferior hyoid
to cervical esophagus.
Table 2 Summary statistics from statistical screening metrics set
learning (SCA-ML) for the top physical and bio-corrected dose met

Structure DVH metric TV N AUC

SPC D25% (Gy) 50.4 129 0.68
SPC D20% (EQ2D Gy) (U) 47.7 129 0.68
Parotid_low D60% (Gy) 13.2 123 0.66
Parotid_low D80% (EQD2 Gy) (U) 6.0 123 0.65
SG_high D35% (Gy) (U) 61.7 124 0.68
SG_high D30% (EQD2 Gy) 57.8 124 0.68
Oral_cavity D95% (Gy) (U) 15.3 129 0.68
Oral_cavity D96% (EQD2 Gy) 9.8 129 0.67
Parotid_high D28.5cc (Gy) (U) 13.9 129 0.66
Parotid_high D28.5cc (EQD2 Gy) 8.9 129 0.66
Esophagus D2cc (Gy) (U) 22.6 124 0.61
Esophagus D3cc (EQD2 Gy) 24.3 121 0.58
IPC D90% (Gy) (U) 12.8 124 0.66
IPC D95% (EQD2 Gy) 7.5 124 0.66
Larynx D25% (Gy) (☒) 21.2 110 0.60
Larynx D25% (EQD2 Gy) 15 110 0.59
SG_low D45% (Gy) (☒) 28.2 95 0.71
SG_low D35% (EQD2 Gy) 23.5 95 0.69

Columns correspond to the threshold value (TV), number of plans with the
operator characteristic analysis, positive predictive value (PPV), negative pr
determined using TV to construct a 2 � 2 contingency table. Structures not
structure, dose volume histograms (DVH) metric with the higher statistical cat
( U ).
Abbreviations: IPC Z inferior pharyngeal constrictor; PETR Z positive ev
superior pharyngeal constrictor.
Statistical categorization algorithm and machine
learning for algorithmic evidence-based
identification of DVH metric predictors

We applied an approach combining a statistical cate-
gorization algorithm and machine learning (SCA-ML) to
rank combined levels of evidence DVH metrics for ability
to predict among patients demonstrating dysphagia scores
that increased from start of treatment, which reached a
maximum grade �2. Nine swallowing structures were
examined (Table 2). DVH metrics were written using
standardized TG-263 nomenclature.11 Four as treated
plan sum DVH curves were used for each structure to
select from among physical and bio-corrected dose with
respect to absolute and percent volume for each structure.
Curves were rendered as sets of DVH metrics: Dx% (Gy),
Dxcc (Gy), Dx% (a/b Z 2.5) (EQD2 Gy), Dxcc (a/b
Z 2.5) (EQD2 Gy). Percentage volumes examined were.

x˛½100;99:5;99�96 by1; 95�5by 5;4�1by 1; 0:5;0:0�:
For absolute volume x˛½vq1�0:5 by 0:5�; where vq1 is the
lower 1% quantile of volumes for structure in the sample.

For each DVH metric we calculated a statistical
screening metrics set (SSMS) to identify an optimal
threshold and detail statistical evidence for its predictive
value. All calculations were carried out using R (Vienna,
and combined statistical categorization algorithm and machine
rics for each swallowing structure examined

PPV NPV SN SP OR PETR SCA-ML

0.69 0.76 0.92 0.37 2.9 0.55 4.1
0.70 0.90 0.97 0.35 7.0 0.57 4.1
0.72 0.55 0.69 0.58 1.6 0.47 2.4
0.75 0.52 0.6 0.69 1.6 0.44 2.9
0.74 0.58 0.66 0.67 1.7 0.47 2.60
0.73 0.58 0.69 0.63 1.7 0.48 1.80
0.78 0.53 0.55 0.77 1.7 0.45 2.5
0.78 0.53 0.55 0.77 1.7 0.45 2.1
0.80 0.68 0.78 0.70 2.5 0.52 2.4
0.8 0.68 0.78 0.70 2.5 0.52 2.4
0.69 0.59 0.82 0.42 1.7 0.45 1.5
0.79 0.45 0.36 0.85 1.4 0.25 1.5
0.73 0.59 0.73 0.59 1.8 0.48 1.4
0.72 0.63 0.80 0.53 2.0 0.50 1.2
0.67 0.88 0.97 0.31 5.4 0.49 4.5
0.66 0.81 0.95 0.29 3.5 0.46 3.7
0.73 0.85 0.95 0.46 4.9 0.60 5.4
0.70 0.93 0.98 0.35 9.9 0.58 4.2

structure drawn (N), area under the curve (AUC) from the receiver
edictive value (NPV), sensitivity (SN), specificity (SP), and risk ratio
contoured on at least 90% of treatment plans (☒) are noted. For each
egorization algorithm with machine learning (SCA-M) score is checked

idence of a threshold response; SG Z submandibular gland; SPC Z
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Austria, version 4.3.3).2-15 For each SSMS, a receiver
operator characteristic curve was constructed, and the area
under the curve (AUC) was calculated for each set of
toxicity and DVH metric dose records. A DVH metric
value threshold was determined with the Youden index and
used to construct a 2 � 2 contingency table. Values for the
95% confidence interval for the AUC, sensitivity (SN),
specificity (SP), positive predictive value (PPV), and
negative predicted value were calculated. The Fisher exact
test was used to calculate the P value of the 2 � 2 con-
tingency table. Relative risk and odds ratio were calculated.
Standard and scaled values for the number of true positive,
false positive, true negative, and false negative values were
calculated with the square root of the number of samples
ðONÞ as the scaling factor. A single-tailed Kolmogorov-
Smirnov (ks) test was used to determine the P value that
the distribution of doses for those without toxicities was
stochastically less than the distribution of doses for those
with toxicities. A single-tailed Welch T test was used to
determine P for the probability that the mean of the dis-
tribution of values without toxicities is less than that with
toxicities. The 15% and 25% quantiles for the distribution
of doses with toxicities and the 75% and 85% quantiles for
the distribution of doses without toxicities were used to
demark dose-response regions.

Using the SSMS for each structure-DVH metric, we
introduced a ranking metric combining elements for
positive evidence of a threshold response (PETR). PETR
was based on the AUC, with weighting factors (1-0) for
sTP, ks, PPV, and SN.

PETRZAUC x LFsTPðsTP; sTP0; ksTPÞ

x LFks ðks; ks0; kksÞ x ðPPV þ SNÞ
2

ð1Þ

We noted that AUC can be high when TP is small.
Small values could be due to random events. To screen
for the possibility of high AUC due to “noisy” data, we
used a logistic function (LFsTP) with coefficients selected
so that LFsTP Z (0.5, 1.0) for sTP Z (0.5, >1)

LFsTPðsTP; sTP0; ksTPÞZ 1
1 þ eksTPðsTP�sTP0Þ ð2Þ

with sTP0Z0:5 and ksTPZ� 6=0:5:
We noted that AUC can be high when the distribution of

DVH metric values associated with the toxicity is not sepa-
rated from, andhigher than, the distributionofvalueswithout
toxicity (ie, single sided ks is large). To screen distributions
not demonstrating a transition to increased likelihood of
toxicity with increasing dose (ie, a response-threshold) we
used ks in a logistic function (LFks) with coefficients
selected so that LFksZ (0.5, 1) for ksZ (0.1, < 0.01).

LFksðks; ks0; kksÞZ 1
1 þ eksksðks�ks0Þ ð3Þ

with ks0Z0:1; kksZ6 =

0:09
Next, a machine learning model was used, like PETR,
to rank each structure-DVH metric. Machine learning
models are nondeterministic, vary substantially in selec-
tion of ranking metric (MLRM) used to score relative
importance of input values, and frequently differ in which
input variables are selected in models as most relevant for
predicting outcomes.16 For this study, random forest was
selected using percent incremental increase in mean
square error to rank the relative relevance of input vari-
ables (ie, MLRM Z percent incremental increase in mean
square error).

The product of PETR and MLRM was used for relative
ranking of structure-DVH metrics for predictive ability,
based on combined evidence from machine learning and
more conventional statistical methods.

SCA-MLZPETR�MLRM ð4Þ

Peak SCA-ML was used to cull the large number of
candidate DVH metrics, selecting one physical and one
bio-corrected DVH metric for each structure. These were
categorized as primary and secondary according to their
relative SCA-ML score. Absolute volume statistics (Dxcc
[Gy], Dxcc [EQD2 Gy]) were dropped from consideration
if x was greater than the 5% quantile of the structure
volumes.

Minimum input set for multistructure predictive
model

The minimal set of SCA-ML based metrics needed to
predict dysphagia within the data set was identified
through iterative construction of a machine learning
model. Structures that were not drawn on at least 90% of
the plans were excluded. For each remaining structure in
the culled data set, the physical or biological dose metric
with the largest SCA-ML was selected for the modeling
data set (MDS). Plans with incomplete sets of structure-
DVH metrics were excluded. At each iteration, 10-fold
cross validation was used to calculate the average and
standard deviation of the SP, SN, PPV, and negative
predicted value across the folds.

A baseline model was first constructed using the full
MDS as inputs. The next iterative construction of a
minimal input model began with constructing single input
models for each element of the MDS. The element with
the largest sensitivity was selected as the first input
element. Elements were incrementally added to the model
and ranked according to sensitivity. Model iterations were
stopped when the average SN was not significantly (P <
.05) different from the baseline value according to a
Student’s t test.

In routine clinical practice, physical doses are more
readily available in commercial treatment planning sys-
tems than bio-corrected doses. Therefore, if the resulting
model contained bio-corrected dose metrics, then the
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process was repeated using the physical dose metric
identified in the culled data set. The sensitivity of initial
iterative model to the physical dose model was compared.
Results

Of the 439 patients examined, 132 (27%) had
dysphagia that worsened from beginning of treatment. Of
those with worsening dysphagia, 78 (16%) had a
maximum grade �2. The median (25% quantile, 75%
quantile) number of days from beginning of treatment to
the highest recorded toxicity greater than or equal to grade
�2, was 37 (22, 80) days. Figure 1 illustrates the time to
maximum dysphagia score.

Seven swallowing structures were evaluated: esoph-
agus, larynx, superior pharyngeal constrictor (SPC),
inferior pharyngeal constrictor (IPC), parotids, and sub-
mandibular glands (SG). Parotids and submandibular
glands were subcategorized according to their relative
mean doses (parotid_high, parotid_low, SG_high,
SG_low).

In the analysis, 738 structure-DVH metrics were
calculated and ranked for evidence for predicting
dysphagia using SCA-ML. The top 18 are presented in
Table 2. Primary (checked U) and secondary
structureeDVH metrics identified with the SCA-ML are
listed in Table 2. In order of decreasing SCA-ML, the top
3 primary structure-DVH identified in the MDS were SPC
D20% (EQD2 Gy) �47.7, parotid_low: D80% (EQD2
Gy) �6, SG_high D35% �61.7. The top secondary
structure-DVH metric was SPC D25% (Gy) �50.4.
Figure 1 For patients demonstrating dysphagia scores that
worsened from start of treatment, the median time to the first
maximum toxicity record was 37 days. Median time to the last
occurrence of the maximum score was 48 days.
Both SG_low D45% (Gy) �28.8 and larynx D25%
(Gy) �21.2 Gy had high SCA-ML scores. They were not
present on at least 90% of the treatment plans. Reasons
include involvement in the target volume (eg, cancer of
the larynx), laryngectomy, or removal as part of neck
dissection.

Figure 2 illustrates statistical DVH curves for the
physical and bio-corrected doses to the SPC, and for
physical doses to SG_high, SG_low, larynx.9 Curves are
color coded for patient subsets with and without wors-
ening dysphagia scores. Statistical DVHs show the me-
dian Dx% (Gy or EQD2 Gy) values (dotted line) layered
with a shaded area encompassing the central 70% of Dx%
values to highlight where subsets separate.

Figure 3 illustrates application of the method for
physical and bio-corrected doses to the SPC and for
physical doses to SG_high, SG_low, larynx. In Fig 3b,
SPC Dx% (EQD2 Gy) AUCs did not vary greatly with
volume or highlight specific narrow regions with
evidence for response thresholds (ks). Fractional vol-
umes of 15% to 35% demonstrated the region with the
strongest evidence based on PETR scores. Note in
the figure the low predictive strength near median
(Gy). Also note that although AUC was elevated near
to Max (Gy) (ie, D0% [Gy]), SCA-ML scoring indi-
cated low combined evidence for dose-response
threshold.

Figure 4 shows the toxicities along with the SCAL-
ML identified thresholds. A logistic regression of the
data was used to characterize the overall probability of
toxicity for each structure independent of the others.
Comparing distributions for physical and bio-corrected
SCP doses, D20% (EQD2 Gy) and D25% (Gy) graph-
ically demonstrated dose-response thresholds with
similar SCA-ML (4.092 vs 4.067) and PETR (5.4 vs
4.3) scores.

SG_low and the larynx had high scores but were
excluded from the multistructure model because they
had only been contoured on 95 out of 132 of the
treatment plans. In the multistructure iterative model
construction, there were 108 complete data sets in the
MDS for the 5 candidate structures (SPC, IPC, esoph-
agus, SG_high, parotid_high, and parotid_low) that had
been contoured on at least 90% of treatment plans. The
baseline sensitivity of the model constructing using the
5 primary structure-DVH metrics was 0.79 � 0.21.
Only one structure-DVH metric input, D20% (EQD2
Gy), was needed in the iterative model to achieve
sensitivity comparable to the baseline. Although SPC
D20% (EQD2 Gy) �47.7 had a higher relative risk than
D25% (Gy) �50.4 (20.7 vs 7.1) in the SSMS, the
overall sensitivity (0.78 � 0.18 vs 0.76 � 0.26) and
AUC (0.70 � 0.16 vs 0.70 � 0.15) of the iteratively
constructed, cross validated random forest models was
comparable.



Figure 2 (a) Plots of statistical dose volume histograms (DVH) curves. Superior constrictor muscle (SCP) bio-corrected DVH curves
are shown for patients with (red) and without (blue) worsening dysphagia. To clarify visualization and provide more quantitative detail,
statistical DVH curves show median (dashed line) and 70% confidence intervals of DVH curves for (b) SCP Dx% (EQD2 Gy), (c) SCP
Dx% (Gy), (d) the submandibular gland receiving the higher relative mean dose (SG_high) Dx [Gy], (e) the submandibular gland
receiving the lower relative mean dose (SG_low) Dx [Gy], and (f) larynx Dx [Gy]. SG_low and larynx were not included in multi-
structure model due to lack of contouring on at least 90% of plans (☒). The DVH metric and threshold with the highest combined
statistical categorization algorithm and machine learning (SCA-ML) score is shown for each (black dot).
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Discussion

Combining the big data analytics resource system with
artificial intelligence enabled systematic investigation of a
much larger range of structure-DVH metrics than used by
other studies, using historic evidence to identify a mini-
mal set of clinically actionable metrics and thresholds.
This provides a means to incrementally improve the set of
constraints used.

Although AUC is useful, we did not find it necessarily
sufficient as a sole metric for identification of dose-
response thresholds. To add levels of evidence, we
introduced PETR as an algorithmic method for layering
combined information from conventional statistical mea-
sures that have well understood interpretability (ks,
sensitivity, positive predictive value) onto AUC. We
further extended the approach, by layering on “impor-
tance” metrics used by machine learning algorithms, such
as random forest by introduction of SCA-ML. This
layered approach enabled illustrating where combined
evidence of different types of measures agree.

The purpose for use of ML in the method was not to
generate a specific model for predicting toxicity. Instead,
the approach combined evidence from statistical catego-
rization, ML and iterative construction of parsimonious
model to winnow a large number of candidate inputs
down to a minimal set of DVH metric inputs and
thresholds with the strongest clinical evidence for
increasing dose contributing to increasing toxicity. This
method provides a means to follow observational data
accumulated in the BDARS to identify inputs that are also
clinically actionable. By objectively comparing both
physical and biologically corrected doses with absolute
and percentage volume cut points, it avoids a-priori
judgment, of which is most relevant. In this case 738
candidate model metrics were winnowed down to the one
with the strongest combined levels of evidence that was
also actionable in a routine clinical setting.



Figure 3 (a) Illustration of combined statistical categorization algorithm and machine learning (SCA-ML) plots for determining dose
volume histograms (DVH) metric demonstrating strong evidence of dose-response threshold for (b) superior constrictor muscle (SCP)
Dx% (EQD2 Gy), (c) SCP Dx% (Gy), (d) the submandibular gland receiving the higher relative mean dose (SG_high) Dx (Gy), (e) the
submandibular gland receiving lower relative mean dose (SG_low) Dx (Gy), and (f) larynx Dx (Gy). Area under the curve (AUC) values
are plotted for each metric with color coding and symbol size differentiating P values for Kolmogorov-Smirnov test. Positive evidence
of threshold response (PETR) and SCA-ML scores are scaled using the highest relative value to select metric. The threshold dose
determined for each metric is plotted (dashed line). Peak SCA-ML values and thresholds are circled on the graph.
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Without the advantage of a BDARS, prior studies have
used substantially smaller sets of patients and of metrics
tested for predicting various endpoints related to
dysphagia. In a 2007 study of 36 patients who examined a
total of 15 physical-dose based DVH metrics for 3
swallowing structures, Feng et al found that total
pharyngeal constrictor (PC) mean (Gy) >60, V65 Gy (%)
>65, and supraglottic larynx mean V50 Gy (%) >50
values had strong correlations with videoflouroscopy
based aspirations.2 They found that only PC mean (Gy)
was correlated with both patient- and provider-rated
worsening of swallowing solids.

In a 2010 study of 83 evaluable patients, Caudell et al
examined 16 physical dose DVH metrics for 2 swallow-
ing structures.5 They reported glottis and supraglotic lar-
ynx (GSL) V55 Gy (%) <32 and IPC V60 Gy (%) <11.8
were significant for stricture and risk of aspiration with
odds ratios of 1.03 and 1.02, respectively. Larynx mean
(Gy) �41 and V60 Gy (%) >24 in addition to IPC V60
Gy (%) >12 were significant for percutaneous endoscopy
gastrostomy tube dependence and aspiration. SPC V65
Gy (%) �33 and IPC V65 Gy (%) �75 were associated
with pharygoesophageal stricture that required dilation.
Median time to diagnosis of stricture was 7 months. No
aspiration was noted for larynx mean (Gy) �40.6.

In a 2011 study of 73 patients, Eisbruch et al3 found
that esophagus mean (Gy) �48 was significant for stric-
tures. For increased video fluoroscopy-based aspiration,
scoring of PC mean (Gy) >56 and GSL mean (Gy) >39
correlated with 25% toxicity incidence. They examined 5
physical dose DVH metrics for 6 structures: SPC, IPC,
mid pharyngeal constrictors and PC, GSL, and esophagus.

In a 2017 study, Chera et al reported on 9 out of 45
patients studied with worsening dysphagia scores at 6
months.4 Limiting their study to fractional volumes
receiving physical doses, they found that for SPC V55 Gy
(%) �78 and V60 Gy (%) �40 were associated with 20%
risk of toxicity. They reported 6 patients evaluated at 12
months. They did not find dose associations with esoph-
agus, IPC, or middle constrictor muscles.

In a 2018 study, Kamal et al17 reported on 30 out of 97
patients found with moderate to severe radiation induced
dysphagia at 3 to 6 months after XRT, using the
Dynamic Imaging Grade for Swallowing Toxicity �2.



Figure 4 (a) Univariate plots of worsening dysphagia versus ranking metrics using combined statistical categorization algorithm and
machine learning (SCA-ML) selected for (b) superior constrictor muscle (SCP) Dx% (EQD2 Gy), (c) SCP Dx% (Gy), (d) the sub-
mandibular gland receiving the higher relative mean dose (SG_high) Dx (Gy), (e) the submandibular gland receiving lower relative
mean dose (SG_low) Dx (Gy), and (f) larynx Dx (Gy). Threshold corresponding to peak SCA-ML is plotted (dashed line) to highlight
association with the distribution. A small amount of noise was added to the binary outcome, to reduce point overlap masking the density
of points. A logistic regression is plotted to characterize probability of toxicity.
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They identified geniohyoid muscle V61 Gy (%) �18.6
was the strongest predictor. SPC V55 Gy (%) �97.5 and
supraglottic area V23 Gy (%) �92.5 were also identified
as predictive.

Our specific findings that SPC D20% (EQD2 Gy)
�47.7 and D25% (Gy) �50.4 are strongly associated with
dysphagia are more specific, but consistent with the re-
sults of Chera et al and Caudell et al.4,5 The finding that
SG_high D35% �61.7 was predictive may be a surrogate
for sensitivity of the proximal musculature. That inter-
pretation is consistent is with the finding of finding of
Kamal et al for the geniohyoid muscle. Sparing at least
one salivary structure conveyed benefit for reducing odds
for worsening dysphagia. Higher observed sensitivity of
SG_low D45% (%) �28.2 compared with parotid_low
D65% (Gy) �13.2 (0.95 vs 0.65) at minimum signals the
importance of routine contouring of these structures and
monitoring of their doses, which is consistent with the
results of Jackson et al.16

The studies of Feng et al,2 Eisbruch et al,3 and Caudell
et al5 focused on mean dose to the larynx or GSL and
identified differing thresholds. Drawing from these early
results, the historic plans examined in this data set had
used larynx:mean (Gy) �50 as a high priority constraint.
The finding that D25% (Gy) �21.2 had a high sensitivity
(SN Z 0.97) suggests that controlling dose to small
volumes may convey additional advantage.

Esophagus was noteworthy for identifying absolute
versus a percentage volume D2cc [Gy] �22.6 as the
strongest predictor. One interpretation is that the small
volume of the esophagus proximal to the larynx could act
as a surrogate measure for larynx dose. Additional in-
spection of the relative location of these sub volumes
would be needed to confirm that interpretation.

Historic plans had been created using IPC:mean (Gy)
<20 as a high priority constraint. D90% (Gy) �12.8
reinforced use of the historic constraint to reduce doses to
IPC. This highlights an important point to be noted in
modeling dose responses. Results should be viewed in the
context of intrinsic biases introduced by dose constraints
used in creating treatment plans. In this instance not
finding median (D50% [Gy]) dose more significant than
D90% (Gy), could mean that the metric has already been
sufficiently constrained by the default mean (Gy) <20
constraint and that significance of D90% (Gy) signals
potential to augment, not replace, this default metric.

Ability to use historic data gathered from routine
practice, by combining the BDARS with AI,
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underscores the importance of consistency in contour-
ing approaches within and among clinics. For example,
we noted substantial differences in sensitivity of SPC
versus IPC metrics for predicting worsening dysphagia.
This highlights importance of contouring these struc-
tures separately. Other clinics may only contour a
generalized PC structure as part of their practice
guidelines. In that case, those clinics would miss the
opportunity to detect differences for predicting toxic-
ities or to use that information to reduce toxicities.
Similarly, high SCA-ML scores for the parotid and
submandibular gland structures underscore the value of
consistently contouring both (if unresected) as part of
routine treatment planning.

The potential for use of observational clinical data
coupled with AI to improve hypothesis generation in
design processes for randomized controlled trials has been
discussed previously.10 The method described here illus-
trates a potential example. Results provide strong levels of
evidence for selection of specific DVH metrics and as-
sociations that could be tested in a subsequent multi-
institutional trial. Evidence that larynx and SG_low
DVH metrics may play a second order role to SC in
predicting dysphagia underscore the need for consistent
contouring of these structures to detail interactions in such
a trial. Observation of the natural history occurrence of
toxicity (Fig 1) could provide more specific guidance for
selection of measurement time intervals.
Conclusions

By combining a big data analytics resource system
with an AI algorithm, we were able to examine evidence
for response thresholds for a much larger set of patients
and DVH metrics than conventional approaches. Calcu-
lating both physical and biologically corrected doses and
percentage and absolute volume DVH metrics, the
approach was better able to follow the data and minimize
metric selection bias. This presents a means that can in be
automated to enable iterative learning from historic
treatments to inform decision frameworks for future pa-
tients with clinically apprehensible metrics.
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