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ABSTRACT

After examining the complex interplay between
heart failure (HF) in its various clinical forms,
metabolic disorders like nonalcoholic fatty liver
disease (NAFLD), and obstructive sleep apnea
(OSA) syndrome, in this mini-review we descri-
bed possible favorable effects of sodium–glucose
cotransporter 2 inhibitors (SGLT2is) on HF with
preserved (i.e., C 50%) ejection fraction (HFpEF)
through enhanced cardiorenal function and

visceral-subcutaneous body fat redistribution.
In greater detail, on the basis of pathophysio-
logical mechanisms underlying OSA onset and
the direct positive SGLT2i effect on renal func-
tion benefiting chronic kidney disease, we
emphasized the promising role of SGLT2is in
prevention, rehabilitation, and treatment of
patients with OSA regardless of coexisting
type 2 diabetes (T2DM). Indeed, SGLT2is
enhance lipolysis and fatty acid beta-oxidation.
These phenomena might prevent OSA by
reducing the size of visceral and subcutaneous
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adipose tissue and, as proven in humans and
animals with T2DM, counteract NAFLD onset
and progression. The aforementioned mecha-
nisms may represent an additional SGLT2i car-
dioprotective effect in terms of HFpEF
prevention in patients with OSA, whose NAFLD
prevalence is estimated to be over 50%.
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Key Summary Points

Heart failure with preserved ejection
fraction (HFpEF) accounts for
approximately 40–50% of incident HF,
and is associated primarily with
hypertension, coronary heart disease,
chronic kidney disease, type 2 diabetes
mellitus (T2DM), and nonalcoholic fatty
liver disease (NAFLD).

The prevalence of NAFLD is up to 50% in
patients with HFpEF.

Moreover, obstructive sleep apnea (OSA)
may be a significant risk factor for HFpEF.

The putative mechanism underlying the
association between OSA and HFpEF
seems to be the intermittent hypoxia-
induced autonomic nervous system
stimulation mediated by oxidative and
endoplasmic reticulum stress.

Sodium–glucose cotransporter 2 inhibitors
(SGLT2is) proved effective in reducing
cardiovascular events in patients with
HFpEF and improving renal function
independently of T2DM.

SGLT2is also proved active against NAFLD
in T2DM.

Considering the close association between
OSA and HFpEF, SGLT2is might also be
promising for OSA prevention, treatment,
and rehabilitation regardless of coexisting
T2DM, as well as for the often-associated
NAFLD when T2DM is present.

Heart failure (HF) encompasses a broad
spectrum of disorders involving myocardial
dysfunction with typical signs and symptoms.
The European Society of Cardiology (ESC)
guidelines include echocardiographic parame-
ters, i.e., left ventricular ejection fraction (EF),
for subclassification of this complex clinical
entity: heart failure with reduced EF (HFrEF;
EF\40%), mid-range EF (HFmrEF; EF 41–49%),
and preserved EF (HFpEF C 50%) [1].

HFpEF accounts for approximately 40–50%
of incident HF overall [2], and is associated with
many cardiovascular risk factors, like arterial
hypertension (AH) [2] and coronary heart dis-
ease (CAD) [3]. Other comorbidities are associ-
ated with HFpEF. They include obesity, atrial
fibrillation (AF), metabolic syndrome, diabetes,
chronic obstructive pulmonary disease, chronic
kidney disease (CKD), and transthyretin-related
amyloidosis [4–6]. Other parameters for the
diagnosis of HFpEF are evidence of either dias-
tolic dysfunction or structural heart disease,
signs or symptoms of heart failure, and elevated
natriuretic peptides [1].

According to a recent hypothesis, obstructive
sleep apnea (OSA) may be a significant risk
factor for HFpEF [7]. Frequent episodes of apnea
characterize OSA during sleep due to upper air-
way obstructions, which might be either total
(consisting of the cessation of respiratory flow
for a period greater than 10 s) or partial (so-
called hypopneas, consisting of a reduction of
respiratory flow by more than 50% of normal)
[8, 9].

The gold standard for diagnosing OSA
involves simultaneous monitoring of sleep and
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breathing, so-called polysomnography (PSG)
[10], providing two clinically relevant indices:
the apnea–hypopnea index (AHI; i.e., the mean
number of episodes of apnea and hypopnea per
hour of sleep) and the oxygen desaturation
index (ODI; i.e., the mean number of oxygen
desaturations of at least 3–4% below baseline
per hour of sleep) [11].

The third edition of the International Clas-
sification of Sleep Disorders (ICSD-3) defines
OSA as a PSG-determined obstructive respira-
tory disturbance index (RDI) C 5 events per
hour of sleep associated with the typical symp-
toms of OSA (e.g., unrefreshing sleep, daytime
sleepiness, fatigue or insomnia, awakening with
a gasping or choking sensation, loud snoring, or
witnessed apneas), or an obstructive RDI C 15
events for an hour of sleep (even in the absence
of symptoms) [12]. Another index called RERAs
(respiratory effort-related arousals) is also criti-
cal for the clinical evaluation of OSA [13, 14].

The diagnosis of sleep apnea/hypopnea syn-
drome (OSA syndrome, OSAS) refers to the
association of OSA with utmost, unexplained
daytime sleepiness or two or more of the fol-
lowing unexplained symptoms: sleep-time
choking or gasping, recurrent awakenings,
unrefreshing sleep, daytime fatigue, and
impaired concentration [15, 16]. According to
the so-called Chicago criteria [17], its severity is
given by the AHI value as follows: absent (\5),
mild (5–14), moderate (15–29), and severe
(C 30) [9].

A study on 252 patients with HF found an
86%, 86%, and 62% prevalence of sleep-disor-
dered breathing (SDB) (p = 0.001) in those with
HFrEF, HFmrEF, and HFpEF, respectively. OSA
was present in 48% and central sleep apnea
(CSA) in 22% of those patients. The prevalence
of OSA among the three groups was 42%, 47%,
and 49%, respectively (p = 0.708), while the
prevalence of CSA among the three groups was
44%, 40%, and 13% (p\0.001) [18]. So, the
prevalence and severity of SDB in patients with
HFrEF and HFmrEF were significantly higher
than in those with HFpEF and were mainly
related to the high prevalence of CSA. In con-
trast, OSA was more prevalent in HFpEF [18].

Another prospective, cross-sectional,
case–control study on 25 patients with HFpEF

and 25 controls also showed a higher SDB
prevalence in the former group (64% vs.12%;
odds ratio [OR] = 12.2, 95% confidence interval
[CI] = 2.83–52.74; p\ 0.001) [19]. AHI severity
significantly correlated with diastolic dysfunc-
tion degree (r = 0.67; p\0.001). Among
patients with HFpEF and SDB (16/25), 13 had
OSA, and only three had central sleep CSA, thus
confirming the higher prevalence of OSA in
patients with HFpEF [19].

The putative mechanism underlying the
association between OSA and HFpEF seems to
be the intermittent hypoxia-induced stimula-
tion of the sympathetic nervous system and
renin–angiotensin–aldosterone system (RAAS).
The latter causes a systemic inflammatory state,
mediated by tumor necrosis factor (TNF)-alpha
and transforming growth factor (TGF) beta-1
[20], with oxidative stress and endoplasmic
reticulum stress, mediated mainly by the acti-
vation of hypoxia-inducible factor 1 transcrip-
tion factor [21].

Until recently, angiotensin-converting
enzyme inhibitors (ACEIs), angiotensin receptor
blockers (ARBs), and beta-blockers alleviating
symptom burden and reducing mortality in
patients with HFrEF did not prove equally
effective in HFpEF [22–26]. The randomized,
double-blind TOPCAT study, which aimed to
determine the effect of spironolactone on
mortality in patients with HFpEF, showed that
it did not significantly reduce the incidence of
the primary composite outcome of death from
cardiovascular causes, aborted cardiac arrest, or
hospitalization for HF [27]. In addition, despite
being superior to enalapril against risks of death
and hospitalization for patients with HFrEF in
the PARADIGM trial [28], according to the fol-
lowing PARAGON-HF trial, the sacubitril–val-
sartan combination could not reduce the rate of
either HF-related hospitalizations or cardiovas-
cular death [29].

Initially, only statins were supposed to
reduce HFpEF mortality [30]. Then, the ran-
domized, double-blind placebo-controlled
EMPEROR–Preserved trial clearly showed the
glucose-lowering sodium–glucose cotrans-
porter 2 inhibitor (SGLT2i) empagliflozin to
reduce the combined risk of cardiovascular
death, HF-related hospitalization, and
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emergency/urgent HF visits requiring intra-
venous treatment in such patients. This great
achievement was independent of diabetes (432
patients on empagliflozin vs. 546 on placebo;
hazard ratio, 0.77 [95% CI 0.67–0.87];
p\0.0001) [31].

On the basis of pathophysiological mecha-
nisms underlying OSA onset-related and renal
SGLT2 effects, we already suggested SGLT2is as
promising for prevention, rehabilitation, and
treatment of patients with OSA regardless of
coexisting diabetes. This approach would
expand their indications beyond current ones,
including glucose, lipids, uric acid, blood pres-
sure, body weight control, and chronic HF, and
kidney disease prevention [32]. This hypothesis
finds further support in the previously men-
tioned EMPEROR-Preserved trial because of the
close association between OSA and HFpEF
[7, 33]. Indeed, OSA is associated with an
increased risk of hospital admission for HFpEF
[34]. In addition, taking into account that
HFpEF is more frequent in women [35], it is
noteworthy that HFpEF is significantly more
frequent in patients with SDB [36].

Moreover, a clear benefit of SGLT2is has been
recently proven in chronic kidney disease
(CKD) in patients with and without diabetes,
mediated by a direct improvement of renal
function [37, 38] and by the ability to prevent
the associated cardiovascular autonomic neu-
ropathy from further self-sustaining kidney
function impairment [39, 40], and by the ability
to reduce the associated increased albumin uri-
nary excretion [41].

The relationship between OSA and CKD is
likely bidirectional [42], even in the early stage
of the disease [43, 44]. So, considering that OSA
is associated with accelerated loss of kidney
function [45] and is a risk factor for incident
end-stage renal disease [46], the proven benefit
for CKD further supports the use of SGLT2is for
patients with OSA independently of coexisting
diabetes.

Further evidence of the favorable effect on
OSA pathophysiology comes from the proven
effect of SGLT2is on visceral and subcutaneous
adipose tissue [47–49]. As shown in animal
models of T2DM and metabolic syndrome, the
latter depends on the increased lipolysis and

beta-oxidation of fatty acids [50–52] caused by a
shift in energy substrates from carbohydrates to
lipids [53]. SGLT2is proved active against liver
steatosis in humans and animals with T2DM
[54–58]. Canagliflozin, an SGLT2i, reduced epi-
cardial fat accumulation [59], which is closely
associated with coronary heart disease [60, 61].

Moreover, the lipolytic activity and the
beneficial effects on nonalcoholic fatty liver
disease (NAFLD) [62] may represent an addi-
tional SGLT2i cardioprotective mechanism in
patients with OSA [63], who, in fact, often suffer
from NAFLD [64, 65], obesity, and metabolic
syndrome [66]. Indeed, some HFpEF pheno-
types seem to be cardiac manifestations of
NAFLD, thus supporting the novel concept of a
pathophysiological continuum between NAFLD
and HFpEF. Such a view is supported by multi-
ple shared pathophysiological mechanisms that
rely on increased systemic inflammation [67]
and contribute to the associated endothelial
dysfunction [67]. Indeed, NAFLD and nonalco-
holic steatohepatitis (NASH) favor the accumu-
lation of epicardial fat secreting
proinflammatory adipocytokines, thus causing
microvessel dysfunction and adjacent myo-
cardium fibrosis. All the above leads to HFpEF
and an increased risk of AF [68]. Also, a recent
clinical prospective study on 181 patients fol-
lowed as part of the University of Michigan
HFpEF outpatient clinic reported a higher
NAFLD prevalence (up to 50%) in patients with
HFpEF than in those with HFrEF [69].

All the above further supports the hypothesis
of cardiovascular and neurological
(polysomnographic parameters) SGLT2i bene-
fits in OSA independently of diabetes [32].

SGLT2is have also been supposed to elicit
positive effects in patients with OSA through an
intriguing yet controversial effect [70], i.e.,
hindered activation of leptin [71], whose levels
are high in OSA [72, 73], Indeed, in support of
this hypothesis, a recent meta-analysis of ten
randomized controlled trials showed that
SGLT2is treatment was associated with
decreased circulating leptin and increased adi-
ponectin levels in patients with T2DM [74].

In conclusion, the putative favorable effect
of SGLT2is in patients with OSA is likely due to
the ability to reduce cardiovascular events in
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patients with HFpEF [31] and improve renal
function independently of diabetes [37, 38].
OSA is an independent risk factor for cardio-
and cerebrovascular events independently of
diabetes [75, 76] and has a high prevalence
especially in patients with obesity resistant to
antihypertensive therapy [77]. This points to
the need for effective OSA screening, diagnosis,
and treatment to decrease cardiovascular risk
[78, 79] besides improving the polysomno-
graphic parameters and the quality of life
[66, 80].

On the basis of all the above considerations,
we feel it necessary for the scientific community
to set up additional studies in order to expand
the favorable extraglycemic effects of SGLT2is

to patients with OSA with and without diabetes,
as depicted in Fig. 1.

ACKNOWLEDGEMENTS

Funding. No funding or sponsorship was
received for this study or publication of this
article.

Editorial Assistance. We are indebted to Dr.
Paola Murano, General Manager of the Nefro-
center Research Network for the effective and
continuous complimentary support to the
manuscript preparation, and for editorial
assistance.
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