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ABSTRACT: The carrier-free self-assembly of small molecules opens a new
window for the development of nanomaterials. This study is dedicated to
developing binary small-molecular self-assemblies derived from phytochem-
icals in traditional Chinese herbal medicine. Among them, Rhei Radix et
Rhizoma and Coptidis Rhizoma are a common pair used in clinics for
thousands of years. Here, we found that there were numerous spherical
supramolecular nanoparticles (NPs) originated from Rhei Radix et Rhizoma
and Coptidis Rhizoma decoction. Ultra-performance liquid chromatography/
tandem mass spectrometry (UPLC-MS/MS) was used to analyze the
composition of the supramolecules, and a total of 119 phytochemicals were
identified (23 anthraquinones, 31 alkaloids, 24 organic acids, 8 tannins, and
other components). Isothermal titration calorimetry (ITC) showed that the
interaction between Rhei Radix et Rhizoma and Coptidis Rhizoma was a
spontaneous exothermic reaction, indicating that their phytochemicals had the property of self-assembly and interacted to form
supramolecules in the decocting process. Furthermore, scanning electron microscopy (SEM), UV, IR, NMR, and ITC were used to
verify that rhein and coptisine could self-assemble into nanofibers (Rhe-Cop NFs), while emodin and coptisine could self-assemble
into nanoparticles (Emo-Cop NPs). The formation mechanism analysis of the self-assemblies revealed that they were induced by
electrostatic attraction, hydrogen bonding, and π−π stacking, forming nanospheres of about 50 nm and nanofibers. The current
study not only provides an idea of discovering carrier-free self-assemblies from traditional herbal medicine decoction but also
supplies a reference for the design of binary self-assembly of small molecules in the future.

1. INTRODUCTION
Supramolecular refers to the association of two or more kinds
of molecules with intermolecular interactions to form a
complex and orderly whole with certain integrity, micro-
structure, and macroscopic characteristics.1 At present, supra-
molecular self-assembly has shown great prospects in the
research and development of nanomaterials.2 It has great
potential in the fields of anticancer,3,4 disease diagnosis,5

targeted drug delivery,6,7 and other nanomedicines.8 Self-
assembly behavior refers to the process of an orderly
arrangement of molecules in a system under the action of
noncovalent bonds and finally forming a structure with a
certain geometric appearance.9 Numerous self-assembly
phenomena from small molecules have been found,10,11 like
puerarin hydrogel,12,13 gallic acid gels,14 pomolic acid gels,15

and rhein hydrogel,16,17 and triterpenoids can also self-
assemble under suitable solvent conditions,18−20 which exhibit
different morphologies and functions, such as oleanolic acid,
glycyrrhetinic acid,21 and ursolic acid.22 Our previous studies
and other researchers have also found binary assemblers:
berberine can self-assemble with baicalin,23 rhein,24 aristolo-
chic acid,25 cinnamic acid,26 curcumin,27 and sennoside A28 to

form nanoparticles (NPs). There are also several small-
molecule compounds self-assembling with metal ions:
luteolin-Fe3+/Ca2+/Mg2+/Zn2+/Cu2+,29,3029,30 tannic acid/cat-
echolamines-Cu2+,31 and baicalin-Al3+.32 Although some
progress has been made in this field, the self-assembly of
natural small molecules is still at the stage of random,
serendipity discovery. And the previous self-assembly system
often involves a complex preparation process, high cost, and so
on.33,34 The preparation of a self-assembly system is easily
affected by external physical and chemical factors (such as
solvent,35 pH36,37), resulting in the emergence of a self-
assembly system with different structures and functions.
Therefore, a goal-oriented design to obtain natural small-
molecule self-assembly with a simple strategy is a hot research
topic at present (Scheme 1).
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The composition of traditional Chinese medicine (TCM)
decoction is complex and diverse, which is a collection of
phytochemicals’ libraries.38 The self-assemblies of small
molecules in TCM decoction are widespread,39,40 and so it
could provide valuable ideas for the accurate discovery of
supramolecular components in plants. For example, nano-
particles have been found in Ma-Xing-Shi-Gan-Tang decoc-
tion,41 Xue-Fu-Zhu-Yu-Tang decoction,42 Bai-Hu-Tang decoc-
tion,43 Ge-Gen-Qin-Lian-Tang decoction,44 San-Huang-Xie-
Xin-Tang decoction,45 and others,46,47 which showed fascinat-
ing properties and activities. Nanoparticles were not only
found in TCM decoction but also in single-flavor decoctions
such as Fen-Ge decoction,48,49 Huang-Lian decoction,50 and so
on. Most of the nanoparticles in the above decoction had a
particle size of 100−600 nm, which exhibited good stability
and high bioavailability. Taking Sini decoction51 and Huang-
Lian-Jie-Du decoction52 as examples, it was found that the
nanoparticles in the decoction were formed by the interaction
of many small molecular bioactive components. In addition to
the self-assembly through small-molecule interactions in the
decoction, some researchers found that polysaccharide53,54 and
protein55,56 components in the decoction could also self-
assemble and showed good biological activity. Meanwhile,
many chemical components in TCM have unique structures
and many modification sites, which facilitate self-recognition
and self-assembly.10 Therefore, TCM decoction can be used as
a carrier-free self-assembly library of small molecules to reduce
blindness, contingency, and a green strategy in supramolecular
design and construction.

Rhei Radix et Rhizoma and Coptidis Rhizoma are commonly
used as herbal pair medicine in TCM. There is obvious
turbidity in the decocting process. As one of the rich
compound libraries of decoction, Rhein-Ber nanoparticles
were found in our previous study.24 Therefore, starting from
the nanoaggregate in Rhei Radix et Rhizoma and Coptidis
Rhizoma co-decoctions, a total of 119 compounds were
identified (23 anthraquinones, 31 alkaloids, 24 organic acids,

8 tannins, and other components). Interestingly, we found that
the herbal pair’s main components rhein and coptisine could
self-assemble into nanofibers (Rhe-Cop NFs), while emodin
and coptisine could self-assemble into nanoparticles (Emo-
Cop NPs). Combined with multiple technologies, this study
took Emo-Cop NPs and Rhe-Cop NFs as examples to describe
the formation mechanism and exploration process of
discovering self-assemblies of small molecules without a carrier
from Chinese herbal compound decoction.

2. MATERIALS AND METHODS
2.1. Reagents and Materials. Rhei Radix et Rhizoma and

Coptidis Rhizoma were purchased from Beijing Tongrentang
(batch number: 20201125, 200301001). Rhein (C15H8O6,
Rhe, 98%), emodin (C15H10O5, Emo, 98%), coptisine chloride
(C19H14ClNO4, Cop, 98%), and DMSO-d6 were all purchased
from Beijing Inokai Technology Co., Ltd. Sodium hydroxide
(NaOH), dimethyl sulfoxide (DMSO, C2H6OS), and meth-
anol (CH4O) were all purchased from Beijing Chemical Plant.
Ordinary dialysis bag (MWCO: 3000 Da, Shanghai Yuanye
Biotechnology Co., Ltd.). Phosphate buffer (Beijing Bairdi
Biotechnology Co., Ltd.)
2.2. Sample Preparation. According to the ratio of Rhei

Radix et Rhizoma/Coptidis Rhizoma = 1:1, the corresponding
weight of herbs was put into a nonwoven bag and 8 times the
amount of water was added and boiled together for 40 min.
The co-decoction of Rhei Radix et Rhizoma and Coptidis
Rhizoma was obtained after filtering out the residue. The co-
decoction was centrifuged at 80,000 rpm for 30 min, and the
supernatant and supramolecular sites were collected, respec-
tively. All samples were lyophilized.

Coptisine chloride and emodin were precisely weighed at 0.1
mmol and dissolved by adding methanol and DMSO,
respectively. After mixing and stirring the two solutions,
sodium hydroxide solution was added to adjust the pH to 7.0−
7.5. The above solution mixture was added to 60 °C

Scheme 1. Natural Small-Molecule-Based Carrier-Free Self-Assembly Library Originated from Traditional Chinese Herbal
Medicine
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phosphate-buffered saline (PBS) drop by drop. After thorough
stirring, water bath ultrasonication was performed for 1 h. The
reaction solution was transferred to a dialysis bag for 12 h to
remove unreacted raw materials and organic solvents. The
dialysate fluid outside should be replaced every 3 h. Emodin-
Coptisine nanoparticles (Emo-Cop NPs) were obtained by
freeze-drying its dialysate fluid inside. Similarly, Rhein-
Coptisine nanofibers (Rhe-Cop NFs) assembly could be
prepared.
2.3. Characterization by Dynamic Light Scattering

(DLS). Each sample was dispersed in deionized water and
transferred to a colorimetric dish. Using a Malvern particle size
analyzer, the mean particle size and polydispersity index (PDI)
of the samples were measured in size mode and the ζ-potential
of the samples was measured in ζ-mode. The results were
repeated three times and averaged.
2.4. Field Emission Scanning Electron Microscopy

Observation. The lyophilized powder samples were dispersed
in deionized water and 2 μL was transferred to silicon wafers
for drying naturally at room temperature. After spraying gold
on the surface, a working voltage of 15.0 kV (ZEISS-
SUPRA55, ZEISS, Germany) was set to observe the
morphology and particle size of each sample.
2.5. Ultra-Performance Liquid Chromatography/Tan-

dem Mass Spectrometry (UPLC-MS/MS). TC-C18 column
(4.6 mm × 250 mm, 5 μm, Agilent) was used. The mobile
phase consisted of 0.1% (v/v) aqueous formic acid solution
(A) and acetonitrile (B). The gradient elution conditions were
0−30 min, 4−98% B. The flow rate was 0.3 mL/min and the
injection volume was 5 μL. The ion source adopted ESI to
collect information in positive (ESI+) and negative (ESI−)
electrospray ionization mode (EM ACE600, Leica Technology
Co., Ltd.). The atomized pressure was 45 psi. The dry gas was

nitrogen gas. The capillary and auxiliary gas heater temper-
atures were both set to 350 °C.
2.6. UV−Visible Absorption Spectrometric Determi-

nation. Two lyophilized powders of self-assembly and three
monomer components were fully dissolved in methanol
separately. The detection wavelength of the UV−visible
spectrophotometer (UH5300, HITACHI, Japan) was set at
190−600 nm and methanol was used as a blank solution for
full-wavelength scanning.
2.7. Fourier Transform Infrared Spectroscopy Deter-

mination. Two lyophilized powders of self-assembly and three
monomer components were put into a Fourier transform
infrared spectrometer (Tensor 27, Bruker). Later, the infrared
spectra of each sample were measured in the range of 400−
4000 cm−1 with air as the background.
2.8. Nuclear Magnetic Resonance Hydrogen Spec-

trometry (1H NMR) Determination. Two lyophilized
powders of self-assembly and three monomer components
were placed in the nuclear magnetic tube. Then, deuterium
dimethyl sulfoxide was added to dissolve thoroughly, and
tetramethylsilane (TMS) was used as an internal standard to
determine the 1H NMR spectra of each sample in NMR
apparatus (Bruker Avance 400 MHz, Bruker, Germany).
2.9. Isothermal Titration Calorimetry (ITC) Determi-

nation. All reserve fluid must be filtered with a 0.45 μm
microporous membrane before use. The titration threshold
was explored through the preliminary experiment, and the
titration condition was determined as follows: 10 mg/mL
single decoction of Coptidis Rhizoma-titrated 20 mg/mL single
decoction of Rhei Radix et Rhizoma; 2.5 mmol/L coptisine
chloride-titrated 0.5 mmol/L rhein; 5 mmol/L emodin-titrated
0.5 mmol/L coptisine chloride. The instrument parameters
were set as follows: a stirring rate of 250 r/min, titration

Figure 1. Morphological characterization of Rhei Radix et Rhizoma and Coptidis Rhizoma co-decoction (1), supernatant (2), and supramolecular
portion (3). (A) Particle size and PDI characterization. (B) ζ-Potential and Tyndall effect characterization. (C) Scanning electron microscopy
(SEM) characterization.
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temperature of 25 °C, and titration interval 180 s (Nano ITC,
TA).

3. RESULTS AND DISCUSSION
3.1. Morphological Characterization. As shown in

Figure 1A,B, the co-decoction of Rhei Radix et Rhizoma and
Coptidis Rhizoma was turbid. Dynamic light scattering
characterization showed that the co-decoction was a
homogeneous and stable system with a size of 341.2 nm
(PDI = 0.304) and a ζ-potential of −27.0 mV. The Tyndall
effect also had a distinct pathway. The co-decoction was
centrifuged at 80,000 rpm for 30 min, and then the supernatant
and supramolecular site were collected, respectively. After
centrifuging, no significant Tyndall effect was observed in the
supernatant and its particle size was about 185 nm with uneven
dispersion (PDI = 0.483). The collected supramolecular
samples were redissolved in water, and it was found that the
solution also had a significant Tyndall effect. The particle size
of the supramolecular site was mainly 262 nm (PDI = 0.322),
and the ζ-potential value was −27.8 mV.

SEM characterization is shown in Figure 1C; it was observed
that the co-decoction mainly contained spherical nanoparticles
of 300−500 nm. Rare nanoparticles were observed in the
supernatant and their scale distribution was relatively discrete,
which was consistent with the DLS characterization. Mean-
while, the supramolecular portion comprised nanospheres of
about 300 nm with uniform size and uniform dispersion. SEM
results showed that the nanospheres in the co-decoction
mainly existed in the supramolecular part.
3.2. Identification of the Constituents in the Supra-

molecule. Totally 119 compounds had been tentatively
identified in the supramolecular portion (Figure 2A). A total of

23 anthraquinones were identified, including 10 free
anthraquinones, 11 bound anthraquinones, and 2 bound
anthraones. They were all characteristic constituents of Rhei
Radix et Rhizoma and were more likely to produce fragment
ions such as [M-H-CO]− and [M-H-CO2]− in negative ion
mode. Compounds 63 and 65 were characterized to be rhein
and emodin, respectively. Compound 63 (rhein) exhibited a
molecular ion at m/z 283.0237 and its fragment ions were [M-
H-CO2]− (m/z 239.0347), [M-H-C2O3]− (m/z 211.0394),
and [M-H-C3O4]− (m/z 183.0443). Likewise, emodin was
produced as a precursor ion at m/z 269.0444 ([M-H]−). The
fragment ion at m/z 241.0502 ([M-H-CO]−), m/z 225.0555
([M-H-CO2]−), m/z 197.0601 ([M-H-C2O3]−), and m/z
181.0648 ([M-H-C2O4]−) originated from the loss of CO
moiety and CO2 moiety (Figure 3).

Alkaloids were the main medicinal ingredients of Coptidis
Rhizoma. In this test, 31 alkaloids and their glycoside
compounds were detected. For example, Compound 106
(coptisine) produced a precursor ion at m/z 320.0917 ([M]+),
yielding the most intense fragment ion at m/z 292.0966 ([M-
CO]+). Compound 111 was proposed to be berberine,
showing a deprotonated molecule at m/z 336.1230 ([M]+).
The major fragment ion at m/z 320.0917 ([M-CH4]+) and m/
z 306.0764 ([M-CH4-CH2]+) is attributed to the continuous
loss of a CH4 moiety and a CH2 moiety. Other fragments at m/
z 321.0997 ([M-CH3]+) and m/z 292.0969 ([M-C2H4O]+)
could also be observed in the product ion spectrum. In
addition to anthraquinones and alkaloids, there were 24
organic acids, 8 tannins, 8 flavonoids, 5 amino acids, and 7
monosaccharides and polysaccharides in the supramolecular
site. Furthermore, there were 13 other components, including
phenylbutanone, stilbene glycosides, naphthalene glycosides,

Figure 2. UPLC-MS/MS characterization. (A) Total ion current chromatograms of the supramolecular site in the positive and negative ion modes.
(B) Negative ion current chromatograms of supramolecular and supernatant sites.
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and other compounds. The fragment ions and cleavage
pathways of some compounds are shown in Table 1, Table
S1, and Figure S1.

The contents of anthraquinone and tannin in the supra-
molecular fraction were much higher than those in the
supernatant fraction (Figure 2B). Among them, the content of
catechin gallate, 3-methyl-rhein, rhein, and emodin in the
supramolecular site accounted for 80 to 90 percent (Table 2),
which was much higher than that in the supernatant. It was
further speculated that the components of Rhei Radix et
Rhizoma and Coptidis Rhizoma interacted with each other
during the decocting process, and the products of interaction
mainly existed in the supramolecular site but not in the
supernatant site.
3.3. Isothermal Titration Calorimetry Analysis be-

tween the Herbal Pair Medicine. Binding constant (Ka),
dissociation constant (Kb), Gibbs free energy (ΔG), enthalpy
(ΔH), and entropy (ΔS) could be directly and accurately
determined from a single experiment.57,58 ITC has been used
by some researchers to analyze the thermodynamic parameters
of interaction during co-decocting of medicinal materials.59,60

As shown in Figure 4, the upward peaks of Coptidis Rhizoma-
titrated Rhei Radix et Rhizoma indicated an exothermic
reaction. In the control group, Coptidis Rhizoma-titrated
deionized water presented a downward endothermic character-
istic peak (dilution process). The fitted curve showed an
approximate S-shape, which was a typical characteristic peak
trend of chemical reaction. The results showed that the

reaction between the two drugs was thorough, and the effect
was strong. Their binding constant Ka was 4.885 × 103.

Herein, thermodynamic parameters of titration between the
herbal pair medicine were ΔH = −52.64 kJ/mol < 0, ΔS =
−105.9 J/mol < 0. According to the second law of
thermodynamics, |ΔH| > |−TΔS|, ΔG = −23.713 kJ/mol <
0. It was suggested that the reaction was a spontaneous
reaction driven by enthalpy, and the entropy change was
unfavorable to the reaction. The results showed that the active
components of Rhei Radix et Rhizoma and Coptidis Rhizoma
were bonded by noncovalent bonds, such as hydrogen bonds
and electrostatic attraction, rather than aggregation driven by
physical precipitation.
3.4. Morphological Characterization of Emo-Cop NPs

and Rhe-Cop NFs. Based on the results shown in Figure 2B,
emodin, rhein, and coptidine were selected as the research
objects to further reveal the carrier-free self-assembly
phenomenon in this drug pair. The prepared Emo-Cop NPs
and Rhe-Cop NFs were characterized by SEM (Figure 5). It
was found that the morphology of the assembly formed by
different components was significantly different. The Emo-Cop
NPs were a nanosphere with a particle size between 50 and
100 nm and evenly dispersed in the field of vision. Some
scholars have found that protonated rhein tends to aggregate,
and so spherical, columnar, and membrane-shaped aggregated
micelles could be observed.61 In contrast, the Rhe-Cop NFs
presented a fibrous surround state with a fiber width of about
100 nm. By comparing the morphology of the two kinds of

Figure 3. Cracking law of (A) rhein, (B) emodin, and (C) berberine and coptisine.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c04098
ACS Omega 2022, 7, 43510−43521

43514

https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c04098/suppl_file/ao2c04098_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c04098/suppl_file/ao2c04098_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04098?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04098?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04098?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c04098?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c04098?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


self-assembly, the Tyndall Effect and aggregations in the
decoction of Rhei Radix et Rhizoma and Coptidis Rhizoma were
confirmed.
3.5. Isothermal Titration Calorimetry Analysis. To

further reveal the self-assembly mechanism of the herbal pair
medicine, we found that the titration process of emodin and
coptisine, rhein and coptisine was an exothermic reaction. As
shown in Figure 4B,C, Gibbs free energy was −22.61 and

−27.59 kJ/mol, respectively. Both of them displayed |ΔH| >
|−TΔS|. These results indicated that the reaction of emodin
and coptisine, rhein and coptisine was a spontaneous chemical
reaction driven by enthalpy, rather than a simple physical
process. Current evidence further proved that the assembly
process was driven by weak interactions, which was in
accordance with the reaction of the herbal pair medicine
(Figure 4A).

Table 1. Identification of Compounds at Supramolecular Sites

precursor ion

no.
tR

(min) compound formula identity
theoretical

(m/z)
experimental

(m/z) Δppm fragment ion (m/z)

9 2.01 galloylglucose C13H16O10 [M-H]− 331.0659 331.0674 4.53 169.0132 [M-H-C6H10O5]−, 125.0232 [M-H-
C7H10O7]−

10 2.34 gallic acid C7H6O5 [M-H]− 169.0131 169.0133 1.18 125.0231 [M-H-CO2]−

27 7.37 rhein glucoside C21H18O11 [M-H]− 445.0765 445.0775 2.25 283.0250 [M-H-C6H10O5]−, 239.0348 [M-H-
C7H10O7]−, 211.0396 [M-H-C8H10O8]−

29 7.65 sennoside C/D C42H40O19 [M-H]− 847.2080 847.2097 2.00 685.1560 [M-H-C6H10O5]−

31 7.85 sennoside A/B C42H38O20 [M-H]− 861.1872 861.1890 2.09 699.1338 [M-H-C6H10O5]−, 386.0994 [M-H-
C22H19O12]−

35 8.70 aloesin C19H22O9 [M-H]− 393.1180 393.1196 4.07 231.0658 [M-H-C6H10O5]−, 203.0709 [M-H-
C7H10O6]−

36 8.86 aloe emodin
glucoside

C21H20O11 [M-H]− 431.0972 431.0984 2.78 269.0456 [M-H-C6H10O5]−

44 10.30 emodin
glucoside

C21H20O11 [M-H]− 431.0972 431.0984 2.78 269.0456 [M-H-C6H10O5]−

48 10.50 chrysophanol C15H10O4 [M-H]− 253.0495 253.0506 4.35 225.0555 [M-H-CO]−

54 11.42 physcion C16H12O5 [M-H]− 283.0600 283.0612 4.24 268.0377 [M-H-CH3]−, 240.0425 [M-H-C2H3O]−

55 11.47 physcion
glucoside

C22H22O10 [M-H]− 445.1129 445.1139 2.25 283.0612 [M-H-C6H10O5]−, 268.0377 [M-H-
C7H13O5]−, 240.0425 [M-H-C8H13O6]−

60 12.80 3-methyl-rhein C16H10O6 [M-H]− 297.0393 297.0406 4.37 253.0505 [M-H-CO2]−, 225.0553 [M-H-C2O3]−

61 13.82 aloe-emodin C15H10O5 [M-H]− 269.0444 269.0456 4.46 241.0498 [M-H-CO]−, 240.0426 [M-H-CHO]−,
223.0397 [M-H-CH2O2]−, 197.0597 [M-H-C2O3]−,
183.0449 [M-H-C3H2O3]−

63 14.23 rhein C15H8O6 [M-H]− 283.0237 283.0249 4.24 239.0347 [M-H-CO2]−, 211.0394 [M-H-C2O3]−,
183.0443 [M-H-C3O4]−, 155.0492 [M-H-C4O5]−

65 17.14 emodin C15H10O5 [M-H]− 269.0444 269.0456 4.46 241.0502 [M-H-CO]−, 225.0552 [M-H-CO2]−,
197.0601 [M-H-C2O3]−, 181.0648 [M-H-C2O4]−

86 6.08 magnoflorine C20H24NO4
+ [M]+ 342.1699 342.1700 0.29 297.1122 [M-C2H7N]+, 282.0886 [M-C3H10N]+,

265.0860 [M-C3H11NO]+, 237.0909 [M-C4H11NO2]+

97 7.58 berberrubine C19H16NO4
+ [M]+ 322.1073 322.1073 0.00 307.0839 [M-CH3]+, 294.1124 [M-CO]+

103 8.55 columbamine C20H20NO4
+ [M]+ 338.1386 338.1387 0.29 323.1352 [M-CH3]+, 322.1074 [M-CH4]+, 308.0917

[M-C2H6]+, 306.1130 [M-C2H8]+, 294.1124 [M-
C2H4O]+

104 8.64 epiberberine C20H18NO4
+ [M]+ 336.1230 336.1229 −0.30 321.0991 [M-CH3]+, 320.0918 [M-CH4]+, 306.0753

[M-C2H6]+, 292.0966 [M-C2H4O]+

105 8.69 jatrorrhizine C20H20NO4
+ [M]+ 338.1386 338.1385 −0.30 323.1352 [M-CH3]+, 322.1073 [M-CH4]+, 308.0916

[M-C2H6]+, 306.1127 [M-C2H8]+, 294.1124 [M-
C2H4O]+

106 8.75 coptisine C19H14NO4
+ [M]+ 320.0917 320.0918 0.31 292.0966 [M-CO]+

109 9.44 worenine C20H16NO4
+ [M]+ 334.1073 334.1073 0.00 319.0843 [M-CH3]+, 306.1122 [M-CH4]+

110 9.55 palmatine C21H22NO4
+ [M]+ 352.1543 352.1542 −0.28 337.1307 [M-CH3]+, 336.1229 [M-CH4]+, 322.1074

[M-C2H6]+, 308.1281 [M-C3H8]+

111 9.67 berberine C20H18NO4
+ [M]+ 336.1230 336.1230 0.00 321.0997 [M-CH3]+, 320.0919 [M-CH4]+, 306.0764

[M-C2H6]+, 292.0969 [M-C2H4O]+, 278.0805 [M-
C3H6O]+

Table 2. Proportion of Partial Components in Supramolecular and Supernatant Sites

peak area (mAU) proportion (%)

no. compound supernatant supramolecule supernatant supramolecule

28 catechin gallate 150697588 710382109 17.50 82.50
61 3-methyl-rhein 104630117 1060477996 8.98 91.02
63 rhein 126177173 1781611708 6.62 93.38
65 emodin 84962980 1080546999 7.29 92.71
103−106 alkaloids 24427908772 32315248803 43.05 56.95
108−111 49331489593 68356178573 41.92 58.08
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3.6. UV−Vis Absorption Spectral Analysis. UV−vis
absorption spectra reflected the characteristics of some groups
in molecules.62 After molecular interaction, the change in the
benzene-conjugated system resulted in the shift of the
maximum absorption wavelength. Therefore, the law of
molecular interaction or the process of self-assembly could
be inferred from the changes in UV−vis spectra.63,64

There were five characteristic absorption peaks of coptisine
at 226, 242, 266, 360, and 460 nm. The characteristic
absorption peaks of rhein were at 204, 230, 258 nm (π → π*
transitions), and 430 nm (n → σ* transitions). The
characteristic absorption peaks of emodin were at 222 nm (n

→ σ* transitions), 266, 286 nm (π → π* transitions), and 442
nm (n → σ* transitions). Both Rhe-Cop NFs and Emo-Cop
NPs had the characteristic absorption peak of coptisine at 360
nm. Rhe-Cop NFs had the characteristic absorption peaks of
rhein at 204, 228, and 268 nm. The characteristic absorption
peak at 434 nm of Rhe-Cop NFs showed a blue shift compared
with coptisine (from 462 to 434 nm). Compared with emodin,
Emo-Cop NPs had characteristic absorption peaks at 244 and
264 nm, while the characteristic absorption peaks of emodin
were at 266 and 286 nm (Figure 6A,B).

Emodin, rhein (anthraquinones), and coptisine (benzyl
isoquinoline alkaloid) all had large cyclic conjugated structures.

Figure 4. ITC characterization: (A) Coptidis Rhizoma-titrated Rhei Radix et Rhizoma. (B) Rhe-titrated Cop. (C) Emo-titrated Cop.

Figure 5. Scanning electron microscopy characterization: (A) Rhe-Cop NFs and (B) Emo-Cop NPs.
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The hydroxyl group and methylene dioxy group of benzene
ring as the chromophore made the two kinds of components to
appear with strong characteristic absorption in the UV−vis
spectrum. These results indicated that the assemblies had
characteristic absorption peaks of monomer components and
the characteristic peak shift of the assemblies mostly occurred
at 260 and 430 nm. It was speculated that the weak
intermolecular interaction affected the n−π* and π−π*
transitions of intramolecular electrons.65,66

3.7. Fourier Transform Infrared Spectroscopy (FTIR)
Characterization Analysis. FTIR was often dominated by
the overlap of the doubling frequency and merging frequency
of the hydrogen group X−H (X = C, N, O). Because the
absorption frequency of different functional groups was
different, they were in different positions in the spectrum.67,68

In the infrared spectrum for Rhe-Cop NFs, shown in Figure
6C, the OH stretching vibration band of the COOH of Rhe-
Cop NFs appeared at a high wavenumber compared with that
in rhein (3000 cm−1). The C�O group vibration band of the
COOH group of rhein shifted from 1690 to 1663 cm−1 and the
peak intensity decreased significantly. The band at 1504 cm−1

in coptisine shifted to a higher wavenumber of 1506 cm−1 and
the peak band intensity increased. The bands 1628 and 1605
cm−1 in the assembly were attributed to the stretching
vibration band of the C�O group on rhein’s quinone ring.
In the infrared spectrum for Emo-Cop NPs, shown in Figure
6D, the 3386 cm−1 stretching vibration absorption band of 3-
OH of emodin disappeared. The C�O group stretching
vibration band on the quinone ring of emodin shifted from
1611 to 1605 cm−1 and the peak intensity decreased. The 1504

cm−1 infrared characteristic band of coptisine was an aromatic
ring skeleton vibration band, which shifted to a low
wavenumber of 1500 cm−1 and the peak intensity increased.

These results indicated that the 3-COOH band on the
anthraquinone ring of emodin, the 3-OH band on the
anthraquinone ring of emodin, and the aromatic ring skeleton
of coptisine significantly changed after assembly, suggesting
that there were hydrogen bonding or π−π stacking between
rhein and coptisine, emodin and coptisine, respectively.69

Therefore, it was inferred that the interaction between 3-
COOH of rhein, 3-OH of emodin, and the quaternary
ammonium nitrogen atom of coptisine led to electron
delocalization, which reduced the density of the electron
cloud and showed that the C�O bond energy of
anthraquinone components become weaker and the stretching
vibration frequency becomes lower than their single molecules.
3.8. 1H NMR Characterization Analysis. 1H NMR

spectra could be used to characterize weak interactions such
as hydrogen bonding and π−π stacking.70 Through weak
interactions, molecules were stacked and arranged regularly to
form assemblies or supramolecules with a certain microscopic
morphology. Changes in the spatial position of the molecule
affected the density of the electron cloud on the hydrogen
atom, leading to fluctuations in the hydrogen signal. Although
the fluctuation was not as violent as the reaction of chemical
synthesis, it could also accurately determine the site where the
weak bond binds to each other.71 Anthracene had three linear
benzene rings, which could generate π−π stacking or charge
transfer with other electron-rich or electron-poor molecules
through π-conjugated groups.72 For example, rhein molecules

Figure 6. (A) UV−visible spectra of Rhe-Cop NFs. (B) UV−visible spectra of Emo-Cop NPs. (C) Fourier infrared spectra of Rhe-Cop NFs. (D)
Fourier infrared spectra of Emo-Cop NPs.
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could self-assemble to form three-dimensional networks
composed of nanofibers through noncovalent interactions
such as π−π stacking and hydrogen bonding,16 while emodin
molecules are stacked into a supramolecular layer through π−π
interactions.73

According to the data analysis in Figure 7 and Tables 3−1,
the characteristic peaks of 3-COOH of rhein and 3-OH of
emodin disappeared, which indicated that rhein and coptisine,
emodin and coptisine approached each other under the
induction of electrostatic attraction (anthraquinone’s 3-COO−

and alkaloids’ 7-N+, anthraquinone’s 3-O− and alkaloids’ s 7-
N+). It was also found that the 1,8-OH on both anthraquinone
rings fluctuated to the low field direction with large chemical
shift values. Therefore, it could be shown that there were
obvious hydrogen bonds between rhein molecules and emodin
molecules, which formed a layered skeleton structure under the
action of intermolecular hydrogen bonds. The π−π stacking
between rhein and coptisine was distributed between the
anthraquinone layers, resulting in the H-8, H-11, H-12, and H-
13 on the benzyl isoquinoline ring moving 0.04−0.11 ppm to

the high field. The action of emodin and coptidine was the
same as that of rhein and coptisine. Because the skeletal
structure of coptidine was similar to that of berberine, the
crystal structure of rhein-berberine24 and emodin-berberine73

could be inferred: rhein and coptisine, emodin and coptisine
were close to each other under electrostatic action and further
formed binary assemblies under the action of π−π stacking.

4. CONCLUSIONS
In this study, spherical supramolecules were found in Rhei
Radix et Rhizoma and Coptidis Rhizoma decoction. A total of
119 compounds were identified from the supramolecules by
the UPLC-MS/MS method (23 anthraquinones, 31 alkaloids,
24 organic acids, 8 tannins, and other components). Among
these, the content of anthraquinones and tannins in the
supramolecular was much higher than that in the supernatant,
such as rhein and emodin. ITC analysis showed that the
interaction between Rhei Radix et Rhizoma and Coptidis
Rhizoma was a spontaneous chemical reaction, indicating that
active components could form supramolecules through weak

Figure 7. Nuclear magnetic hydrogen spectra: (A) Rhe-Cop NFs. (B) Emo-Cop NPs.

Table 3. Chemical Shifts of Emo-Cop NPs, Rhe-Cop NFs, and Their Anthraquinone Monomers

Rhe Rhe-Cop NFs Δδ (ppm) Emo Emo-Cop NPs Δδ (ppm)

13.76 (3-COOH, s) disappear 12.01 (1-OH, s) 13.10 (s) +1.09
11.81 (1,8-OH, s) 12.02 (brs) +0.11 11.93 (8-OH, s) 12.35 (s) +0.42
8.02 (H-4, s) 8.12 (s) +0.10 11.31 (3-OH, s) disappear
7.78 (H-6, t, J = 8 Hz) 7.77 (t, J = 8 Hz, J = 4 Hz) −0.01 7.39 (H-5, s) 7.33 (d, J = 0.8 Hz) −0.06
7.67 (H-2, s) 7.63 (s) −0.04 7.08 (H-7, s) 6.97 (m) −0.11
7.65 (H-5, d, J = 8 Hz) 7.70 (d, J = 4 Hz) +0.05 7.05 (H-4, d, J = 4 Hz) 6.48 (m) −0.57
7.35 (H-7, d, J = 8 Hz) 7.35 (d, J = 8 Hz) 6.54 (H-2, d, J = 4 Hz) 5.59 (m) −0.95

2.32 (6-CH3, s) 2.34 (s) +0.02

Table 4. Chemical Shifts of Emo-Cop NFs, Rhe-Cop NFs, and Coptisine

Cop Rhe-Cop NFs Δδ (ppm) Emo-Cop NPs Δδ (ppm)

9.97 (H-8, s) 9.92 (s) −0.05 9.90 (s) −0.07
8.99 (H-13, s) 8.90 (s) −0.09 8.88 (s) −0.11
8.03 (H-11, d, J = 8 Hz) 7.99 (d, J = 8 Hz) −0.04 7.98 (d, J = 8 Hz) −0.05
7.84 (H-12, d, J = 8 Hz) 7.77 (t, J = 8 Hz, J = 4 Hz) −0.07 7.76 (t, J = 8 Hz, J = 12 Hz) −0.08
7.79 (H-1, s) 7.74 (s) −0.05 −0.03
7.08 (H-4, s) 7.05 (s) −0.03 7.05 (s) −0.03
6.54 (15-CH2, s) 6.52 (s) −0.02 6.51 (s) −0.03
6.17 (14-CH2, s) 6.16 (s) −0.01 6.16 (s) −0.01
4.90 (6-CH2, t, J = 8 Hz, J = 4 Hz) 4.88 (t, J = 8 Hz, J = 4 Hz) −0.02 4.87 (s) −0.03
3.20 (5-CH2, t, J = 8 Hz, J = 4 Hz) 3.19 (t, J = 8 Hz, J = 4 Hz) −0.01 3.19 (s) −0.01
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bonds. Furthermore, we found that the ingredients of emodin
and coptisine could be assembled into NPs of about 50 nm,
while rhein and coptidine were assembled into nanofibers.
Based on the current evidence, both self-assemblies were
mainly induced by electrostatic attraction, hydrogen bonding,
and π−π stacking. In this study, the self-assembled entities of
small molecules were found based on the herbal pair medicine,
which provides a reference for discovery of the natural carrier-
free self-assembly from TCM. And it is also beneficial to the
design of binary self-assembly of small molecules in the future.
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