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Functional bowel disorders such as irritable bowel syndrome (IBS) are common,
multifactorial and have a major impact on the quality of life of individuals diagnosed with
the condition. Heterogeneity in symptom manifestation, which includes changes in bowel
habit and visceral pain sensitivity, are an indication of the complexity of the underlying
pathophysiology. It is accepted that dysfunctional gut-brain communication, which
incorporates efferent and afferent branches of the peripheral nervous system, circulating
endocrine hormones and local paracrine and neurocrine factors, such as host and
microbially-derived signaling molecules, underpins symptom manifestation. This review
will focus on the potential role of hepatic bile acids in modulating gut-to-brain signaling in
IBS patients. Bile acids are amphipathic molecules synthesized in the liver, which facilitate
digestion and absorption of dietary lipids. They are also important bioactive signaling
molecules however, binding to bile acid receptors which are expressed on many different
cell types. Bile acids have potent anti-microbial actions and thereby shape intestinal
bacterial profiles. In turn, bacteria with bile salt hydrolase activity initiate the critical first
step in transforming primary bile acids into secondary bile acids. Individuals with IBS are
reported to have altered microbial profiles and modified bile acid pools. We have assessed
the evidence to support a role for bile acids in the pathophysiology underlying the
manifestation of IBS symptoms.
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INTRODUCTION

Over a hundred trillion microbial organisms, mostly bacteria,
inhabit the human colon and have co-evolved with their hosts to
have diverse, but primarily beneficial, functions. They scavenge
additional calories by fermenting non-digestible foods, secrete
vitamins and ensure normal physiological development. A
plethora of studies have demonstrated that microbes have the
capacity to modulate host physiological homeostasis and have
been linked with cognitive disorders such as anxiety, depression,
Parkinson’s disease, autism spectrum disorder and schizophrenia
(1, 2), in addition to the development of inflammatory bowel
disease (3) and irritable bowel syndrome (IBS) (4). Several direct
and indirect mechanisms of cross-barrier communication have
been proposed, where microbial, endocrine or immune factors
are posited as inter-kingdom signaling molecules (5–7). In this
review however, we will focus on bile acids, liver-derived
bioactive host molecules that exhibit an interdependency with
resident intestinal bacteria.

Hepatocytes synthesize and secrete the primary bile acids,
cholic acid (CA) and chenodeoxycholic acid (CDCA), into the
duodenum via the biliary ductal system. Comprising about half of
the total solutes in bile, their amphipathic structure facilitates
emulsification and subsequent digestion and absorption of dietary
lipids being emptied from the stomach (8). The enterohepatic
circuit is an extremely efficient method whereby ~95% of bile acids
are reabsorbed in the terminal ileum and returned via the portal
vein to the liver, where they are taken up by hepatocytes and re-
secreted into the bile ducts. Just 5% of bile acids escape reuptake
and spill over into the colon, the intestinal site with the highest
density of microbes. A dynamic, symbiotic relationship exists
between microbes and bile acids (Figure 1), resulting in a great
diversity of microbially-modified secondary bile acids (9). Bile salt
hydrolaze (BSH)-containing bacteria hydrolyze and deconjugate
taurine or glycine from the sterol core of the primary bile acids,
facilitating further passive reabsorption in the colon. This process
also enables further microbially-mediated transformations to
produce a plethora of secondary bile acids, including
deoxycholic acid (DCA) and lithocholic acid (LCA). This results
in an enrichment of secondary bile acids in the colon, where their
chemical characteristics help shape bacterial profiles within the
microbiome (10). Given that many different cell types express bile
acid receptors (11–14) and both active and passive transport of
bile acids across the gut barrier and subsequent uptake into the
portal vein distributes bile acids to extra-intestinal peripheral
organs, bile acids are classified as bioactive signaling molecules
(15). We have examined the potential role of bile acids to modify
host physiological homeostasis, with a focus on gut-brain axis
signaling and their potential role in IBS-related bowel dysfunction.
INTESTINAL PROFILE OF BILE ACIDS

Biliary secretions are comprised of bile salts, pigments, water,
and waste products, including bilirubin and excess cholesterol.
In humans, the primary bile acids, CA and CDCA are
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synthesized and conjugated with either glycine or taurine (16)
and stored, concentrated and acidified in the gall bladder prior to
being released into the duodenum, along with pancreatic enzyme
secretions. Bile acids comprise a family of closely related acidic
sterols with similar, but not identical chemical structures and
detergent performance. Conjugation of bile acids alters their pKa
meaning bile salts are almost always in a protonated form in the
duodenum, thereby restricting their passive movement through
the small intestinal epithelial barrier. Apical sodium-dependent
bile salt (ABST) transporters in the distal ileum facilitate active
transport across the gut barrier prior to their return to the liver
via the portal vein. The ~ 5% of bile acids which reach the colon,
are either reabsorbed via passive diffusion or lost in the
feces (17).

Bile acid metabolism is influenced by bacteria with BSH
activity, a property that is unique to gut-residing bacteria and
may have evolved through host-driven selection (18). An
incentive for bacterial participation in this interaction may be
the acquisition of the glycine and taurine conjugates for their
own metabolic needs, in addition to the disposal of excess
electrons generated during fermentation processes (19).
Moreover, tolerance of bile may confer an advantage to these
microbes in terms of their ability to colonize gut regions (20). In
addition to acting as a nutrient source for intestinal bacteria
and providing environmental cues, bile acids are also noted for
their antimicrobial properties either through direct cytotoxicity
(21) or by stimulating innate immune mechanisms (22). This
constrains small intestinal bacterial overgrowth (23). Diarrhea
resulting from exposure to high levels of bile acids in the colon,
may be part of the innate immune response to protect the
intestinal epithelium from cytotoxic bile acids, such as
LCA (24).

In a bi-directional arrangement, bacterial enzymes chemically
modify bile acids, and in turn, bile acids modify gut bacterial
profiles. Cleavage of amino acid side chains on glycine- or
taurine-conjugated primary bile acids changes their
physiochemical properties, such that they are more lipophilic
and susceptible to further modification by bacteria, including 7a-
dehydroxylation, dehydrogenation and epimerization (21, 25,
26). Secondary bile acids, such as DCA and LCA, may undergo
further modification, including sulphation and glucuronidation,
imparting changes in their lipophilicity and hydrophilicity.
Moreover, the potency of secondary bile acids for bile acid
receptors differs from primary bile acids (23) and the
amphipathic nature of bile acids can directly affect the physical
properties of cellular lipid membranes, thereby modifying cell
signal transduction (27). This has consequences for local
signaling and gut homeostasis (28).
MOLECULAR MECHANISMS
UNDERLYING BILE ACID SIGNALING

Given the diversity of bile acids identified in mammals and the
variety of bile acid receptors with variable binding affinities and
response potencies, it is no surprise that the bioactive functions
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of bile acids differ significantly. Farnesoid X (FXR) is the most
extensively studied nuclear bile acid receptor, for which CDCA is
the most potent agonist (15), however there are also other bile
acid-sensitive nuclear receptors, such as pregnane X (PXR) and
vitamin D receptors (VDR), which are expressed on several
different cells types (11–14, 29–31). To activate nuclear bile
acid receptors, bile acids must cross cellular and nuclear lipid
bilayers, a process that can occur by passive diffusion or be
facilitated by active transport (15, 32, 33). FXR is translocated to
the cell nucleus upon activation, where it forms a heterodimer
with retinoid X receptor and binds to hormone response
elements present on DNA (34), instigating changes in gene
regulation. One of the primary functions of FXR activation by
bile acids is the feedback inhibition of bile acid synthesis through
the suppression of CYP7A1, the rate-limiting enzyme in the
classical bile acid synthesis pathway. Mice lacking FXR exhibit
bile acid dyshomeostasis and metabolic disorders (35).
Frontiers in Endocrinology | www.frontiersin.org 3
Other nuclear receptors may also be activated by bile acids,
although higher concentrations are often required, indicating
that they may be more relevant under pathological conditions.
PXR is a promiscuous transcription factor important in
the metabol ism of xenobiotics . It is st imulated by
pharmacological reagents, environmental toxicants, bacterial
metabolites and the secondary bile acid, LCA. Consistent with
a role under pathological conditions, activation of PXR
downregulates bacteria which metabolize bile acids and
thereby modify bile acid homeostasis (36). In addition to
1,25-dihydroxy vitamin D3 and certain dietary ligands, LCA
acts as endogenous ligands for VDR (37), a classic nuclear
receptor that mediates several biological functions mainly
related to calcium homeostasis and bone maintenance.
Similar to FXR, ligand-induced activation of VDR facilitates
interaction with retinoid X receptor and DNA binding (37).
VDR is highly expressed throughout the digestive tract, where
FIGURE 1 | Bile acid synthesis. A dynamic relationship exists between microbes and bile acids with both modifying the profiles of the other. Liver hepatocytes
synthesize primary bile acids (cholic acid and chenodeoxycholic acid) from cholesterol. It may then be conjugated within the hepatocytes with taurine or glycine. After
bile flows into the intestine, it encounters bile salt hydrolaze (BSH)-containing bacteria, which transform cholic acid and chenodeoxycholic acid into secondary bile
acids such as deoxycholic acid (DCA) and lithocholic acid (LCA). A plethora of secondary bile acids are produced through deconjugation of the amino acids, glycine
or taurine, and dehydroxylation, dehydrogenation, and epimerization of the cholesterol core. Secondary bile acids returned to the liver by the enterohepatic circuit
can also be conjugated to taurine or glycine. Moreover, amino acids may also be conjugated to bile acids further increasing the diversity of human bile acids.
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it has been found to induce expression of CYP3A and the
multidrug resistance-associated protein-3 (37, 38), two
enzymes known to metabolize toxic LCA, preventing its re-
uptake and ensuring excretion in the feces (39).

Bile acids also bind to membrane expressed G-Protein-
Coupled Bile Acid Receptor 1 (GPBAR1), also called Takeda
G-protein-coupled receptor 5 (TGR5) (40). TGR5 is a member of
the G-protein-coupled receptor family, which promotes cyclic
adenosine monophosphate (cAMP) synthesis by adenylate
cyclase upon activation. This subsequently activates the protein
kinase-A pathway, thereby inducing the expression of its target
genes (40). LCA is the most potent natural agonist of TGR5,
which is expressed at high levels in the liver and intestinal tissue
(40), but is also found in many other tissue types. Both
conjugated and unconjugated bile acids bind to TGR5, with
secondary bile acids, LCA and DCA being most potent (40).
Functionally, TGR5 activation is associated with glucose
metabolism, neuronal function, immune system control and
liver regeneration (41). Other membrane receptors such as
sphingosine 1-phosphate receptor (S1PR2) (42) and fibronectin
receptor (a5b1 integrin) (43) are also activated by bile acids to
stimulate intracellular signaling. Cytosolic ileal lipid binding
proteins bind to intracellular bile acids, shuttling them to
heteromeric OSTa-OSTb transporters, which efficiently export
them to the portal circulation. To a lesser extent, multidrug
Frontiers in Endocrinology | www.frontiersin.org 4
resistance-associated protein-3 basolaterally exports native and
modified (glucuronidated or sulphated) bile acids from the
enterocyte (44).

IRRITABLE BOWEL SYNDROME

IBS is a clinically diverse disorder, with a multifactorial etiology.
Global prevalence varies from ~1% to more than 45%, with
between 5-10% reported for Europe, the United States and China
(45). IBS is the most widespread gastrointestinal disorder in the
western world (46). Characterized by chronic, recurrent visceral
pain and discomfort, individuals with IBS can be categorized
according to predominant bowel habits. Subtypes include IBS
with constipation (IBS-C), IBS with diarrhea (IBS-D), mixed or
alternating IBS and unsubtyped phenotypes (46). In addition to
genetic, epigenetic (47), immunological (48), gender differences
(49) and food hypersensitivity (50, 51) being reported in
individuals with IBS, an increased prevalence of adverse life
events and comorbid mood disorders such as anxiety, depression
and somatoform disorders (52, 53) are also common. It is
generally accepted that dysfunction of the bi-directional gut-
brain signaling axis contributes to symptom manifestation (54,
55). Indeed, chronic activation of the hypothalamic-pituitary-
adrenal (HPA) stress axis has been identified in individuals with
IBS (52, 56).
TABLE 1 | Clinical studies investigating bile acid levels and microbial profiles in IBS.

Bile acid profiles IBS Symptoms Microbial profiles

Duboc et al. (57) Levels of fecal primary bile acids
were elevated in IBS-D patients
(n=14).

Primary bile acid levels were correlated with stool
consistency and frequency.

Changes in bacterial profiles were detected in IBS-D.
Some of the changes related to bacteria with a role in
bile acid transformation.

Shin et al. (58) Levels of fecal unconjugated
primary bile acids were elevated
in IBS-D (n=31).
Fecal LCA was elevated in IBS-C
patients (n=30)

Total levels of unconjugated bile acids were
correlated to IBS phenotype (stool number and
form). The correlation was stronger in IBS-D as
compared to IBS-C.

Not investigated.

Camilleri et al. (59) Subgroups of IBS-D patients
(n=64) were identified with
increased or normal levels of total
fecal bile acids.

IBS-D patients with increased levels of bile acids
presented with more pathophysiological changes
such as fecal fat and changes in intestinal
permeability.

Not investigated.

Dior et al. (60) Circulating primary bile acids were
elevated in both IBS-D (n=16) and
IBS-C (n=15) patients.
Fecal primary bile acids were
elevated in IBS-D.

Abdominal pain was correlated with serum and
fecal primary bile acid concentrations.

Escherichia coli was increased in IBS-D.
Bacteroides and Bifidobacterium were increased in IBS-
C patients.

Zhao et al. (61) 24.5% of IBS-D patients (n=290)
exhibited excessive excretion of
total fecal bile acids.

Total fecal bile acid levels were correlated with
increased defecation frequency and decreased
stool consistency.

Clostridia-rich microbiota was linked to excessive bile
acid excretion in IBS-D.

Wei et al. (62) Primary bile acids were increased,
and secondary bile acids were
decreased in IBS-D patients
(n=55).

Defecation frequency was associated with primary
bile acid concentrations.
Visceral pain sensitivity was negatively correlated
with CDCA.

The abundance of Ruminococcaceae was decreased in
IBS-D patients. The changes were negatively correlated
with primary and positively correlated with secondary
bile acids.

Wei et al. (63) Fecal primary bile acids were
increased in IBS-D (pilot study).
Mucosal expression of TGR5 was
increased in IBS-D.

Fecal primary bile acids were correlated with
severity of diarrhea.
IBS-D patients with higher expression of TGR5 had
more severe and more frequent abdominal pain.

Not investigated.
The above table summarizes key findings relating to circulating and fecal bile acid levels in individuals with irritable bowel syndrome (IBS). Associations with IBS symptomology and, if
investigated, changes in microbial profiles in the gut lumen are listed.
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In a number of clinical studies, bile acid dyshomeostasis has
been detected in individuals with IBS (summarized in Table 1). It
has consistently been reported that individuals with diarrhea-
predominant IBS have elevated concentrations of fecal primary
bile acids (57–60, 62, 63). Changes in bile acid profiles were also
linked with IBS-D symptoms, such as the defecation frequency
(57, 58, 61, 62) and abdominal pain (60, 62, 63). The link with
IBS-C is not as strong, although fecal LCA was decreased in this
subset of individuals (58). Deconjugated bile acids can drive
phylum level shifts, increasing firmicutes and decreasing
bacteroidetes (64). Individuals with IBS have an altered
microbiome, where the ratio of fecal firmicutes to bacteroidetes
is increased (65) and changes in the gut microbiome (66, 67) are
important contributors to the pathophysiology of IBS. Several
studies have examined microbial profiles and bile acid pools in
IBS and found that bacteria with functions in bile acid
transformation were modified in IBS-D patients (57). Others
detected distinct changes in bacterial profiles. In IBS-D, E. coli
(60) and clostridia-rich microbiota were elevated and associated
with excessive bile acid secretion (61), whereas the abundance of
ruminococcaceae was decreased (62).
BIDIRECTIONAL GUT-BRAIN
SIGNALING AXIS

In health, specialized innate and adaptive immunemechanisms are
important in priming the gut against possible attack from luminal
pathogens. An intact epithelial barrier and primed immune
response excludes both commensal and non-commensal
bacteria, restricting them to the external environment of the gut
lumen, although it has been reported that the presence of bacterial
products in the lamina propria is actually important for
maintaining homeostasis in the enteric nervous system (68).
However, interoceptive signaling relating to the luminal
environment of the intestines are reported to the central nervous
system (CNS) (69), thus, an intrinsic cross-barrier signaling
mechanism would enable signaling between luminal factors and
host physiological systems.

Gut-Brain Axis
Bidirectional gut-to-brain signaling involves the peripheral
nervous system, endocrine and immune mediators (70–72).
Sympathetic and parasympathetic efferent nerves synapse with
neurons in the neural plexi of the enteric nervous system that
innervate both the submucosal and muscle layers (73, 74),
thereby influencing intestinal secreto-motor activity. Two
afferent neuronal subtypes underpin sensory function within
the gut. The first, extrinsic primary afferents, have somata that
are external to the gut and signal to the CNS. The second
subtype, intrinsic primary afferent neurons (IPANs) have
somata that are embedded within the gut wall and are primary
afferents for secretory and motility reflexes. Both respond to
changes in luminal content (75, 76) and evidence exists to
support the presence of functional synapses between myenteric
soma and vagal afferents, with the implication that they are the
first neural link in the microbiota-gut-brain signaling axis (77).
Frontiers in Endocrinology | www.frontiersin.org 5
Vagal afferents are believed to transmit information about the
luminal environment through the sensitivity of its sensory endings
to microbial metabolites (78). Indeed, vagal signaling has been
implicated in altered central expression of neurotransmitters and
changed behaviors evoked by ingestion of putative probiotics (79,
80). Behavioral changes in germ-free mice, which are born and
raised under sterile conditions, implicate the critical role of microbes
in the normal development of immune, endocrine and neural
physiology (81). Moreover, IPANs are less excitable in germ-free
mice (82), intimating microbes use neurally-mediated gut-to-brain
pathways. Mechanosensory spinal afferents terminate in the serosa,
muscularis and mucosa (83) and many visceral afferents are
polymodal, sensing more than one stimulus modality (84). We
and others have recorded changes in the excitability of vagal
afferents in the jejunum (80, 85) and colon (6, 86, 87) following
exposure to bacterial strains or their secretory products. These
afferents are appropriately positioned to sense chemo-nociceptive
signals (88) such as luminal bile acids. Indeed, TGR5 has been
detected on IPANs (89) and has also been implicated in gut-to-
brain satiety-related signaling via the vagus nerve (90). Germ-free
mice exhibit increased levels of bile acids and increased activation of
TGR5 (91).

Enteroendocrine Cells
Epithelial stem cells give rise to four distinct cellular lineages,
including specialized chemosensory enteroendocrine cells.
Embedded amongst other enterocytes in the epithelial layer,
enteroendocrine cells sense the presence of nutrients and other
stimulatory factors in the luminal contents. Although they
represent only ~1% of the epithelial cell population, collectively
these cells make up the largest hormone-secreting organ in the
body. These polarized cells have an apical side which faces the
gut lumen and a hormone-secreting side that releases endocrine
factors basolaterally when activated (92). There are more than
twenty different enteroendocrine cell types in the gut.

Serotonin (5-HT)-secreting enterochromaffin cells are one such
chemosensory cell type and they are coupled to sensory nerves.
Catecholamines and microbially-produced short-chain fatty acids,
such as butyrate and isobutyrate (93) can stimulate 5-HT release. 5-
HT has a profound impact on bowel function by influencing neural
modulation of intestinal smooth muscle via 5-HT3 and 5-HT4

receptors. Expression of SERT, proteins responsible for the reuptake
of 5-HT following synaptic transmission into mucosal enterocytes
and presynaptic neurons, is decreased in IBS, an aspect that may
have genetic origins (94), and contributes to the pathophysiology of
IBS (95). Abnormalities in postprandial serotonin release have been
linked to IBS subtype, with impaired postprandial serotonin release
detected in IBS-C patients, while increased plasma serotonin was
identified in individuals with IBS-D (96, 97).

Recent research has detected expression of TGR5 in
enterochromaffin cells in the colon but not the small intestine
(98). In mice, 5-HT stimulated an increase in bile excretion but
concomitantly increased ASBT expression, leading to lower
levels of colonic bile acids (99), which is linked to decreased
colonic motility, increased water reabsorption and constipation.

Glucagon-like peptide-1 (GLP-1) and peptide YY (PYY)-
secreting L-cells are electrically excitable biosensors integrated
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into the epithelium. They express a plethora of receptors
including receptors for GABA (100), short-chain fatty acids
(101) and also 5-HT (98), for which agonists can be derived
from luminal bacteria. Moreover, L-cells in rodents (102, 103)
and humans (104, 105) express both FXR and TGR5, making
them promising candidates for sensing, translating and
transmitting signals from the colonic lumen to the mammalian
nervous system (106, 107). Indeed, in isolated human
enterocytes, 73% of GLP-1 expressing enteroendocrine cells
expressed TGR5, whereas only 16% of GLP-1 negative cells
expressed this receptor, suggesting that L-cells are the
predominant cellular transducers of TGR5-mediated bile acid-
mediated signals. Inhibition of ileal ABSTs using elobixibat
resulted in elevated levels of circulating GLP-1, likely through
increased interaction of colonic bile acids with GLP-1 secreting
L-cells (108). Exposure to LCA and other bile acid TGR5 agonists
resulted in increased cAMP, calcium rises and secretion of GLP-
1 from L-cells (109). Interestingly, TGR5 is expressed on the
basolateral membrane of L-cells (102, 105, 110), indicating that
bile acids must be transported across the epithelium to stimulate
GLP-1 release from L-cells. Bile acids also activate nuclear FXR
in enterocytes (111). It appears that conjugated bile acids
stimulate the TGR5/GLP-1 pathway, whereas CDCA activates
the FXR/FGF19 pathway, decreasing expression of GLP-1 (105),
emphasizing the differential receptor binding affinities for bile
acids. This evidence is consistent with the existence of an
epithelial-neural pathway, which could facilitate signaling from
bile acids in the gut lumen to the host neurophysiological system
via cellular transducers in the epithelium with precise, temporal
transmission of sensory signals (106).
Immune Cells
Bile acids are noted for their antimicrobial properties which
prevents small intestinal bacterial overgrowth (23). This may be
mediated through direct cytotoxicity (21) or by stimulating
innate immune mechanisms (22). Furthermore, diarrhea
resulting from exposure to high levels of bile acids in the colon
may be part of the innate immune response to protect the
intestinal epithelium from cytotoxic bile acids, such as LCA
(24). TGR5, FXR and VDR expression has been detected in
innate immune cells such as monocytes, macrophages, dendritic
cells and natural killer cells (29–31). Indeed, TGR5 activation in
monocytes and macrophages evoke a reduction in the release of
pro-inflammatory cytokines and phagocytic activity (112–114).
Bile acids appear to have an important role in fine-tuning the
immune response to the divergence of antigens that the gut is
exposed to. Generally, the responses tend to be inhibitory and
favor gut tolerance (115). In addition to altered microbial
profiles, indicators of immune activation, such as elevated
levels of proinflammatory cytokines and increased infiltration
of immune cells to the lamina propria, have been described as
part of the pathology of IBS (55, 116). Microbiota-induced
changes in colonic bile acid pools could subsequently modify
TGR5 or FXR function in immune cells, although the details of
this potential mechanism are yet to be explored.
Frontiers in Endocrinology | www.frontiersin.org 6
Brain-Gut Signaling
An adaptive or allostatic response to a perceived environmental
threat underpins the stress response and is initiated by release of
corticotropin-releasing factor from the hypothalamus to
stimulate HPA activity. Chronic activation of the HPA axis
has, however, been associated with altered bowel morphology,
function and visceral pain sensitivity (117, 118) and is frequently
co-morbid in individuals with IBS (119). Moreover, stress and
activation of the HPA axis are linked to microbial dysbiosis
(120), demonstrating the two-way communication between the
brain and the gut. Although circulating bile acids don’t normally
cross the blood brain barrier, when serum bile acids are
increased, as is the case in cholestasis, they can gain access to
the central nervous system through a leaky blood brain barrier
and become concentrated in the hypothalamus (121). An animal
model of cholestasis demonstrated the transport of specific bile
acids into hypothalamic neurons resulting in decreased
expression and secretion of corticotropin-releasing factor with
overall suppressive effects on HPA activity that is mediated
through glucocorticoid receptors (122). Others have shown
that supraphysiologic concentrations of bile acids in the
periphery suppress hepatic glucocorticoid clearance and, in this
way, inhibit activity of the HPA axis (123). Thus, bile acids may
modify central regulation of gut function and thereby contribute
to the pathophysiology of IBS.
BILE ACIDS IN THE MANIFESTATION OF
IBS SYMPTOMS

Colonic exposure to excess bile acids, which may be due to loss of
bile acid transporters in the ileum causing bile acid
malabsorption (124), overproduction of bile acids, or as a
secondary consequence of gastrointestinal disease, has been
linked to increased intestinal secretion and motility. Bile acid
malabsorption typically results in chronic watery diarrhea, a
symptom also characteristic of IBS-D, although the selenium-
homocholic acid taurine test (Se-HCAT) test, which detects
increased colonic bile acid exposure can differentiate between
the two disorders (125). Fecal bile acids are raised in ~25% of
individuals with IBS-D (126) resulting in accelerated colonic
transit, which is linked with diarrhea and visceral pain
sensitivity. Moreover, colestipol treatment, which binds bile
acids and prevents reabsorption in the ileum, improved IBS
symptoms (127).

Altered Bowel Function: Absorpto-
Secretory Function
Modification of epithelial permeability and stimulation of pro-
secretory pathways involving cAMP is likely to underlie the
manifestation of bile acid-evoked watery diarrhea (128, 129),
while bile acid subtype and conjugation status will determine
bile acid specific effects (130, 131). The capacity of specific bile
acids to increase epithelial permeability may be neurally
November 2021 | Volume 12 | Article 745190

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
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regulated (132), however, if tight junctions are compromised,
conjugated bile salts, which, generally do not act as
secretagogues (28, 133), can gain access to the epithelial
basolateral membrane and subsequently evoke an increase in
cytosolic calcium leading to chloride-mediated secretion (134).
Increased excretion and synthesis of serum C4 (7a-hydroxy-4-
cholesten-3-one), which stimulates bile acid synthesis is
thought to underpin this observation (135). Changes in bile
acid secretion, induced by cholecystectomy increase the risk of
developing functional bowel disorders such as IBS (136), with a
prevalence of IBS-D (137). As bile acids accelerate colonic
transit, it is unsurprising that lower concentrations of bile
acids in the colon correlated with decreased gut transit time
(138). Delivery of bile acids to the colon is decreased in patients
with cholestasis and this has been linked to the manifestation of
constipation (139), although the link between bile acids and
IBS-C is less clear than in IBS-D patients (140). Nonetheless, a
reduction in the concentration of fecal bile acids was detected in
a subset (15%) of individuals with IBS-C when compared
with healthy volunteers. Moreover, the IBS group had
notable decreases in DCA and CDCA but increased LCA.
The potential for the therapeutic use of orally administered
bile acids in chronic constipation (141) and IBS-C (142) or by
inhibiting the active uptake of bile acids in the ileum using an
ASBT inhibitor, such as elobixibat (143, 144) is being explored.
Intestinal Motor Function
Although the modulatory effects of bile acids on absorpto-
secretory function are most obvious, both primary and
secondary bile acids can also modify intestinal motor function.
In a patient study, modest increases in stool bile acids were noted
as an underlying factor in the onset of diarrhea in individuals
diagnosed with IBS-D, but who did not have bile acid
malabsorption, and it was found that this was mediated by an
increase in gut motility (145). Perfusion studies assessing the
effects of the secondary bile acid, DCA, on feline colonic motility
showed that it had significant excitatory effects on contractility
(146). A similar study in humans showed that DCA caused a
considerable increase in the contractile force of the colon when it
was compared to the effects of the known muscarinic
acetylcholine receptor agonist, carbachol. CA and CDCA had
negligible effects (147). Moreover, in rabbit colonic tissue, the
inhibitory actions of voltage gated sodium channel blockers
implicated cholinergic and alpha adrenergic intramural
neurons in the pro-kinetic actions of DCA (148). Studies in
mice showed that TGR5, is highly expressed in the myenteric
plexus, which regulates intestinal motility. When TGR5 was
knocked-out, bile acids did not stimulate longitudinal muscle
contractility, whole-gut transit was slower and fecal water
content was reduced. The investigators deduced that the
prokinetic effects of bile acids in the colon are mediated by
TGR5 expressed on 5-HT-secreting enterochromaffin cells and
calcitonin gene-related peptide-secreting intrinsic primary
afferent neurons (89).
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Visceral Hypersensitivity
In addition to altered bowel habit, individuals with IBS often
present with bloating and abdominal pain indicative of visceral
hypersensitivity. Recently reported findings from a rodent study
have implicated Nerve Growth Factor (NGF) and transient
receptor potential vanilloid channel (TRPV1) nociceptors in a
signaling pathway where bile acids could modulate visceral pain
signals. NGF, an important mediator in the generation and
maintenance of pain, was upregulated following exposure to
bile acids and this was mediated through activation of FXR. As
mast cells synthesize, store and secrete NGF, the authors
suggested that bile stimulated NGF release from mast cells,
which, in turn, activated nociceptors and induced visceral
hypersensitivity (149). TRPV1-expressing sensory fibers are
increased in individuals with IBS (150) and visceral pain
sensitivity has been linked to activation of mucosal mast cells
in proximity to colonic sensory nerves in a similar cohort (151),
providing a signaling axis by which bile acids could modulate
visceral pain perception. In healthy volunteers, introduction of
DCA (152) and CDCA (153) to the colon increased visceral pain
sensitivity to rectal distension, however, thus far no correlation
between fecal bile acids and abdominal pain severity and
frequency in IBS-D patients, has been detected (62).
DISCUSSION

Research into the etiology of IBS recognizes the complexity of
this multifactorial and heterogenous bowel disorder. There is
growing evidence to support a role for bile acids in the
pathophysiology of IBS, through interactions with the
microbiome and host sensory and/or immune cells or through
direct actions on the peripheral and central nervous system
(Figure 2). The perfunctory actions of bile acids as detergents
in the small intestine belie the complex functions instilled in
these bioactive signaling molecules. The bidirectional
relationship with gut microbiota impacts on microbial profiles
and on the bile acid pool itself. The striking pro-secretory and
prokinetic actions of bile acids on colonic function are consistent
with the manifestation of IBS-D symptoms, whereas reduction in
exposure to bile acids, though less researched, is more consistent
with decreased gut secretion and transit, as presented in
individuals with IBS-C. Elevated levels of excreted primary bile
acids have consistently been detected in individuals with IBS-D
and a growing number of studies have linked changes in fecal
and serum bile acids with IBS symptomology, and changes in
bacterial profiles with specific links to bacteria with bile acid
transformation functionality (Table 1).

Mechanistically, bile acid receptors are expressed on intrinsic
and extrinsic nerves, which could facilitate direct neurally-
mediated changes in gut function. Moreover, when bile acids
are at supraphysiological levels, they can breach the blood brain
barrier to modify the HPA axis, which in turn, can modulate
intestinal function and luminal microbes. However, bile acid
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receptors are also detected on enteroendocrine and immune
cells, which could both act as signal transducing intermediaries,
secreting factors which subsequently modify colonic activity
either through direct actions or by modulating neural
regulation of the gut. Further complexity lies in the variability
of responses evoked by conjugated or unconjugated, primary or
secondary bile acids. As bile acids have emerged as effectors in
microbe-host signaling and can directly and indirectly modulate
gut homeostasis, these bioactive molecules should not be
overlooked as the pathophysiology of IBS is elucidated. Indeed,
interventions to modify colonic exposure to bile acids could
reveal effective therapeutic options for this functional
bowel disorder.
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FIGURE 2 | Bile acids as bioactive molecules in the gut-brain signaling axis. The illustration depicts interactions between colonic microbes with bile salt hydrolase
activity and luminal bile acids. These bile acids may subsequently bind to bile acid receptors (FXR and TGR5 illustrated), which are expressed on 5-HT-secreting
enterochromaffin cells, GLP-1-secreting L-cells, immune cells and on intrinsic and extrinsic neural cells. Through direct or indirect mechanisms, bile acids may act as
endocrine factors or neuromodulatory agents and thereby modify local gut function and/or gut-to-brain signaling.
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