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Abstract: Kidney-type glutaminase (GLS) and liver-type glutaminase (GLS2) are dysregulated in many
cancers, making them appealing targets for cancer therapy. However, their use as prognostic biomarkers
is controversial and remains an active area of cancer research. Here, we performed a systematic
multiomic analysis to determine whether glutaminases function as prognostic biomarkers in human
cancers. Glutaminase expression and methylation status were assessed and their prominent functional
protein partners and correlated genes were identified using various web-based bioinformatics tools.
The cross-cancer relationship of glutaminases with mutations and copy number alterations was also
investigated. Gene ontology (GO) and pathway analysis were performed to assess the integrated
effect of glutaminases and their correlated genes on various cancers. Subsequently, the prognostic
roles of GLS and GLS2 in human cancers were mined using univariate and multivariate survival
analyses. GLS was frequently over-expressed in breast, esophagus, head-and-neck, and blood cancers,
and was associated with a poor prognosis, whereas GLS2 overexpression implied poor overall
survival in colon, blood, ovarian, and thymoma cancers. Both GLS and GLS2 play oncogenic and
anti-oncogenic roles depending on the type of cancer. The varying prognostic characteristics of
glutaminases suggest that GLS and GLS2 expression differentially modulate the clinical outcomes
of cancers.
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1. Introduction

Cancer is currently one of the leading causes of human death worldwide. Moreover, the global
occurrence of cancer has been steadily growing over recent decades [1]. Although the overall diagnosis
and treatment of cancers have improved, prognosis is still below standard. Therefore, the development
of more effective biomarkers for prognosis is a highly desirable outcome of cancer research worldwide.
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One of the salient features of cancer cells is that they have an altered metabolic activity compared
with most normal tissue cells [2]. These alterations in cellular metabolism pathways are collectively
called cancer metabolism and support the acquisition and maintenance of the malignant properties
of cancer cells [3]. Of the numerous metabolic alterations, altered enzyme expression is a common
phenomenon, and the expression of metabolic genes is often altered in cancer [4]. The amplification or
deletion of genes, or epigenetic changes, are a few of the factors that result in deviations in metabolic
enzyme expression [5]. Underlying mechanisms aside, modifications in basal enzymatic activity result
in potential susceptibilities that could be targeted in cancer treatment. Glutaminase is an example of
such an enzyme, the activity of which is noticeably dysregulated in several cancer cells [6]. This enzyme
generates glutamate from glutamine. It is now recognized that the dysregulation of glutamine
metabolism is a prominent phenomenon that results in the proliferation of cancer cells [7]. Glutamine,
and hence glutaminase, have become appealing targets for cancer therapy. In humans, the glutaminase
family consists of two key members—the kidney-type glutaminase (GLS, also improperly known
as GLS1) and liver-type glutaminase (GLS2) genes—that encode several respective tissue-specific
isoenzymes. Some studies have shown that GLS is regulated by oncogenes and largely contributes
to tumor cell growth [8,9]. On the contrary, GLS2 has tumor suppressant properties and places a
limitation on malignancy [10,11]. Therefore, these glutaminase members, henceforth referred to as
glutaminases, may be used as biomarkers for patient prognosis. Glutaminase-targeted therapy has
been found to be effective in various clinical attempts [5,12,13]. This study investigates the prognostic
significance of GLS and GLS2 in human cancers using systematic bioinformatic analysis.

GLS has recently attracted attention as a biomarker for the prediction of prognosis in cancers,
although its implications in cancer biology remain an area of active investigation. In contrast, studies
on GLS2 expression in cancer are relatively limited. Experimental trials have demonstrated that
glutaminase-based molecular targeted therapy may lead to cancer cell apoptosis, thus preventing
tumor development. However, the application of GLS and GLS2-mediated treatment in a large-scale
clinical setting is still in its infancy, and the use of their expression levels as prognostic markers
of human cancers is controversial. In this context, we evaluated the significance of glutaminase
expression in various human cancers using a number of online bioinformatics platforms and tools.
We comprehensively investigated the expression patterns, functions, and prognostic values of GLS and
GLS2 in cancers by accessing and analyzing all currently available gene expression data. This systemic
analysis eventually determined whether glutaminase expression can be used as a biomarker for the
prognosis of human cancers.

2. Materials and Methods

2.1. Transcript Expression Analysis Using Oncomine Platform

The expression levels of glutaminases in various cancers were retrieved from the Oncomine
platform (https://www.oncomine.org/resource/login.html) [14,15]. This platform comes with a large
collection of independent data sets and well curated data. Using the default settings for various groups
of filters, such as primary filters, sample filters, and data set filters, each query for accessing mRNA
expression data was executed using threshold parameters of p-value 1e-4, fold-change 2, and gene
ranking in the top 10%. The precise analyses are summarized in Supplementary Tables S1 and S2.

2.2. Transcript Expression Analysis Using GENT

Gene expression across normal and tumor tissue (GENT) (http://medical-genome.kribb.re.kr/
GENT/) [16] is an online database which provides gene expression patterns across a range of human
cancer and normal tissues. Using the default settings on data sets, samples, and probes, the query was
performed for GLS and GLS2 to obtain their respective U133Plus2 differential gene expression patterns
in normal vs. cancer tissues. GENT-based glutaminase expression results were used to determine the
differential gene expression pattern in reference to the Oncomine-based results.

https://www.oncomine.org/resource/login.html
http://medical-genome.kribb.re.kr/GENT/
http://medical-genome.kribb.re.kr/GENT/
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2.3. Transcript Expression Analysis Using GEPIA

The gene expression profiling interactive analysis (GEPIA) (http://gepia.cancer-pku.cn/) is
another interactive online platform for analyzing RNA sequencing expression [17]. The GEPIA
performs data mining based on TCGA data. The GEPIA-provided box plots tool was used for
performing tumor/normal differential expression analysis for GLS and GLS2 in different cancers.
Similar to GENT, the glutaminases expression results obtained from GEPIA were also mainly used to
crosscheck the results from the Oncomine platform.

2.4. Methylation Status Analysis Using TCGA Wanderer

TCGA Wanderer (http://maplab.imppc.org/wanderer/) is an online tool that performs data
mining on TCGA data to interpret DNA methylation and gene expression data in human cancers [18].
This study utilized Wanderer to retrieve level 3 TCGA data for methylation arrays and expression
through the portal’s gene cantered interactive web viewer. The imported data was then used to identify
the statistically significant values of methylation levels of GLS and GLS2 promoters in different cancers
using GraphPad Prism 7 software using the unpaired t-test.

2.5. PPI Analysis Using STRING

The search tool for the retrieval of interacting genes/proteins STRING (https://string-db.org/) is
a web-based tool that provides a critical assessment and integration of protein-protein interactions [19].
In this study, STRING was applied to determine the functional protein partners of each glutaminase
member. Text mining, experiments, databases, neighborhood, gene fusion, and co-expression were
taken into consideration as active protein-protein interaction sources. The protein-protein network
was constructed using both known and prediction interactions with no network clustering.

2.6. Analysis of Gene Expression and Mutation Alterations Using cBioPortal

The cBioPortal for cancer genomics (http://www.cbioportal.org) is a recognized and widely used
online portal that provides visualization and analysis of large-scale cancer genomics data sets [20,21].
In this study, cBioPortal was applied to analyze expression patterns, mutations, and CNAs of GLS
and GLS2 with appropriate parameter settings. In addition, the OncoPrint sub-tool of CBioPortal was
used to analyze the integrated status of mutations and CNAs for glutaminases and their functional
protein partners.

2.7. Survival Analysis Using Kaplan-Meier Plotter

The Kaplan-Meier plotter (http://kmplot.com/analysis/) [22] is a web-based tool used to analyze
the impact of various genes on the survival of cancer patients. In this study, the correlations between
the expression of glutaminases and the survival of patients with cancers of interest were analyzed
using the Kaplan-Meier plotter.

2.8. Survival Analysis Using PROGgeneV2

The PROGgeneV2-Pan cancer prognostics database (http://watson.compbio.iupui.edu/chirayu/
proggene/database/?url=proggene) is a web-based tool for survival analysis using gene
expression [23]. In this study, PROGgeneV2 was applied to perform survival analysis on GLS and GLS2
as a signature in various human cancers with OS as a survival measure and median bifurcate gene
expression. Thus, the prognostic significance of the co-occurrence (high/high) and non-co-occurrence
(low/low) of GLS/GLS2 were evaluated.

2.9. Prognosis Analysis Using PrognoScan

PrognoScan (http://dna00.bio.kyutech.ac.jp/PrognoScan/) [24] is an online platform that is used
for the meta-analysis of the prognostic value of various genes. In this study, PrognoScan was used to

http://gepia.cancer-pku.cn/
http://maplab.imppc.org/wanderer/
https://string-db.org/
http://www.cbioportal.org
http://kmplot.com/analysis/
http://watson.compbio.iupui.edu/chirayu/proggene/database/?url=proggene
http://watson.compbio.iupui.edu/chirayu/proggene/database/?url=proggene
http://dna00.bio.kyutech.ac.jp/PrognoScan/
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assess the correlation between the expression of glutaminases and survival in several types of cancer.
It was also applied to analyze the association of GLS and GLS2 expression with the survival in various
cancer patients. These results are briefly presented in Supplementary Tables S3 and S4.

2.10. Prognosis Analysis Using SurvExpress

SurvExpress (http://bioinformatica.mty.itesm.mx/SurvExpress) is a cancer-wide gene expression
database with clinical outcomes and a web-based tool for survival analysis [25]. This database contains
more than 39,000 samples and 225 datasets covering tumors in more than 26 different tissues. Using
this platform, survival plots were generated for the functional protein partners of GLS and GLS2 in
specific cancer types using TCGA data.

2.11. Survival and Correlation Analysis Using R2

R2 (http://r2platform.com) is a versatile online platform for use in various genomics analysis
and visualization [26,27]. In this study, R2 was applied to analyze the correlation between glutaminase
expression and the survival of patients with certain cancers. The R2 software was also used to identify
and import the list of genes correlated with GLS and GLS2. The imported data was then exploited to
determine the glutaminase-correlated genes common to all cancers of interest using the functional
enrichment analysis tool (FunRich) (http://www.funrich.org/) [28]. Then, the protein analysis through
evolutionary relationships (PANTHER) (http://pantherdb.org/) [29] classification system was used to
perform GO and pathway analyses of commonly correlated genes.

2.12. Statistical Analysis

Expression data were extracted from the Oncomine, cBioPortal, GEPIA, and GNET databases.
The p-values < 0.05 were considered significant. Methylation data were extracted from TCGA Wanderer
and used to generate box plots. The unpaired t-test was used to determine the p-values, where
p < 0.05 was considered significant (* p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001). Survival
curves were extracted from the R2: Kaplan Meier Scanner, PrognoScan, Kaplan-Meier Plotter, and
PROGgeneV2 databases. All survival results are displayed with p-values obtained using the log-rank
test. For multivariate survival analysis, the clinical outcome data were extracted from the PROGgeneV2
database. Moreover, clinical outcome data were retrieved from the Kaplan-Meier Plotter database.
The data were then processed to generate multivariate survival curves using GraphPad Prism version 7.
Log-rank p-values < 0.05 were considered significant, and p = ns was used to denote “not significant.”

3. Results

We used the Oncomine database to determine the role of glutaminases in the development of human
cancers. The investigation started with the evaluation of their transcription levels in cancers compared
with that in normal tissues. Using the default filter settings, we used 1e-4, 2, and 10% as the p-value, fold
change, and gene ranking, respectively. Using these threshold parameters, we queried the Oncomine
database and found results on its visualization interface. Compared with their expression levels in normal
tissues, both glutaminase members were highly upregulated in certain cancers and upregulated to a lesser
extent in others. Based on these data-driven results, one may argue that the glutaminases play either an
oncogenic or anti-oncogenic role, depending on the type of cancer (Figure 1a). A platform that contains a
large collection of RNA sequencing studies is the cancer genome atlas (TCGA) database, which helps
us understand the molecular basis of cancer. Another standard online bioinformatics platform is gene
expression across normal and tumor tissue (GENT), which also provides the expression patterns of genes
across a wide array of cancer and normal tissues. We accessed the TCGA data via the cBioPortal web
and GENT database directly and examined the mRNA levels of glutaminases in various types of cancer.
The results show that GLS and GLS2 are differentially expressed (Figure 1b,c) in both the TCGA and
GENT databases. Also, as we individually performed an average of the expression of glutaminases over
the entire set of tissues, the average expressions of both GLS and GLS2 were slightly lower in cancer tissues

http://bioinformatica.mty.itesm.mx/SurvExpress
http://r2platform.com
http://www.funrich.org/
http://pantherdb.org/
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than in the normal tissues, as analyzed using the GENT database. The detailed analyses of glutaminases
are presented below (Figure 1c).
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Figure 1. Transcription levels of GLS and GLS2 in different types of cancer (Oncomine, TCGA,
and GENT databases). (a) This graphic was generated from the Oncomine database (available at
https://www.oncomine.org/resource/login.html), indicating the number of data sets with statistically
significant (p < 0.01) mRNA over-expression (red) or under-expression (blue) of GLS and GLS2
(different types of cancer vs. corresponding normal tissue). The threshold was designed with
following parameters: p-value of 1e-4, fold change of 2, and gene ranking of 10%. (b) The expression
of GLS and GLS2 in 32 types of human cancer was retrieved from the cBioPortal database (http:
//www.cbioportal.org/index.do). Every spot represents a single study. (c) Expression pattern of GLS
and GLS2 mRNA in normal and tumor tissues. GLS and GLS2 mRNA expression in various types of
cancer was searched in the GENT database (available at http://medical-genomics.kribb.re.kr/GENT/).
Boxes represent the median and the 25th and 75th percentiles; dots represent outliers. Red boxes
represent tumor tissues; green boxes represent normal tissues. Red and green dashed lines represent
the average value of all tumor and normal tissues, respectively.
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3.1. Transcript Expression Analysis of Glutaminases

Using the differential analysis tool of the Oncomine database, we conducted a cDNA microarray
analysis to investigate the expression patterns of glutaminases in various types of cancer. The database
was successively queried for GLS and GLS2 expression in all the cancers of interest and their
respective normal tissues. The analysis demonstrates that GLS is over-expressed in breast, colorectal,
esophagus, gastric, head-and-neck, B cells, piccaluga lymphoma, bone marrow, testis, and liver
cancers, but is under-expressed in brain, bladder, kidney, and lung cancers than in the normal tissue
(Figure 2a(i–xiii)) [30–43]. In order to validate our analysis of GLS expression using the Oncomine web,
we conducted single gene analysis on this gene in GEPIA, another TCGA database-driven web portal
for gene expression profiling and interactive analysis. The result presented in Figure 2b(i–xv) confirms
GLS overexpression in esophagus, head-and-neck, B cells, and liver cancers, and under-expression
in brain, lung, and kidney cancers. The expression patterns of GLS2 in different types of cancer are
substantially different from that of GLS. We noticed that compared with the normal tissues, GLS2 is
considerably over-expressed in bladder, colon, rectum, head-and-neck, peritoneum, and lung cancers,
whereas it is under-expressed in brain, liver, and pancreatic cancer (Figure 3a(i–ix)) [30,33,39,44–48],
according to the Oncomine-aided gene expression investigation. The above expression pattern of
GLS2 in colon, rectum, brain, and liver cancer has also been found via GEPIA-based gene expression
analysis (Figure 3b(i–xiii)). It is worth mentioning that our results on GLS and GLS2 expression are in
agreement with those of previous studies. For example, whereas the over-expression pattern of GLS
was observed in breast, liver, and colon cancer [49–52], the under-expression pattern of this gene was
noted in bladder and lung cancers [53,54]. In contrast, our results showed that GLS2 is over-expressed
in bladder and lung cancers [55,56], whereas it is downregulated in liver cancer [57] which indicates
that glutaminases are indeed differentially expressed in different types of human cancer.

3.2. The Promoter Methylation Status of Glutaminases in Different Types of Cancer

Methylation, an organized modification of protein and nucleic acid, was studied in the prognostic
evaluation of different types of cancer, including liver, cervical and ovarian cancer [58–60]. The impact of
the methylation of glutaminase promoter on certain types of cancer has been previously examined [57,61].
In this study, we investigated the methylation status of the promoters of the GLS and GLS2 genes using
TCGA Wanderer, an interactive web viewer for the visualization of DNA methylation based on TCGA
data. The results showed that the promoter of the GLS gene is significantly hypomethylated in BLCA,
BRCA, COAD, ESCA, HNSC, KIRC, KIRP, PRAD, READ, THCA, and UCEC, but it is not statistically
significantly hypermethylated in any cancer tissue (Figure 4a). For the GLS2 gene, it is hypomethylated in
BLCA and UCAC, but hypermethylated in BRCA, GBM, KIRC, KIRP, and PRAD (Figure 4b). Interestingly,
whereas the deficiency of the GLS gene promoter in ESCA and HNSC is consistent with the upregulation
of GLS expression analyzed via GEPIA (Figure 2b(iv,vi)), the elevation of GLS2 promoter in GBM, KIRC,
and LIHC is in agreement with the downregulation of GLS2 expression (Figure 3b(v,vi,viii)). In summary,
the methylation statuses of glutaminases are differential in nature and could be used as biomarkers for
certain cancers, such as ESCA, HNSC, GBM, KIRC, and LIHC.
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(vii), RWT relative to normal kidney (viii), CLL relative to B-lymphocyte (ix), HCC relative to normal liver (x), SCLC relative to normal lung (xi), AITCL relative to 
C4PTL (xii), SM relative to BM (xiii), and EC, NOS relative to normal testis (xiv). The threshold was designed using the following specific parameters: p-value = 1E-
4, fold change = 2, and gene rank 10%. (b) The expression of the GLS gene in the Cancer Genome Atlas (TCGA) database. Box plots showing the GLS mRNA 
expression in various tumor (T) and normal (N) tissues, using data from the TCGA database via the GEPIA web (i–xv). The threshold was designed with the 
following specific parameters: p-value = 0.01, fold change = 2. (Abbreviations: SBC, bladder cancer (Sanchez-Carbayo Bladder 2); AOA, anaplastic oligo-astrocytoma 
(French Brain); GBM, glioblastoma (Murat Brain); LBC, lobular breast carcinoma (Zhao Breast); CC, colorectal carcinoma (Skrzypczak Colorectal); ESCC, esophageal 
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Figure 2. GLS expression analysis in different types of cancer (Oncomine and TCGA databases). (a) The box plot comparing specific GLS expression in normal (left
plot) and cancer tissue (right plot) was derived from the Oncomine database. The fold change of GLS in various types of cancer was determined from our analyses as
shown in Supplementary Table S1. The analysis was shown in SBC relative to normal bladder (i), GBM relative to normal brain (ii), LBC relative to normal breast (iii),
CC relative to normal colorectal (iv), ESCC relative to normal esophagus (v), GMAD relative to normal gastric (vi), HNSC relative to normal buccal mucosa (vii), RWT
relative to normal kidney (viii), CLL relative to B-lymphocyte (ix), HCC relative to normal liver (x), SCLC relative to normal lung (xi), AITCL relative to C4PTL (xii), SM
relative to BM (xiii), and EC, NOS relative to normal testis (xiv). The threshold was designed using the following specific parameters: p-value = 1E-4, fold change = 2,
and gene rank 10%. (b) The expression of the GLS gene in the Cancer Genome Atlas (TCGA) database. Box plots showing the GLS mRNA expression in various tumor
(T) and normal (N) tissues, using data from the TCGA database via the GEPIA web (i–xv). The threshold was designed with the following specific parameters: p-value
= 0.01, fold change = 2. (Abbreviations: SBC, bladder cancer (Sanchez-Carbayo Bladder 2); AOA, anaplastic oligo-astrocytoma (French Brain); GBM, glioblastoma



J. Clin. Med. 2019, 8, 355 9 of 28

(Murat Brain); LBC, lobular breast carcinoma (Zhao Breast); CC, colorectal carcinoma (Skrzypczak Colorectal); ESCC, esophageal squamous cell carcinoma (Hu
Esophagus); GMAD, gastric mixed adenocarcinoma (DErrico Gastric); HNSC, head-and-neck squamous cell carcinoma (Ginos Head-Neck); FK, fetal kidney;
RWT, renal Wilms tumor (Yusenko Renal); CCL, chronic lymphocytic leukemia (Haslinger Leukemia); C4PTL, CD4-positive T-lymphocyte; CATCL, chronic adult
T-cell leukemia/lymphoma (Choi Leukemia); HCC, hepatocellular carcinoma (Roessler Liver); SCLC, small cell lung carcinoma (Bhattacharjee Lung); AITCL,
angioimmunoblastic T-cell lymphoma (Piccaluga Lymphoma); BM, bone marrow; SM, smoldering myeloma (Zhan Myeloma 3); EC, NOS, embryonal carcinoma, NOS
(Korkola Seminoma); CHOL, cholangiocarcinoma; DLBC, diffuse large B-cell lymphoma (Lymphoid Neoplasm); ESCA, esophageal carcinoma; GBM, glioblastoma
multiforme; HNSC, head-and-neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; LAML, acute myeloid leukemia; LIHC, liver hepatocellular
carcinoma; STAD, stomach adenocarcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma.)
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Figure 3. GLS2 expression analysis in different types of cancer (Oncomine and TCGA databases). (a) The box plot comparing specific GLS2 expression in normal (left
plot) and cancer tissue (right plot) was derived from the Oncomine database. The fold change of GLS2 in various types of cancer was identified from our analyses
in Supplementary Table S2. The analysis was shown in SBC relative to normal bladder (i), GBM relative to normal brain (ii), CC relative to normal colorectal (iii),
READ relative to normal rectum (iv), NC relative to normal nasopharynx (v), HCC relative to normal liver (vi), LUAD relative to normal lung (vii), OV relative
to normal peritoneum (viii), and PAAD relative to normal pancreas (ix). The threshold was designed with the following specific parameters: p-value = 1e-4, fold
change = 2, and gene rank 10%. (b) The expression of the GLS2 gene in the Cancer Genome Atlas (TCGA) database. Box plots showing the GLS2 mRNA expression in
various tumors (T) and normal (N) tissues, using data from the TCGA database via the GEPIA web (i-xiii). The threshold was designed with the following specific
parameters: p-value = 0.01, fold change = 2. (Abbreviations: SBC, superficial bladder cancer (Sanchez-Carbayo Bladder 2); GBM, brain glioblastoma (TCGA); CC,
colon carcinoma (Skrzypczak Colorectal 2); READ, rectal adenocarcinoma (Gaedcke Colorectal); NC, nasopharyngeal carcinoma; HCC, hepatocellular carcinoma
(Roessler Liver); LUAD, lung adenocarcinoma (Stearman Lung); PAAD, pancreatic adenocarcinoma (Iacobuzio-Donahue Pancreas 2); CESC, cervical squamous
cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; READ, rectum adenocarcinoma; GBM, glioblastoma
multiforme; KIRC, kidney renal clear cell carcinoma; LAML, acute myeloid leukemia; LIHC, liver hepatocellular carcinoma; PAAD, pancreatic adenocarcinoma; PCPG,
pheochromocytoma and paraganglioma; SKCM, skin cutaneous melanoma; THCA, thyroid carcinoma; THYM, thymoma).
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Figure 4. Promoter methylation levels of the GLS and GLS2 genes in various types of cancer (TCGA
Wanderer web). (a) Median methylation levels of GLS gene promoter in various types of cancer.
(b) Median methylation levels of GLS2 gene promoter in various types of cancer. The p-value was
determined using unpaired t-test using GraphPad Prism 7 software. (p: * < 0.05, ** < 0.01, *** < 0.001,
**** < 0.0001.) (Abbreviations: BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma;
CESC, cervical squamous cell carcinoma; COAD, colon adenocarcinoma; ESCA, esophageal carcinoma;
GBM, glioblastoma multiforme; HNSC, head-and-neck squamous cell carcinoma; KIRC, kidney
renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LIHC, liver hepatocellular
carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; PAAD, pancreatic
adenocarcinoma; PRAD, prostate adenocarcinoma; READ, rectal adenocarcinoma; STAD, stomach
adenocarcinoma; THCA, thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma).

3.3. Predicting Protein-Protein Interactions (PPIs) of Glutaminases

GLS is located on human chromosome 2 and exists as different splice variants, namely, kidney
glutaminase (KGA), glutaminase C (GAC), and GAM. This gene consists of 19 exons over 82 kb [56,62–64].
The N-termini of the GLS variants start with a 16-residue sequence, predicted to confine the proteins
to the mitochondria [56]. GLS2 is located on chromosome 12 and also appears as three transcriptional
variants. Unlike GLS proteins, which differ in their C-termini, GLS2 proteins differ at their N-termini.
In their exons, GLS and GLS2 exhibit high homology. GLS has, however, noticeably larger introns and
untranslated regions of terminal exons. Although both glutaminase isozymes are activated by phosphate,
GLS2 is activated by a lower concentration of phosphate than GLS [65,66]. Whereas ammonia activates
GLS2, GLS is inhibited by ammonia [67]. However, the underlying molecular mechanisms of these
activation and inhibition process are largely unknown. Here, we tried to gain some insights at the
system-level of the functional interactions of glutaminases with other closely related proteins via a
protein–protein interaction (PPI) network. To identify the PPIs of glutaminases, we used STRING,
an online biological database and web-based tool, to analyze known and predicted protein–protein
interactions. The database was individually queried for GLS and GLS2 with Homo sapiens as the
organism, where the respective PPI network was obtained as the output (Figure 5a(i,ii)). Whereas each
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node in a PPI network represents all the proteins produced by a single, protein-coding gene locus, an
edge represents protein-protein associations. An association, however, does not necessarily represent
a physical binding between the pair of genes. Rather, associated proteins jointly contribute to a shared
function. One can note that STRING performs text mining on a large number of scientific papers
from various sources, such as PubMed, to search for statistically significant co-occurrences of gene
names. We selected the prominent predicted functional protein partners of glutaminases from this
analysis, as mentioned below, for further investigation. The predicted functional protein partners of GLS,
along with their respective genes, are: carbamoyl-phosphate synthetase 2, aspartate transcarbamylase,
dihydroorotase (CAD), glucosamine—fructose-6-phosphate aminotransferase isomerizing 1 (GFPT1),
phosphoribosyl pyrophosphate amidotransferase (PPAT), carbamoyl-phosphate synthase 1 (CPS1),
glutamate-ammonialigase (GLUL), glutamate dehydrogenase 1 (GLUD1), glutamate dehydrogenase 2
(GLUD2), gamma-glutamyltransferase 1 (GGT1), glutamate decarboxylase 1 (GAD1), and glutamate
decarboxylase 1 (GAD2) (Figure 5a(i)). The predicted functional protein partners of GLS2 along with
their corresponding genes are: G protein-coupled receptor 39 (GPR39), protein tyrosine phosphatase,
receptor type N2 (PTPRN2), ghrelin and obestatin prepropeptide (GHRL), growth hormone secretagogue
receptor (GHSR), membrane bound O-acyltransferase domain containing 4 (MBOAT4), carnitine
palmitoyltransferase 1A (CPT1A), jun proto-oncogene, AP-1 transcription factor Subunit (JUN), tumor
protein P53 (TP53), 6-phosphogluconolactonase (PGLS), and glutamic-pyruvic transaminase 2 (GPT2)
(Figure 5a(ii)).
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Figure 5. Identification of known and predicted structural proteins essential for GLS and GLS2
function (STRING) and alteration frequency of mutations and copy number alterations (CNAs) in
various types of cancer (cBioPortal web). (a) The interacting nodes are displayed in circles, obtained
using Genemania. The predicted functional partners of GLS (i) and GLS2 (ii) are shown, taking
into consideration co-expression, co-localization, genetic interactions, pathway, physical interactions,
predicted, and shared protein domains. (b) A total of 266 mutation sites were detected located between
amino acids 0 and 669 of GLS protein. GLS mutations mainly occurred in uterine cancer and existed in
a hotspot in the glutaminase domain (i). A total of 226 mutation sites were detected between amino
acids 0 and 602 of GLS2 protein. GLS2 mutations mainly occurred in uterine cancer and existed in a
hotspot in the N-terminal domain (ii). (c) The alteration frequency of an eleven-gene signature (GLS,
CAD, GFPT1, PPAT, CPS1, GLUL, GLUD1, GLUD2, GGT1, GAD1, and GAD2) was determined using
cBioPortal (http://www.cbioportal.org). Only the types of cancer containing >100 samples and an
alteration frequency of >20% are shown. The alteration frequency included mutations (green), fusions
(purple), amplifications (red), deep deletions (blue), or multiple alterations (grey) (i). The alteration
frequency of an eleven-gene signature (GLS2, GPR39, PTPRN2, GHRL, GHSR, MBOAT4, CPT1A, JUN,
TP53, PGLS, and GPT2) was determined using cBioPortal (http://www.cbioportal.org). Only the types
of cancer containing >100 samples and an alteration frequency of >60% are shown. The alteration
frequency included mutations (green), fusions (brawn), amplifications (red), deep deletions (blue), or
multiple alterations (grey) (ii). (d) The GLS and GLS2 gene-signatures were predominantly amplified
and significantly co-expressed in neuroendocrine prostate cancer (NEPC) and ovarian cancer. We used
the Oncoprint feature of cBioPortal (http://www.cbioportal.org) to determine the frequency of copy
number alterations for each individual gene (GLS, CAD, GFPT1, PPAT, CPS1, GLUL, GLUD1, GLUD2,
GGT1, GAD1, and GAD2) in GLS within the NEPC cancer subtypes. The alteration frequency included
missense mutations (green), amplifications (red), deep deletions (blue), or no alterations (grey) (i).
We used the Oncoprint feature of cBioPortal (http://www.cbioportal.org) to determine the frequency
of copy number alterations for each individual gene (GLS2, GPR39, PTPRN2, GHRL, GHSR, MBOAT4,
CPT1A, JUN, TP53, PGLS, and GPT2) in GLS2 within the ovarian cancer subtypes. The alteration
frequency included missense mutations (green), amplifications (red), deep deletions (blue), or no
alterations (grey) (ii).

It is worth noting that the STRING database is a curated database from the literature for PPI.
On that, in addition to the STRING, we attempted to use the GeneMANIA. Nevertheless, the sets
of proteins constituting the PPI networks using direct connections to the glutaminases were entirely
different in these two databases with no common proteins/genes. The source of the contradiction
in PPI results between STRING and GeneMANIA databases may be the inadequate number of
studies and reports. Interestingly, the proteins constituting the PPI network found in STRING (also in
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GeneMANIA) were however indirectly connected to glutaminases when we performed the analysis in
FunRich. In this study, although we selected the STRING to investigate the mutations and CNAs, we
have provided the PPI networks obtained by FunRich analysis to show the indirect connections of
the proteins found in STRING (and GeneMANIA) to GLS/GLS2 (Supplementary Figure S1). One can
further note that it is intuitive that functional protein partners of glutaminases would experience
various genetic alterations including mutations and CNAs, irrespective of the database.

3.4. Cross-Cancer Relationship of Glutaminases with Mutations and Copy Number Alterations (CNAs)

We individually examined the genetic alterations of GLS and GLS2 in various types of cancer using
cBioPortal and subsequently provided a comparative report with respect to the functional protein
partners of glutaminases obtained from the PPI network analysis. Based on the entire set of available
samples and studies, with clinical data from 69,758 patients, we queried the database for the GLS gene.
Of the queried samples, 216 samples were associated with an altered gene set or pathways resulting
in a somatic mutation frequency of 0.3%. As presented in Figure 5b(i), 266 mutations, including
201 missense, 56 truncating, and 5 inframe mutations, were detected. The mutations sites were located
between amino acids 0 and 669. It is worth noting that, in the above mutation statistics, there exist at
least 100 duplicate mutations in patients with multiple samples. We also observed that GLS mutation
mainly occurred in uterine, lung, and stomach cancer and spans over the glutaminase (located between
amino acids 244 and 530) and ankyrin repeat (located between amino acids 557 and 643) domains, with
a hotspot in G597=/X597_splice/G597G, where 5 mutations were reported. Using the same settings
as for GLS, we also queried the database for GLS2. In this case, we once again obtained 216 samples
which were associated with an altered gene set or pathways resulting in the same somatic mutation
frequency as GLS. However, the mutation statistics for GLS2 were significantly different from those of
GLS. In GLS2, there were 226 mutations in total, including 175 missense, 46 truncating, and 5 in-frame
mutations. In addition, at least 75 duplicate mutations existed in patients with multiple samples.
The mutations sites for GLS2 were located between amino acids 0 and 602, and are thus, slightly
denser than GLS in terms of their location. Like GLS, GLS2 mutations also mainly occurred in uterine,
lung, and stomach cancer, spanning over the glutaminase (located between amino acids 177 and 463)
and Ankyrin repeats (located between amino acids 490 and 575) domains, with a hotspot at E533K
(Figure 5b(ii)). We also provided a summary of the cancer types to gain a comparative understanding
of cancer-wise alteration frequencies, where only cancers with at least 100 samples with at least 1%
mutation were included. This summary shows that the maximum alteration occurs in uterine cancer
for both GLS and GLS2.

Next, we investigated the integrated status of mutations and CNAs for GLS and its functional
protein partners. The query was composed of both mutations and CNAs molecular profiles covering
all the available cancer studies with the user defined gene list as GLS, CAD, GFPT1, PPAT, CPS1, GLUL,
GLUD1, GLUD2, GGT1, GAD1, and GAD2. Then, we obtained the alteration frequency of this eleven-gene
signature using 100% and 20% as a minimum number of total cases and a minimum percentage of altered
cases, respectively (Figure 5c(i)). The results showed that the alteration frequency ranged from 25.27% to
52.34%. The alterations in the GLS-centered-signature-gene occur most dominantly in neuroendocrine
prostate cancer (NEPC). Similarly, the analysis of the integrated status of mutations and CNAs for the
GLS2 gene and its functional protein partners (Figure 5c(ii)) resulted in alteration frequency ranges of
20.2% to 44.9%, with a threshold of 60% as a minimum percentage of altered cases. In this case, the
query contained the user-defined gene list as GLS2, GPR39, PTPRN2, GHRL, GHSR, MBOAT4, CPT1A,
JUN, TP53, PGLS, and GPT2. Unlike GLS, the alterations in the GLS2-centered-signature-gene occur
mainly in lung cancer. Whereas the contribution of the GLS-centered-signature-gene to the alteration
in NEPC largely results from amplification, the role of GLS2-centered-signature-gene on alteration in
lung cancer appears in the form of mutations.

Next, we accessed the OncoPrint feature of cBioPortal to determine how genomic alterations in
NEPC and lung cancer are disseminated over the aforementioned GLS-centered-signature-gene and
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GLS2-centered-signature-gene, respectively. Compared to GLS2-centered gene set, the fluctuation
range of genetic alterations is significantly larger in the GLS-centered gene set (Figure 5d(i,ii)). Of
the genes corresponding to the functional protein partners of GLS, GLUL and GLUD2 experience
the most prominent genetic alterations, accounting for 32% and 31%, respectively (Figure 5d(i)). For
the GLS2-centered-signature gene, the alterations largely take place in the TP53 and GHSR genes,
accounting for 81% and 51%, respectively (Figure 5d(ii)). It is worth noting that whereas the alteration in
GLUL solely occurred due to amplification, the alteration in TP53 largely takes place due to mutations.
This result is consistent with the overall integrated status of mutations and CNAs for glutaminases
and their functional protein partners, as explained in the preceding paragraph. As a consequence, the
above cross-cancer analyses of glutaminases elucidated a differential role of glutaminases regarding
mutations and CNAs.

3.5. Prognosis Estimation of Glutaminases

To understand how glutaminases influence the prognostic characteristics of different cancer
patients, we examined the association between alterations in the expression of glutaminase-encoding
genes and the clinical outcomes. The examination was conducted via several online genomics analysis
platforms, namely, R2, PrognoScan, Kaplan-Meier Plotter, and the PROGgeneV2 database.

We observed a positive correlation between GLS overexpression and poor patient survival in
breast, esophagus, head-and-neck, and blood cancer (Figure 6a(iii,v,vii,ix)). In contrast, the low
expression of this gene was positively correlated with high overall survival (OS) in breast, colon, and
esophagus cancer (Figure 6a(iii,iv,v,)). Also, patients with low GLS expression exhibited a positive
correlation with poor OS in bladder, kidney, and lung cancer (Figure 6a(i,viii,xi)). In these three cancers,
the high expression of the first member of the glutaminase family was, however, associated with
high survival, as presented in the same figures. The OS characteristics associated with GLS in brain,
gastric, blood, and liver cancer were similar, where both high and low expressions were positively
correlated with poor survival (Figure 6a(ii,vi,ix,x)). It is, however, worth mentioning that the degree
of poor survival in this category was more severe in patients with brain cancer compared to those
with other types of cancer (Figure 6a(ii)). Remarkably, the Oncomine database also showed both
high and low expression levels of GLS in brain and blood cancer (Figure 1a), depending upon the
samples and respective analyses. We found that the relationship between the expression pattern of
GLS2 and the clinical outcome of most types of cancer was substantially different for GLS. A significant
positive correlation between GLS2 overexpression and poor OS was observed in patients with colon,
blood, ovarian, and thymoma cancer (Figure 6b(iii,v,vii,x)). The underexpression of GLS2 in these
types of cancer was, however, positively correlated with high survival. The upregulation of GLS2
was also positively correlated with high survival in cancers including brain, kidney, and skin cancer
(Figure 6b(ii,iv,viii)). In these cancers, the decrease in expression levels of the second member of
the glutaminase family, however, showed a positive correlation with low survival. Moreover, any
deviation in GLS2 expression, compared to the expression mark observed in normal tissues, was
associated with poor prognosis in bladder and pancreatic cancer in general (Figure 6b(i,ix). In contrast,
both the overexpression and underexpression of GLS2 were positively correlated with high survival in
lung cancer (Figure 6b(vi)). Although the survival analysis uncovered both high and low expression
levels of GLS2 in certain types of cancer, including bladder and lung cancer, the Oncomine databased
was unable to provide such expression patterns (Figure 1a), unlike for GLS.



J. Clin. Med. 2019, 8, 355 16 of 28
J. Clin. Med. 2019, 8, x FOR PEER REVIEW 16 of 28 

 

 

Figure 6. Correlation of GLS and GLS2 gene expression with various cancer prognoses (R2: Kaplan 
Meier Scanner, PrognoScan, Kaplan-Meier Plotter, and PROGgeneV2 databases). (a) Survival curve 
comparing patients with high (red) and low (blue) expression of GLS, plotted using the R2 database 
for bladder (i), esophageal (v), and head-and-neck (vii) cancer; survival curve comparing patients 
with high (red) and low (black) expression of GLS, plotted using the PrognoScan database for brain 
(ii), breast (iii), colorectal (iv), kidney (viii), blood (ix), and lung (xi) cancer; survival curve comparing 
patient with high (red) and low (black) expression of GLS, plotted using the Kaplan-Meier Plotter 
database for gastric (vi) and liver (x) cancer. The threshold of Cox p-value < 0.05. (b) Survival curve 
comparing patients with high (red) and low (blue) expression of GLS2, plotted using the R2: Kaplan 
Meier Scanner database in bladder (i), kidney (iv), and blood (v) cancer; survival curve comparing 
patients with high (red) and low (blue) expression of GLS2, plotted using the PrognoScan database 
for brain (ii), colorectal (iii), lung (vi), ovarian (vii), and skin (viii) cancer; survival curve comparing 
patients with high (red) and low (green) expression of GLS2, plotted using the PROGgeneV2 database 
for pancreatic (ix) and thymoma (x) cancer. The threshold of Cox p-value < 0.05. 

Figure 6. Correlation of GLS and GLS2 gene expression with various cancer prognoses (R2: Kaplan
Meier Scanner, PrognoScan, Kaplan-Meier Plotter, and PROGgeneV2 databases). (a) Survival curve
comparing patients with high (red) and low (blue) expression of GLS, plotted using the R2 database
for bladder (i), esophageal (v), and head-and-neck (vii) cancer; survival curve comparing patients
with high (red) and low (black) expression of GLS, plotted using the PrognoScan database for brain
(ii), breast (iii), colorectal (iv), kidney (viii), blood (ix), and lung (xi) cancer; survival curve comparing
patient with high (red) and low (black) expression of GLS, plotted using the Kaplan-Meier Plotter
database for gastric (vi) and liver (x) cancer. The threshold of Cox p-value < 0.05. (b) Survival curve
comparing patients with high (red) and low (blue) expression of GLS2, plotted using the R2: Kaplan
Meier Scanner database in bladder (i), kidney (iv), and blood (v) cancer; survival curve comparing
patients with high (red) and low (blue) expression of GLS2, plotted using the PrognoScan database
for brain (ii), colorectal (iii), lung (vi), ovarian (vii), and skin (viii) cancer; survival curve comparing
patients with high (red) and low (green) expression of GLS2, plotted using the PROGgeneV2 database
for pancreatic (ix) and thymoma (x) cancer. The threshold of Cox p-value < 0.05.
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To obtain further insights into the prognostic characteristics associated with glutaminases, we
investigated the prognostic values of GLS and GLS2 expression levels for different types of cancer
(Supplementary Tables S3 and S4) using the ProgonoScan database. This investigation found that GLS was
associated with a very poor prognosis in patients with breast, blood, soft tissue, and ovarian cancer—the
overexpression of GLS was highly positively correlated with low survival. Although we were unable to
crosscheck the expression pattern of GLS in soft tissue cancer, due to a lack of data, the high expression
levels of this gene were confirmed in breast and blood cancer (Figure 1a), according to the Oncomine
platform. The poor prognosis in ovarian cancer patients with GLS expression was, however, not in
agreement with the GENT database which showed the downregulation of this gene (Figure 1c). We also
found that GLS2 expression was associated with an extremely poor prognosis in colon, ovarian, and
breast cancer. Whereas the overexpression of this gene in the first two types of cancer was confirmed by
the Oncomine web (Figure 1a), data on the expression pattern of the second member of the glutaminase
family in breast cancer were not available neither on the Oncomine database nor on the GENT database.

In summary, our analyses of patient survival using different platforms, including R2, Oncomine,
and PrognoScan, underlined the oncogenic role of GLS in breast and blood cancer. However, we
obtained contradicting results for the role of GLS in ovarian cancer. In contrast, the oncogenic role of
GLS2 in colon and ovarian cancer suggested that different factors should be taken into account for
cancer prognosis, to clarify the aforementioned differential prognostic characteristics of GLS and GLS2.

To investigate the combined impact of GLS and GLS2 expression on the OS outcomes of patients
with different types of cancer, we used the PROGgeneV2 online tool to study the prognostic associations
of genes in various cancers. Using median gene expression values as bifurcation points, Cox
proportional hazards regression analysis showed that patients with ovarian and thymoma cancer had
considerably lower rates of OS with a worse prognosis when co-occurrence (high/high) of GLS/GLS2
took place (Figure 7a(v)). In the case of other cancers of interest, such as breast, brain, and colon
cancer, the non-co-occurrence of GLS/GLS2 (low/low) is associated with a poor prognosis compared
to that of co-occurrence (Figure 7a(i–iv,vi–viii)). Using the PROGgeneV2 biomarker identification
tool, the impact of co-occurrence (high/high) and non-co-occurrence (low/low) of genes of interest in
human cancers can be analyzed. In this online platform, however, the effect of partial co-occurrence
(low/high or high/low) of a gene pair cannot be performed. As such, in order to gain some insights
into the relationship between prognosis and partial-co-occurrence of GLS/GLS2, we retrieved clinical
prognosis data of patients with breast, ovarian, lung, and gastric cancer from the Kaplan-Meier
Plotter database. The clinical prognosis data were then used to prepare a multivariate survival
plot to determine the co-occurrence characteristics of said gene pair. We noticed that whereas non
co-occurrence and a partial co-occurrence (low/high) of GLS/GLS2 showed a comparable prognosis
in breast cancer (Figure 7a(i)), a partial-co-occurrence of GLS/GLS2 did not provide any additional
prognostic information in ovarian cancer (Figure 7a(ii)). Interestingly, multivariate survival analysis
elucidated a significantly poorer prognosis in lung and gastric cancer when GLS/GLS2 expression was
low/high compared to co-occurrence (high/high) or non-co-occurrence (low/low) (Figure 7b(iii,iv)),
suggesting that a partial-co-occurrence of GLS/GLS2 may regulate cancer prognosis.

Next, we focused on the prognostic role of GLS and GLS2-centered-signature-gene set retrieved
from PPIs network (see Figure 5a(i,ii)) in selected cancers with a high expression of GLS and GLS2
using SurvExpress web. As the PPI partners regulate their expression and physiological role in
cancer, it may obviously regulate the cancer prognosis. To find the prognostic relationship of GLS and
GLS2-centered-signature-gene set in cancer, we performed survival analysis with all the retrieved PPI
partners of GLS and GLS2 using TCGA data. The combined GLS-centered-signature-gene set expression
was significantly regulated with poor prognosis in breast, colon, liver, and head & neck cancers (See
Figure 7c(i–iv)). On the other hand, the combined expression of GLS2-centered-signature-gene set
was significantly regulated with poor prognosis in lung and leukemia while there was no significant
relationship of clinical outcomes in colon and head & neck cancers (see Figure 7d(i–iv)), suggesting
that interacting partners of GLS and GLS2 together regulate the clinical outcomes in cancers.



J. Clin. Med. 2019, 8, 355 18 of 28
J. Clin. Med. 2019, 8, x FOR PEER REVIEW 18 of 28 

 

 
Figure 7. Correlation of combined GLS and GLS2 gene expression with various cancer prognoses 
(PROGgeneV2 and Kaplan-Meier Plotter databases). (a) Survival curve comparing patients with high 
(red) and low (green) expression of combined GLS and GLS2, plotted using the PROGgeneV2 
database in breast (i), brain (ii), colon (iii), lung (iv), ovarian (v), pancreatic (vi), kidney (vii), gastric 
(viii), and thymoma (ix) cancer; the cohort was divided according to the median of gene expression, 
with a threshold of Cox p-value < 0.05. (b) Survival curve comparing patients with high/high (red), 
high/low (orange), low/high (green), and low/low (blue) expression of combined GLS and GLS2, 
plotted using the data retrieved from Kaplan-Meier Plotter database for breast (i), ovarian (ii), lung 
(iii), and gastric (iv) cancer; with a threshold of Cox p-value < 0.05. (c) Survival curve comparing 
patients with high (red) and low (green) expression of combined GLS with 10 interacted genes from 
PPI data plotted using the SurvExpress database in BRCA (i), COAD (ii), LIHC (iii), HNSC (iv) cancer; 
the cohort was divided according to the median of gene expression, with a threshold of Cox p-value 
< 0.05. (d) Survival curve comparing patients with high (red) and low (green) expression of combined 
GLS2 with 10 interacted genes from PPI data plotted using the SurvExpress database in COAD (i), 
HNSC (ii), LUAD (iii), LAML (iv) cancer; the cohort was divided according to the median of gene 
expression, with a threshold of Cox p-value < 0.05. (Abbreviations: BRCA, breast invasive carcinoma; 
COAD, colon adenocarcinoma; HNSC, head-and-neck squamous cell carcinoma; LIHC, liver 
hepatocellular carcinoma; LUAD, lung adenocarcinoma; LAML, Acute Myeloid Leukemia). 

Figure 7. Correlation of combined GLS and GLS2 gene expression with various cancer prognoses
(PROGgeneV2 and Kaplan-Meier Plotter databases). (a) Survival curve comparing patients with high
(red) and low (green) expression of combined GLS and GLS2, plotted using the PROGgeneV2 database
in breast (i), brain (ii), colon (iii), lung (iv), ovarian (v), pancreatic (vi), kidney (vii), gastric (viii), and
thymoma (ix) cancer; the cohort was divided according to the median of gene expression, with a
threshold of Cox p-value < 0.05. (b) Survival curve comparing patients with high/high (red), high/low
(orange), low/high (green), and low/low (blue) expression of combined GLS and GLS2, plotted using
the data retrieved from Kaplan-Meier Plotter database for breast (i), ovarian (ii), lung (iii), and gastric
(iv) cancer; with a threshold of Cox p-value < 0.05. (c) Survival curve comparing patients with high
(red) and low (green) expression of combined GLS with 10 interacted genes from PPI data plotted using
the SurvExpress database in BRCA (i), COAD (ii), LIHC (iii), HNSC (iv) cancer; the cohort was divided
according to the median of gene expression, with a threshold of Cox p-value < 0.05. (d) Survival curve
comparing patients with high (red) and low (green) expression of combined GLS2 with 10 interacted
genes from PPI data plotted using the SurvExpress database in COAD (i), HNSC (ii), LUAD (iii), LAML
(iv) cancer; the cohort was divided according to the median of gene expression, with a threshold of
Cox p-value < 0.05. (Abbreviations: BRCA, breast invasive carcinoma; COAD, colon adenocarcinoma;
HNSC, head-and-neck squamous cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, lung
adenocarcinoma; LAML, Acute Myeloid Leukemia).
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Taken together, multivariate survival analysis demonstrated that co-occurrence/partial
occurrence/non co-occurrence of GLS and GLS2, combined GLS and GLS2-centered-signature-gene
sets affected the clinical outcomes of patients with certain types of cancer. This data-driven result could
help us to expand our understanding of the underlying molecular mechanisms of cancer prognosis
with respect to glutaminase and its interacting partners’ expression.

3.6. Correlated Genes of Glutaminases and Their Functional Gene Ontology and Pathways

A gene taking part in a signaling pathway is normally expressed with other genes, such that
various genes collectively play a significant role in human cancer. Here, we identified genes that
correlate with GLS and GLS2 in certain selected cancers using the R2 platform. For each glutaminase
member, we selected a set of the top four types of cancer based on the respective overexpression nature
of that gene. Thus, we formed a cancer set A using breast, colon, liver, and head-and-neck cancer
for GLS, whereas colon, head-and-neck, lung, and leukemia cancer formed the cancer set B for GLS2.
We found 156 genes (hereafter referred to as “GLS-centered positive cluster”) correlated positively
with GLS that were common in all the elements in cancer set A (Figure 8a). For GLS2, six positively
correlated common genes (hereafter referred to as “GLS2-centered positive cluster”) were observed
for cancer set B (Figure 8c). In addition, 59 negatively correlated common genes (hereafter referred
to as “GLS-centered negative cluster”) were found for GLS in cancer set A (Figure 8b). In contrast,
no negatively correlated common genes were found for GLS2 in cancer set B (Figure 8d). The above
correlation analysis indicated that GLS and GLS2 show different correlation associations with other
genes in the respective cancer set of interest. This suggests that each glutaminase member and their
respective correlated genes participate in various common gene regulatory processes.
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Figure 8. Analysis of positively and negatively correlated genes of GLS and GLS2 using FunRich
software and their predicted pathway analysis using PANTHER web. (a) Venn diagram of genes
positively correlated to GLS, showing coincident genes in breast, colon, liver, and head-and-neck
cancer; pathway analysis using PANTHER web and subsequently classified based on their pathway.
(b) Venn diagram of genes negatively correlated to GLS, showing coincident genes in breast, colon,
liver, and head-and-neck cancers; pathway analysis using PANTHER web and subsequently classified
based on their pathway. (c) Venn diagram of genes positively correlated to GLS2, showing coincident
genes in colon, head-and-neck, lung, and leukemia cancers; pathway analysis using PANTHER web
and subsequently classified based on their pathway. (d) Venn diagram of genes negatively correlated
to GLS2, showing coincident genes in colon, head-and-neck, lung, and leukemia cancers; pathway
analysis using PANTHER web and subsequently classified based on their pathway.

Next, we carried out pathway analysis and gene ontology (GO) for the aforementioned
GLS/GLS2-centered positive/negative clusters using PANTHER, a web-based tool to classify proteins
(and their genes), and Network Ontology Analysis (NOA), another online tool to analyze functions
of a gene network. We noticed that although both GLS-centered positive and GLS2-centered positive
clusters affected 10 pathways, only a few pathways were common between them (Figure 8a,c). Whereas
inflammation mediated by the chemokine and cytokine signaling pathway and integrin signaling
pathway are two major pathways in the GLS-centered positive cluster’s pathway, each of which are
collectively regulated by at least four genes, each pathway contributed equally to the GLS2-centered
positive cluster’s pathway. GLS-centered negative cluster was also found to regulate a relatively
lower number of pathways when compared with its GLS2 counterpart, indicating more diverse roles
(Figure 8b,d).

At this point, we would like to draw attention to the possibility of eventually being able to derive
signaling pathways based on PPI analysis. However, in our paper, the gene list (called correlated
genes) attained from the analysis by using R2 is characteristically different from that (called functional
protein partners) found from the PPI analysis. Whereas the former represents the co-expression, the
latter symbolizes the physical network. In one hand, the correlated genes are the pairs of genes that
show a similar expression pattern across samples, since the transcript levels of two co-expressed genes
rise and fall together across samples. Gene co-expression networks are of biological interest since
co-expressed genes are controlled by the same transcriptional regulatory program, functionally related,
or members of the same pathway or protein complex. Conversely, PPIs are the physical contacts of
high specificity established between two or more protein molecules as a result of biochemical events
steered by electrostatic forces including the hydrophobic effect. On that, we have used the PPI and
correlated gene lists for two entirely different purposes. Because a genetic alteration is inherently a
physical manipulation, we used PPI to investigate the mutations and CNAs. In contrast, we used
correlated genes to gain some insights into the signaling pathways.

We studied the functional classification of the correlated genes in the form of sub-ontologies,
namely biological processes, cellular components, and molecular functions, for each GO. Considering a
corrected p-value of less than 0.01, we found that although cellular macromolecule metabolic and RNA
metabolic processes are two significant biological processes associated with GLS-centered positive
cluster GO (Supplementary Table S5), branched chain family amino acid catabolic and branched
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chain family amino acid metabolic processes are the major biological processes corresponding to
the GLS2-centered positive cluster GO (Supplementary Table S7). In addition, whereas the major
component representing the molecular functions associated with the GLS2-centered positive cluster is
acyl-CoA dehydrogenase activity, there is no statistically significant molecular function in relation to
the GLS-centered positive cluster. There are several significant cellular components for GLS2-centered
positive cluster GO. In contrast, the “nuclear part” and the “nucleus” are the only cellular components
that make the cellular component sub-ontology for GLS-centered positive cluster. The GO results for
GLS/GLS2-centered negative cluster are provided in Supplementary Tables S6 and S8. In summary,
our results suggest that GLS and GLS2 take part in different pathway regulatory processes and
demonstrated the greatest differences in terms of correlations and functional behaviors in the
signaling pathways.

4. Discussion

Several studies have showed that glutaminases contribute to the growth of various human
cancers [7,49,68,69]. In addition, a number of studies have argued that GLS and GLS2-mediated
targeted therapies are promising molecular medicines that inhibit cancer development [68,70,71].
Nevertheless, the impact of these glutaminase family members on the progress of cancers is still not
well understood. To provide a systematic understanding regarding the role of GLS and GLS2 in cancer
prognosis, we performed comparative data mining on numerous gene expression data sets. GLS was
found to be upregulated in breast, colorectal, esophagus, gastric, head-and-neck, B cell, piccaluga
lymphoma, bone marrow, testis, and liver cancer, but downregulated in brain, bladder, kidney, and
lung cancer according to the Oncomine-based expression analysis. In contrast, GLS2 was upregulated
in bladder, colon, rectum, head-and-neck, peritoneum, and lung cancer, but downregulated in brain,
liver, and pancreatic cancer. The resulting gene expression patterns suggest that GLS and GLS2 are
differentially expressed in cancer versus normal tissues and that the magnitude of their expression
also varies depending on the tissue type.

Next, we investigated the methylation status of the promoters of glutaminases to assess the extent
of their impact on the corresponding gene expression and subsequently affect patient survival in
cancer. In this agreement, previous studies demonstrated that DNA methylation is associated with
cancer progression and prognosis by regulating gene stability and transcript [72–74]. The methylation
level of the promoter of the GLS gene was found to be decreased in different types of cancer, including
bladder, breast, colon, esophageal, head-and-neck, and kidney cancer. In contrast, GLS2 methylation
was found to be decreased in bladder cancer, but increased in breast, brain GBM, kidney, and prostate
cancer. The resulting methylation statuses, which conform to the expression and clinical outcomes
data, suggest that glutaminases could be labeled as biomarkers for certain types of cancer, including
bladder, breast, esophageal, head-and-neck, kidney, and liver cancer.

CNAs are associated with a wide range of human cancers [75] and the area of this structural
variation in the human genome can thus be utilized to develop molecular treatments for cancer.
Previous studies commonly reported that mutations in oncogenes such as KRAS, PIK3CA, BRAF were
associated with clinical outcomes in various cancers [76–79]. CNAs in oncogenes contribute important
characteristics in clinical prognosis. Studies reported to be a link between CNAs and prognosis, in
elaboration, diploid tumors were associated with better prognosis than the aneuploid tumors [80–82].
Later on, these reports largely studied either on arm-length changes in tumors or on CNAs in single
oncogene or tumor suppressor [83–87]. However, the functional importance of CNAs and mutations
for single gene in clinical prognosis remain unknown. As such, next, we determine which types of
cancer were connected with significant CNAs in the glutaminase-gene signature using cBioPortal. GLS
mutations mainly occurred in uterine, lung, and stomach cancer, whereas GLS2 mutations were mainly
found in uterine, lung, and stomach cancer. We also examined the combined status of mutations and
CNAs of each glutaminase member and their respective functional protein partners, identified using
STRING-based PPI network analysis. For GLS, the genetic alterations of genes corresponding to its
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functional protein partners mostly occurred in NEPC, as subsequently analyzed using cBioPortal.
In contrast, this alteration regarding GLS2 occurred primarily in lung cancer. Alterations in NEPC and
lung cancer were found to occur largely due to amplifications and mutations, respectively. Moreover,
the expression of combined GLS- and GLS2-centered- signature-gene set regulated clinical prognosis
in certain cancers which further predict that the functional partners of GLS and GLS2 contribute to
significant CNAs and mutations and subsequently regulate the clinical outcomes in cancers.

We then determined the genes correlated with GLS and GLS2 in certain types of cancers in
which these glutaminase members are significantly upregulated using the R2 platform. For GLS, a
large number of positively-correlated genes were found in breast, colon, liver, and head-and-neck
cancer. Of those genes, 156 were common in all cancers. For GLS2, a considerably lower number
of positively-correlated genes were associated with colon, head-and-neck, lung, and blood cancer,
among which six genes were common in all cancers. In addition, we used the PANTHER and
NOA web tools to determine the GO and pathways associated with these commonly correlated
genes for each glutaminase member. Among the 10 pathways of each cluster, only two pathways
were common in both GLS-centered positive and GLS2-centered positive clusters. Moreover, from
a functional classification viewpoint, glutaminases were involved in varying biological processes,
cellular components, and molecular functions. Taken together, the pathways and GO analyses suggest
that, for the most part, GLS and GLS2 perform different functions with respect to pathway regulation.

Next, based on their expression patterns, we evaluated the prognostic significance of glutaminases
in various cancers using the R2, PrognoScan, Kaplan-Meier Plotter, and PROGgeneV2 databases.
In general, high GLS expression resulted in poor survival in patients with breast, esophagus,
head-and-neck, and blood cancer, and high survival in patients with bladder, kidney, and lung
cancer. For GLS2, high expression resulted in poor survival in patients with colon, blood, ovarian, and
thymoma cancer, and high survival in patients with brain, kidney, and skin cancer. Notably, whereas
both high and low expression of GLS resulted in a poor prognosis in gastric, blood, and liver cancer, the
same expression pattern was associated with low survival in bladder and pancreatic cancer. Some of
these findings are in agreement with the previous studies [88–91]. In reference to colon cancer, in
which GLS2 expression is high, GLS2 inhibitors were discovered, which could be used as a potential
anti-cancer target [88]. GLS2 was found to be an important predictor of survival for patients with liver
cancer, where this gene is downregulated [89]. The GLS gene had a noticeable clinical significance in the
assessment of recurrence, metastasis, and death in patients with breast cancer, in which this gene was
upregulated [90]. GLS and GLS2 inhibitors were discovered which were able to inhibit cell proliferation
in various types of cancer, including breast, blood, and lung cancer [91]. Thus, we concluded that
GLS plays an oncogenic role in a number of cancers, such as breast, esophagus, head-and-neck, blood,
gastric, blood, and liver cancer. Likewise, GLS2 shows oncogenic behavior in colon, blood, ovarian,
thymoma, and bladder cancer. In contrast, whereas GLS demonstrated anti-oncogenic roles in bladder,
kidney, and lung cancer, GLS2 acted as a tumor suppressor in brain, kidney, pancreatic, and skin cancer.
We also assessed the impact of GLS/GLS2 co-expression on various types of cancer using multivariate
survival analyses. Whereas the co-occurrence (high/high) of GLS/GLS2 resulted in a poor prognosis
in ovarian and thymoma cancer, the non-co-occurrence (low/low) of this gene pair resulted in low
survival in patients with breast, brain, and colon cancer. In addition, the partial-occurrence (low/high)
of glutaminases was associated with poor clinical outcomes in lung and gastric cancer. These results
suggest that the co-expression of GLS and GLS2 could also be utilized as a prognostic marker for
patients with certain types of cancer.

To this end, we provide some insights into the integrated aspect of this multi-omics study.
We investigated the expression, methylation, mutation, and copy number alteration patterns of GLS
and GLS2 genes and assessed their prognostic significance through a systematic data analysis, using
publicly available expression and clinical data. This analysis demonstrated that the expression and
methylation status of glutaminases collectively show biomarker significance for certain types of cancer,
including esophageal, head-and-neck, kidney, and liver cancer. The biological basis of the biomarker
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significance possibly comes in part from the accumulated mutations and CNAs of the glutaminases
along with their functional protein partners. Perhaps correlated genes also play a significant role to
contribute to the altered biological functions through a diverse pathway regulation. These data suggest
that glutaminases expression may be translated into clinical practice and that their co-expression may
impact clinical outcomes. Moreover, the functional partners of GLS and GLS2 also eventually regulate
the survival patterns of patients with certain types of cancer. Our analysis shows that the upregulation
of GLS with hypomethylation is positively correlated with poor prognosis in patients with breast,
colon, and head-and-neck cancers. In these cancers, high expression of the functional partners of
GLS is also significantly associated with low survival, which suggests that GLS and its functional
partners converge in terms of their prognostic behavior and thus imposes a combined impact on
the clinical outcomes in the certain cancers. Although our analysis demonstrated the association
between expression and methylation stratus for GLS2 in some cancers, the analysis does not establish
an integrated survival pattern based on its expression, methylation, and functional partners together.

5. Conclusions

In this study, we used different online bioinformatics platforms and tools to systemically analyze
the expression, methylation status, functional protein partners, correlated genes, and prognostic
values of glutaminases in various human cancers. Our multiomics analysis revealed that GLS and
GLS2 play distinct roles in cancer development and differentially modulate the clinical outcomes
of cancer. Whereas GLS could be targeted for cancer therapy in patients with breast, esophagus,
head-and-neck, and blood cancer, GLS2 could be utilized as a prognostic marker for colon, blood,
ovarian, and thymoma cancer. The multivariate survival analysis of GLS and GLS2 also predict the
therapeutic targets for certain types of cancer, including ovarian, brain, and lung cancer. Moreover,
expression of combined GLS and GLS2-centered-signature-gene set might regulate the clinical outcomes
in certain cancer. Thus, these expressions of GLS and GLS2 could be regulated through their promoter
methylation. Moreover, functional protein partners and correlated genes may regulate the biological
function of glutaminases which can subsequently affect clinical outcomes in cancers. In summary,
the findings of this study provide some an insight into the molecular and clinical characteristics of
different types of cancer and could thus be used to assist in transforming genomic knowledge into
cancer therapy. Nevertheless, more theoretical, experimental, and clinical studies are required to
validate the outcomes of this study, since the data mining-based analyses may appear in the form of
overfitting and underfitting.
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