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Abstract

DNA-based taxonomic and functional profiling is widely used for the characterization of organismal communities across a
rapidly increasing array of research areas that include the role of microbiomes in health and disease, biomonitoring, and es-
timation of both microbial and metazoan species richness. Two principal approaches are currently used to assign taxonomy
to DNA sequences: DNA metabarcoding and metagenomics. When initially developed, each of these approaches mandated
their own particular methods for data analysis; however, with the development of high-throughput sequencing (HTS)
techniques they have begun to share many aspects in data set generation and processing. In this review we aim to define
the current characteristics, goals and boundaries of each field, and describe the different software used for their analysis.
We argue that an appreciation of the potential and limitations of each method can help underscore the improvements
required by each field so as to better exploit the richness of current HTS-based data sets.
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Introduction

The wide range of ‘–omics’ data sets that can now be generated,
thanks to rapid developments in high-throughput sequencing
(HTS) technologies, have had a major impact on a particular
pair of fields that work at the ‘meta’ scale—metagenomics and
DNA metabarcoding. As indicated by the Greek preposition
‘meta’, the aim of these disciplines is to move beyond the iden-
tification of single species to the identification of the total biolo-
gical entities within a complex sample. In this regard, a wide
range of studies has attempted to biologically characterize

particular environments through extraction and sequencing of
DNA taken from subsamples of the environment of interest.
In brief, metagenomics could be defined as the characterization
of the vast number of genomes present in an environmental
sample, using both a taxonomical and a functional analytical
approach. DNA metabarcoding, on the other hand, principally
focuses on taxonomically describing the species present within
a sample.

Given the increasing ease and reduced costs with which HTS
data can be generated, these environments represent virtually
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any space from which a sample can be obtained, including
Antarctic lakes [1, 2], hot springs [3–5], the human gut [6–10] or in-
deed any other part of the body [11] of any species [12–16].
Regardless of their origin, a fundamental characteristic of
these samples is the complexity of the microbial communities
that inhabit them and the difficulty this complexity poses
for any downstream analyses [17]. Current interests focus around
two kinds of analyses: (1) who is there?—the taxonomic identifica-
tion of all the species present (bacteria, fungi, viruses, protozoa,
mammals and plants) and (2) what are they doing?—the identifi-
cation of the biological functions that those species present under-
take within those particular environmental characteristics (e.g.
high/low pH, extreme temperatures, salinity gradients, humidity,
pressure, oxygen abundance, etc.) [18–21]. The information yielded
from these two avenues can subsequently empower detailed com-
parisons of different microbial communities [22].

At the dawn of the fields of DNA metabarcoding and metage-
nomics, the respective techniques used to fulfill their goals
were clearly distinguishable. DNA metabarcoding aimed to
identify which species were present in a DNA extract by target-
ing and sequencing nucleotide barcodes, which are DNA marker
sequences that have been argued as providing a unique genetic
identity for each taxon of study [23–25]. Barcodes were originally
detected by observing sequence alignments and locating a pair
of conserved regions flanking a variable one. The most com-
monly used markers are 16S for bacteria, mt16S for mammals,
CO1 for insects, ITS1 for fungi and rbcL, trnl and matK for
plants, although non-conventional markers can also be used
[24, 26, 27]. Metagenomics, on the other hand, is based around
direct shotgun sequencing of DNA within an extract, and thus
required the implementation of HTS technologies [28, 29] for its
power to be fully exploited. A fundamental difference with DNA
metabarcoding, is that the data generated using metagenomics
provides additional genomic-scale information, thus enabling
not only taxonomic identification, but also functional character-
ization of the environment [30] (Figure 1).

Although initially distinct, recent sequencing technological
developments have rapidly diminished the difference between
the fields, principally because DNA metabarcoding now pro-
duces data sets with the same HTS techniques used for metage-
nomics [29, 31–33]. While conferring many benefits, a side effect
has been a degree of confusion emerging within the research
community, in particular through the labeling of some metabar-
coding studies with the terms ‘metagenomics’ or ‘targeted
metagenomics’ [34–39], simply due to the fact that HTS plat-
forms are used to either decrease the cost of amplicon sequenc-
ing [40, 41] or generate barcode markers in a polymerase
chain reaction (PCR)-free manner [32, 42–45]. The reason why
this labeling is incorrect is due to the fact that the focus of
the resulting analyses remains on barcode loci, and not on the
genome as a whole.

In this regard, a distinction should be made between
‘metagenomics’ and ‘DNA metabarcoding’ as research fields,
and ‘metagenomic sequencing’ as a laboratory technique.
Strictly speaking, shotgun HTS of an environmental sample is
the sequencing of the metagenome of the sample, regardless
of the research field and the computational approach used to
analyze the data set. For this reason we prefer to name meta-
barcoding studies that use metagenomics sequencing data
as ‘PCR-free single/multiple loci metabarcoding’. Given this
spreading confusion, and that we can expect an increasing
number of researchers to favor PCR-free shotgun approaches
[29], thanks to the continual reductions in price per base pair of
HTS, we advocate that it is timely to re-examine the pros and
cons of the different approaches, and re-state the specific goals
of each kind of study (Table 1).

Having discussed the differences of each laboratory method
to study species diversity and biological functions in an envir-
onment, it is now important to describe the characteristics
of the computational methods used to analyze the data sets
produced by these different approaches. Through a reminder of
the technical definitions of the goals and computational

Figure 1. Environmental sample analysis framework. (A) A sample can come from any environment that contains DNA; e.g. one of the most studied environments to

date is the human gut microbiome. (B) DNA is extracted from the sample and sequenced according to the intended analyses. Shotgun sequencing produces genomic

reads from the species present in the sample, while targeted sequencing produces amplicons with the aim of identifying a specific group of organisms. (C) Depending

on the initial aim, whether functional and taxonomic characterization or only taxonomic characterization, the appropriate data set needs to be generated to be

analyzed with the appropriate software.
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methods used in metagenomics and metabarcoding, and by
stating the similarities and differences of the current
approaches used to analyze data sets of environmental sam-
ples, it will be possible to attain a sound understanding of these
two fields. In turn, this will enable oriented software develop-
ment efforts that specifically target the key questions that re-
searchers wish to ask. Furthermore, it will facilitate the
development of studies that integrate the different types of data
sets, while being aware of their differences, and exploiting the
full information they can provide [49–52].

While the recently produced metagenomic data sets
have provided a wealth of new insights into the intricacies of
microbial communities, their descriptive power remains re-
markably limited by the now widely acknowledged fact that
culture-based descriptions of microbial diversity

underestimate the true levels of biodiversity by orders of mag-
nitude [53, 54]. Specifically, a major problem with many cur-
rent metagenomics and metabarcoding studies is that their
taxonomic identification processes rely heavily on the infor-
mation available for previously described species. In light of
this problem, other methods have been developed to charac-
terize the diversity in a sample without reference data sets
[55]. Both approaches offer different possibilities and limita-
tions that need to be considered before undertaking analyses
(Figure 2). We discuss these in the following text, with the in-
tention of inspiring future analytical developments. Because
taxonomic profiling is the only goal shared by metabarcoding
and metagenomics, we principally focus on methods regard-
ing this aspect, although functional characterization will also
be superficially explored.

Table 1. Methods comparison

Type of study
and aimed
characterization

Metagenomics:
taxonomic and
functional

Metabarcoding:
taxonomic

Metabarcoding:
taxonomic

Metabarcoding:
taxonomic

Metabarcoding:
taxonomic

Laboratory method Shotgun sequencing Shotgun sequencing Shotgun sequencing PCR based PCR based
Target region Genome-wide Multi-loci Single locus [32, 33] Customized

barcodes
Conventional barco-

des, including 16S,
COI, etc.

DNA quantity Care should be taken
for samples com-
ing from a body
part of a macro or-
ganism so that the
shotgun sequenc-
ing is not mostly
host DNA

The percentage of
marker genes in
shotgun data sets
is small [46, 47]

Only a small fraction
of the reads come
from a specific
marker gene

Lots of customized
targeted genes can
be obtained

Lots of amplicons
from universally
targeted genes can
be obtained

Reference database Databases of the en-
tire genomes can
be customized

The source of the
reads is largely
unknown and dif-
ficult to character-
ize with the
currently existing
databases, thus
many reads will
not be assigned a
taxonomy [48]

Single marker genes
can be extracted
from the data set
using a reference
database

There are good data-
bases for standard
barcodes, however
if another region
is targeted there
are few and
mostly not cura-
ted reported
sequences.

There are several
large 16S and COI
databases, some
of them are well
curated, such as
Greengenes

Laboratory bias May present library
build biases due to
e.g. genomic nu-
cleotide
composition

May present library
build biases

May present library
build biases

May present primer
bias if primers tar-
get wide taxo-
nomic
distributions

May present primer
bias if using ‘uni-
versal’ primers for
marker gene

Taxonomic
resolution

The identification of
multiple loci
(marker or not)
can even recover
almost entire gen-
omes of species

The phylogenies of
more than one
gene can provide a
better consensus
of the species pre-
sent in the sample

It can provide good
taxonomic reso-
lution up to the
species level. The
taxonomic accur-
acy increases [33]

Sequences other
than marker genes
may not provide
satisfactory taxo-
nomic resolution
because one se-
quence can be as-
signed to more
than one species

The completeness of
the well-charac-
terized marker
gene databases
can provide good
taxonomic reso-
lution up to the
species level

Cost Deals with various
challenges due to
the complexity of
the mixture of
DNA in the
sample

It may be unattain-
able due to the
computational
requirements

The ratio of used
and discarded se-
quences that do
not come from
the single mined
marker gene is
cost inefficient

Low cost when gen-
erated on HTS
platforms

Generally low cost—
especially when
generated on HTS
platforms

Note. Comparison of the advantages and disadvantages of various methods that are used to achieve the goals of the DNA metabarcoding and metagenomic fields.
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Metabarcoding reference-based characterization

At the dawn of amplicon sequencing, reads were predominantly
produced by Sanger sequencing and the data sets were small.
However, data set sizes have increased by orders of magnitude,
thanks to sequencing technology platforms such as the Roche
GS, Ion Torrent and the Illumina series [56], each with particular
commercial characteristics (e.g. cost and sequencing data yield)
[57]. Thus, sequence similarity searches can today only be ef-
fectively handled through computational toolkits [58–60] that
perform the necessary basic processing of the raw data. Basic
processing steps in such toolkits include trimming, screening
and aligning sequences against a database, clustering of se-
quences into operational taxonomic units (OTUs), and compari-
son of the sequence composition between different samples.
The alignment of the reads to the reference database is probably
the most important step of the analysis workflow. Different pro-
grams can be chosen for this task, such as UCLUST [61], CD-HIT
[62] and BLAST [63]. After the alignment, instead of simply pars-
ing a BLAST output, taxonomy is assigned using a predefined
taxonomy map in which a reference sequence is related to
the corresponding taxonomy (Figure 3A). Other methods such
as obiclean from OBITools [59] and SUMATRAþSUMACLUST [64]
also include steps to model and detect PCR sequencing errors to
avoid incorrect taxonomic assignations by the use of clustering
algorithms as UCLUST [61] and CD-HIT [62] and the sequence
record counts.

Based on the results of the reference database comparison,
taxonomy assignation can be performed by alignment-based
methods such as MEGAN [65] and MetaPhyler [66]. In this con-
text, taxonomy is assigned against specific barcode loci data-
bases, whether single loci such as 16S or CO1, or a set of a few
phylogenetic marker loci drawn from across the genome. For
example, a method called mOTU identifies what the authors
call ‘metagenomics Operational Taxonomic Units’ [67], analo-
gous to the molecular OTUs, by using 40 universal single copy
phylogenetic marker genes. Some authors have referred to this
approach of using multiple barcodes as metagenomics, due to
the fact that the loci are drawn from the organism’s genome
(nuclear plus organelle genes for eukaryotes) [66–70]. However,
the total amount of sequence of the used loci is so small in

comparison to the DNA content in an entire genome, that these
databases cannot formally be considered genome-wide, espe-
cially for prokaryotes in which the exome is only a percentage
of the genome.

Generally, alignment-based methods for shotgun data sets
use an approach that can be broadly described as follows. First,
the HTS reads are aligned to a backbone alignment [71, 72], sub-
sequently each query sequence is placed into a backbone tree
[73] using an extended alignment, and finally taxonomy is as-
signed to each read using a phylogenetic placement approach,
such as the Lowest Common Ancestor (LCA) [74]. Phylogenetic
placement approaches use a database and a reference tree asso-
ciated to the database. LCA is one of the most commonly used
algorithms in phylogenetic placement; it implements steps to
address this specific issue of taxonomies coming from different
database sources. In the LCA algorithm, if the read has a hit
specifically to one taxon it is assigned to it, but if it has hits to
different taxa it is placed higher up in the taxonomy, and reads
that hit ubiquitously may even be assigned to the root node
of the tree.

Considerations on metabarcoding reference-based methods
Having briefly outlined current reference-based metabarcoding
methods, we turn to their pros and cons. A major attraction of
amplicon data sets is that they are a relatively economic way to
monitor diversity, thus enabling comparison of the taxonomic
composition between various environmental communities.
Although marker gene databases have expanded and included
genes other than 16S rDNA [26, 75, 76], the most comprehensive
are for 16S rDNA [77], and to some degree for CO1. If using a
relatively error-free database such as BOLD [78], SILVA [79] or
Greengenes [80], the taxonomic identification can be reliable,
especially if using long reads such as those from Roche GS
sequencing. In contrast to metagenomic analyses, comparison
of taxonomic composition can be automated for many different
metabarcoded samples with the use of software such as
Unifrac [22].

Despite the benefits of PCR-based methods, they face a num-
ber of challenges. Firstly, they must account for PCR and
sequencing derived sequence errors, ultimately risking

Figure 2. Considerations and challenges for metagenomics and DNA metabarcoding. Both fields face a variety of challenges that are ideal candidates for future soft-

ware development. While some of such problems are specific to one of the fields (right and left boxes), others are common to both (middle boxes).
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overestimation of biodiversity within samples [81]. Secondly, al-
though primers used are often referred to as ‘universal’ or ‘gen-
eric’ for predetermined clades, their performance is difficult to
predict on samples composed of largely unknown species, thus
amplification biases may occur [82]. Other major limitations of
reference-based approaches are both that of reference database
incompleteness, and that different results can be obtained ac-
cording to the database size. This is an aspect that has not
received much attention within the majority of the taxonomic
profiling studies. However, some software has been developed
to deal with this issue; for example TANGO [83]. Despite these
problems, considerable efforts have been made to develop
phylogenetic placement methods for taxonomy profiling in
metabarcoding, and various programs with different statistical
bases are available [84].

PCR-free multi-locus methods represent a valuable first step
through which the metabarcoding community can exploit more
of the information present in shotgun data sets than is other-
wise used by the mining of a single gene. However, the fact that
they still largely ignore the majority of the sequence data raises
the obvious challenge of better exploitation of this extra infor-
mation. In this regard, it would be interesting to use compos-
ition or counts approaches to provide extra information for a
more refined taxonomic assignation or to provide supporting
information to the identified taxonomies.

Another major challenge for the labeling of sequences with
the traditional species concept is the identification of chimeric

sequences. To this end, programs such as UCHIME [85] have
been developed for chimeric amplicon identification, and this
has already established itself as a de facto standard step.
Furthermore, the presence of nuclear mitochondrial insertion
(numt) sequences is a problem that should also be taken into ac-
count. As proven by Hojun Song et al. [86], DNA metabarcoding
can overestimate the number of species when nuclear mito-
chondrial pseudogenes are co-amplified. Several steps are sug-
gested to deal with numts, such as BLAST search, translation of
the sequences to look for indels and stop codons, comparison
of the marker gene to closely related published mitochondrial
genomes and examination of nucleotide usage. However,
these suggestions are not straightforward to implement, and no
metabarcoding toolkit has yet a program for identification of
numts. On a separate matter, although it is clear that data sets
of barcode amplicons do not provide functional information,
it is interesting to note the development of programs such
as PICRUSt [87], which predicts the functional composition
of a metagenome using marker gene data and a database of ref-
erence genomes.

Metabarcoding reference-free characterization

In classical sequence characterization approaches, where a
label name is assigned to sequences, and the level of attained
taxonomic resolution is the most important aspect to consider
[88], reference databases are the cornerstone of the analyses.

Figure 3. Metabarcoding approaches. (A) Although PCR-free data sets are typically large, usually only a small percentage of the sequence reads map to a reference data-

base. In such database, each entry has an assigned taxonomy so that phylogenetic placing approaches can be used for the taxonomic assignation. (B) PCR-based data

sets consist of amplicon sequences that can be analyzed with the use of a reference database or without the need of it. If no database is used, the sequences are com-

pared among themselves and are clustered by a similarity threshold; a representative sequence can be drawn from each cluster to then be compared with a reference

database. On the other hand, if a database is used, the sequences are compared against the database and are assigned the taxonomy of the sequence they match under

a given similarity threshold. A colour version of this figure is available online at BIB online: http://bib.oxfordjournals.org.

Environmental genes and genomes | 749

``
''
``
''
-
very 
In spite of
etal
-
,


However, given that the overwhelming majority of microbial di-
versity remains to be characterized at the genetic level [53, 54],
the concept of a molecular OTU has been applied for enabling
improved descriptions of the taxonomic diversity present
within a sample. In this reference-free approach, reads are
first clustered by a similarity threshold and a representative se-
quence is obtained from each cluster (Figure 3B). These clusters
are not assigned a taxonomic label, but sequences within the
same cluster are expected to come from the same species.
Because the methodological basis of this approach is the same
as that used by some reference-based programs, most of such
programs offer a reference-free mode. An example of such pro-
grams is a recently developed method called UPARSE [89].
The representative sequences of the clusters resulting from the
reference-free modes can be used to assess the microbial diver-
sity of the sample or to serve as input for other reference-based
methods for their taxonomy assignment.

Considerations on metabarcoding reference-free methods
Metabarcoding was born when the identification of known spe-
cies was enough to characterize an environment, and it is still
the best option for studies such as biodiversity monitoring
[90–93] of microorganisms, as well as macro organisms like
mammals and plants. In particular, the monitoring of macro or-
ganisms [94, 95] can be benefited from improvements on both
reference-free and reference-based methods because the
currently used generic markers for their identification are often
unable to provide high taxonomic resolution [96–98]. Reference-
free methods possess the clear advantage of not needing any
reference database for the taxonomy assignment. However, the
taxonomic assignation without the use of a database in meta-
barcoding also poses the challenge of the molecular OTU con-
cept not being yet widely accepted by the community, because
so far OTUs without a taxonomic classification can be only used
for environment richness comparison.

A major challenge for determining the microbial species
present in a sample without the need of a reference database is
to use algorithms other than those also used by the methods
that depend on a reference database. There is a yet underex-
plored alignment-free metabarcoding approach that works
under a completely different methodological basis—the com-
pression-based approach. This approach implements methods
such as Universal Similarity Metric (USM) [99], an approxima-
tion of USM called Normalized Compression Distance [100]
and Information-Based Distance [101] that can produce phylo-
genetic trees with good accuracy [99]. These kinds of analyses
represent an interesting parameter and reference database
free means of clustering sequences that should be further
explored.

Metagenomic reference-based characterization

BLAST [63] is perhaps the most basic and widely employed
method for identifying the best hit of the shotgun data set reads
against databases containing taxonomically identified reference
sequences. Once the BLAST output is generated, subsequent
taxonomic assignation is performed using different strategies,
depending on the software. BLAST is implemented in a variety
of methods [65, 102, 103] that are able to undertake taxonomic
and functional identification, as well as perform comparative
analyses of different samples in a straightforward and inter-
active manner that can be clearly visualized. For example,
MEGAN [65] applies the LCA algorithm on a BLAST output
for taxonomic assignation. Although this approach sits on the

fuzzy line that separates metabarcoding and metagenomics,
when it uses reference databases consisting of complete
genomic sequences and uses all the reads for comparison
instead of initially fishing for marker barcodes it can be classi-
fied as a metagenomic method, otherwise it is classified as
metabarcoding (Figure 4A). Shotgun Unifrac [104] as imple-
mented in Qiime [58] is an alternate phylogenetic placement
method that has proven useful for taxon identification for enti-
ties like viruses through the use of a reference database of full
genomes.

‘Composition-based’ approaches are an alternate strategy
that exploits nucleotide usage information extracted from the
reads to detect which taxonomic entities are present in the
sample. Nucleotide usage is an interesting piece of information
that can only be exploited if used in a metagenomic approach,
because it requires information from many complete genomes.
In general, composition-based methods can be considered as
sitting on the interface between reference-free and reference-
based methods, because they use statistical approaches such
as Markov models [105], support vector machines [106], non-
negative least squares [107] or mixture modeling [108]. Here
however, we consider them as reference-based, simply be-
cause the database is the suite of Markov models or the required
training sequence set. The methodological basis of compos-
ition-based methods can be generally explained as follows.
First, models such as interpolated Markov models are
generated to characterize variable-length oligonucleotides typ-
ical of a phylogenetic grouping. The models can be generated,
for example, by training on chromosomes and plasmids from
organisms collected from a database such as NCBI RefSeq [109].
Subsequently the model gives a score reflecting the probability
of a query sequence to belong to the class of sequences
on which the model was trained. There are also hybrid methods
for taxonomic classification that combine the result of align-
ment-based and composition-based approaches in a comple-
mentary way.

Other metagenomic methods also perform taxonomic assig-
nation based on DNA sequences from nuclear as well as mito-
chondrial genomes by first performing a de novo assembly and
then comparing the assembled sequences to a genome-wide
genes database [110–112] (Figure 4B). These methods should be
considered metagenomic methods because they apply genomic
algorithms such as de novo assembly, and the database can have
many sequences from coding DNA sequences (CDS), markers or
not, as well as non-CDS, or can consist of entire genomes, com-
pared with those used by metabarcoding alignment-based
methods using short reads as input, which are restricted to few
marker genes. If the de novo assembly derives from high
depth data sets, assembling them can produce almost complete
genomes of high quality even from rare species [113, 114].
Other methods such as CARMA3 [115] use hidden Markov mod-
els with the Pfam database [116] to match the short reads to
protein domains. The approach also uses a small percentage
of the total data set, but it is to be considered metagenomic be-
cause it uses CDS from every reported gene instead of limiting
itself to marker genes only. Furthermore this classification
allows for functional characterization.

Functional characterization is usually performed by align-
ment of the sequences to already annotated proteins to
find their homologous sequences [62, 117–119]. This relies on
the assumption that sequence homology suggests shared
function [120, 121], and it is also considered that there are differ-
ent levels of functional similarity, such as pathways or protein
families [122–124]. Function-oriented databases such as COG
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[125], Pfam [116] and TIGRFAM [126] are meant to be used
for gene-level analyses, while others such as KEGG [127],
MetaCyc [128] and SEED [129] are used for analyses at system or
pathway level.

Considerations on metagenomics reference-based methods
Perhaps the most significant advantage of metagenomics meth-
ods that exploit reference databases is that (depending on the
completeness of their reference database) they can provide reli-
able species identification. Furthermore, improvements to the
class of methods that use a reference database for the training
of the program while also allowing the discovery of new species
are a significant first step into a more complete exploitation of
all the information in a metagenomic data set. This aspect is
of considerable importance, as it has recently been proven
that the majority of microbes in the human gut (currently
the best studied environment with metagenomics) are not rep-
resented by current genomic resources [9].

Although methods based on reference sequences can iden-
tify new relatives of characterized organisms, they are ex-
tremely limited when it comes to the discovery of species that
remain largely uncharacterized. Furthermore, genome-based
methods do not allow for genomic-scale grouping of sequences
with certain characteristics most likely coming from closely
related individuals, which can be used for reconstruction of spe-
cies genomes. The computational time needed during the

database comparison can be high, especially if using BLAST as
the primary alignment tool. Another aspect to take into account
with regard to the database comparison results, is that the deci-
sion of the threshold that should be used for reliably assigning a
taxonomic level is somewhat arbitrary because it strongly
varies for each read, and often the most reliable level is high
(superkingdom or phylum). Furthermore, methods based on
genome alignment require normalization by genome size in
order to estimate taxonomic abundance without bias [7], some-
thing that is not possible to estimate for uncharacterized spe-
cies. Lastly, metagenomic methods that start by assembling the
reads into longer sequences require paired-end sequence data
to perform a good-quality de novo assembly. Paired-end libraries
are more expensive to generate than shotgun data sets, thus if
used in this way there can be a relatively low efficiency to eco-
nomic cost ratio.

Although the reliability of reference-based species identifi-
cation can be better than the reference-free methods from a
conventional point of view—that in which an already described
species name can be assigned to a group of reads—the best
taxonomic identification methods have high precision but low
sensitivity. This means that they make accurate assignments
but fail to classify a large portion of the input sequences, even
at high taxonomic levels [130]. The development of strategies
focusing on working with the unclassified reads is of para-
mount importance, for example, through the use of different

Figure 4. Metagenomic approaches. (A) Metagenomic reference-based approaches start by mapping the reads to a genome database and then apply various algorithms

to assign taxonomy, such as phylogenetic placement, or the use of unique mapping reads to the genome of a species in the database. (B) Alternatively, the reads can be

de novo assembled and the scaffolds, or the open reading frames predicted on the scaffolds, can be searched against the database, thus reducing the search time.

(C) Metagenomic reference-free methods usually start by de novo assembling the reads, then the number of reads mapping back to the assembled sequences

(the scaffolds or the open reading frames predicted from the scaffolds) can be used to create a count matrix that can be further clustered, with each cluster represent-

ing a metagenomic species. A colour version of this figure is available online at BIB online: http://bib.oxfordjournals.org.
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more relaxed search parameters can be used to allow for
matches to more distant relatives that would not be identified
with the current stringent methods that mind the taxonomic
assignation specificity.

Composition-based classifiers face more problems with re-
gards to taxonomic assignment than alignment-based methods
do, given that more reliable composition information can be
obtained from longer reads [131], which is not the case of most of
today’s shotgun data sets. Thus, there is room for improvement
of metagenomic reference-based taxonomic assignation.
Improving de novo assembly algorithms would yield long enough
sequences to extract reliable composition information, but chi-
meric assemblies need to be identified first so as not to provide
mixed up information to confound the taxonomic assignation.

So far, a number of marker genes have proven useful for pro-
karyotic species delineation; however, other organisms such as
fungi and virus have not been genetically characterized in terms
of taxonomy as deeply as prokaryotes [132, 133]. Thus, more
metagenomic methods not based on genome alignment need to
be developed focusing on uncharacterized species and taking
into account eukaryotic [134] and virus species [135–138]. This is
especially important for phages, the most abundant biological
entities on the planet [133].

Regarding functional characterization of a metagenome,
homology annotation is widely used in metagenomics for func-
tional profiling, but other methods for annotating the proteome
of metagenomes should be explored. This becomes an issue
of importance given the incompleteness of the databases, and
the huge number of proteins reported that are either
uncharacterized or only assigned putative functions. To this
end, context-based methods represent an area that can be fur-
ther explored to refine or enhance functional annotation. These
kinds of methods integrate information from genomes and
pathways [87, 139–141].

A method called pseudo amino acid composition (PseAAC)
[142–145] has been extensively used in computational prote-
omics for predicting protein structures and functions, but has
been yet unexplored in metagenomics. PseAAC is a machine-
learning method that uses the 20 conventional amino acids and
a combination of a set of discrete sequence correlation factors
obtained by using a correlation function that reflects the se-
quence order correlation between all the top most contiguous
residues along a protein chain [142]. PseAAC has been mainly
used for prediction of protein cellular attributes such as which
compartment of a cell it belongs to and how it is associated to
the lipid bilayer of an organelle [142], protein structural classes
[146], enzyme families [147], protein–protein interactions [148],
among others [149]. These attributes are closely related to the
biological function of the protein.

Metagenomic reference-free characterization

Metagenomic data sets differ principally from the classical DNA
metabarcoding PCR-based amplicon data sets in that they are
able to exploit a key piece of information: the number of times a
sequence is present [150] (Figure 4C). Although this kind of ap-
proach has yet to be widely adopted, and thus could benefit
from considerable improvement, it represents a promising way
for novel species and gene finding [151–154]. Currently only
a handful of methods based on the notion that abundance is
constant across genetic entities such as genes in a chromosome
have been published [155–157]. A recent example is the method
proposed by H Bjørn Nielsen et al. [55], which exploits the co-
abundance profiles across metagenomic data sets from a

number of samples of the same type. This method extracts
groups of genes that correlate in terms of abundance to ran-
domly picked seed genes, calling these clusters co-abundance
gene groups (CAGs). Segregating a metagenome into groups of
genes that have similar abundance allows the identification of
biological entities like prokaryotes and phages, as well as small
genetic entities representing co-inherited clonal heterogeneity.
The ability of the method to discriminate between strains of
the same species, even within complex metagenomics samples,
indicates the power of co-abundance to segregate closely
related biological entities.

Another method that uses count information is that pro-
posed by Albertsen et al. [114]. In this method data sets from a
given sample are produced using two different DNA extraction
methods. The first steps are similar to those of the CAGs
method, in which the reads are de novo assembled and subse-
quently a primary binning approach of clustering by similarity
is used, thus making a non-redundant gene catalogue.
Subsequently each data set’s reads are mapped to the
assembled set of non-redundant scaffolds, and a normalized
coverage for each scaffold is recorded. Afterwards the steps par-
ticular to this method include the binning of the scaffolds
into population genomes by plotting the two coverage estimates
of all scaffolds against each other. From the plot, scaffolds clus-
tering together represent putative population genome bins.

Considerations on metagenomics reference-free methods
These methods are powerful in the sense that they allow the re-
covery of genomes from unknown and rare taxonomic variants,
opening the possibility of finding novel enzymes and allowing a
detailed functional characterization that is much broader and
complete than the one that could be done on a reference-based
approach. Such characterization in turn enables exploitation of a
looser species definition such as that presented by the CAGs,
which are of greater usefulness than the standard rigorous spe-
cies definition in dealing with the widespread transfer of DNA
across species boundaries. Similarly, the use of a functional
assembly instead of a species taxonomic assignation to character-
ize an ecosystem and compare it with others represents an
underexplored avenue containing considerable opportunities
[9, 87]. This metagenomics species concept is useful for a com-
plete metagenomic characterization of a sample; however, it faces
the huge challenge of being understood and accepted by the sci-
entific community that is slowly advancing to new concepts.

Both reference-based and reference-free metagenomic
methods face the problem that comparing many different sam-
ples requires manual inspection. Interesting methods such as
the differential depth binning cannot be implemented automat-
ically for many samples because it requires manual examin-
ation of the plot [158], and others like MEGAN [65] and MG-RAST
[103] are based on visual and interactive analyses. However,
the canopy clustering-based method [55] represents a first step
into comparison of multiple samples in an automated way.

On a separate subject, there is an approach similar to the
PseAAC but applied to DNA/RNA sequences called pseudo
K-tuple nucleotide composition (PseKNC) [159, 160]. PseKNC has
been used for example to infer recombination spots [161, 162],
promoters [163], nucleosome positioning [164], and also CDNA-
related features as splicing sites [165], and translation initiation
sites [166]. These kinds of methods could be used to annotate
genomic features on genomes drawn from reference-free meta-
genomics methods.

Finally, the complexity of the data set has a big impact on
the accuracy of the results and the effect of the sequencing
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depth on the results has a significant impact on the results [113,
167]. Further exploration on the impact of sequencing depth
and proper integration of data sets coming from different
sequencing technologies, each one with different nucleotide
miscalling problems, would provide more information on how
to optimally exploit the information, and on where to delimit
how much information one can draw from them.

Final remarks

Although it is difficult to accurately predict how many of the
methodological challenges will be addressed in the future and
which new tools will be developed, it is expected that reference-
based methods will rapidly benefit from the accumulation of in-
formation in the data sets, while reference-free methods would
be helped by an extended acceptance of a broader concept
of species definition. Computational technological advances
are also expected to play an impact on the kind of programs de-
veloped. For example, a wider usage of cloud computing [168] or
the higher feasibility of acquiring computational resources with
much more power would enable the processing of even larger
data sets with more computationally demanding algorithms.

Another important issue that remains to be discussed is the
development of computational tools in concert with laboratory
method development. For example, the laboratory method
called Hi-C which was developed for generating chromatin-level
contact probability maps [169] has been successfully applied to
reconstruct individual genomes of microbial species present
within a synthetic metagenome sample [170]. Although this
method still needs to be further modified to be more widely

applied to complex real metagenomics samples, computational
method developers can influence in their refinement. The
metabarcoding field has also been benefited from the develop-
ment of refined laboratory methods that include the use of dou-
ble tagged amplicons coupled to multiple PCR replicates, which
are HTS sequenced in a multiplexed manner [92]. Although
this protocol provides more information for distinguishing
PCR/sequencing errors and chimeras, there is currently only
one method developed to analyze specifically that kind of data
sets (in the form Zepeda Mendoza ML, Carmona Baez A,
Bohmann K, Gilbert MTP, submitted for publication). Other tech-
niques such as HITChip [171] have benefited the large-scale
taxonomic profiling in reference-based metabarcoding studies.
However, development of programs to customize the design of
chip probes based on non-standard resources, such as in-house
databases, is still needed.

In summary, the primary message that we hope to have
conveyed with the description and definition of the methods
boundaries presented here, is the need for future software de-
velopment for metagenomics and DNA metabarcoding data
analyses. Secondly, we seek to clarify the confusion regarding
the mislabeling of some metabarcoding studies with the terms
‘metagenomics’ or ‘targeted metagenomics’. Thirdly, we intend
to draw researchers’ attention to the challenges that the current
methods face, and suggest avenues of method development for
further exploration. For example, we believe that metagenomics
would greatly benefit from a closer collaboration with the
algorithms used in computational proteomics, such as PseAAC
and PseKNC. Finally, we believe that consideration of the pros
and cons of the different approaches, and the specific goals of

Figure 5. Method classification placement map. As observed in the placement of the methods, there is lack of software in some areas while there is wealth in others,

especially at the borderlines where at first they might seem difficult to classify. (A) Metagenomic reference based. (B) Metagenomic reference free. (C) DNA metabarcod-

ing reference based. (D) DNA metabarcoding reference free.

Environmental genes and genomes | 753

,
that 
``
''
``
''


the two ‘meta-scale’ research fields, will help researchers
choose the appropriate methods to use to address the specific
questions of their studies (Figure 5).

Key Points

• Metabarcoding and metagenomics share many aspects
of their software and this has led to a misunderstand-
ing of their meaning and goals.

• To distinguish ‘metagenomics’ and ‘DNA meta-
barcoding’ as research fields, and ‘metagenomic
sequencing’ as a laboratory technique, DNA metabar-
coding can be subdivided by how many barcodes are
used (single and multiple loci) and which sequencing
technique is used (PCR-based or PCR-free).

• In general, metagenomics and DNA metabarcoding
software can be divided based on whether they use a
reference database or not, both types posing different
challenges.

• Re-examination of the pros and cons of the different
approaches in metagenomics and metabarcoding is im-
portant to decide on the method to use for the study.

• Method development in metagenomics and metabar-
coding would benefit from considering recently emerg-
ing techniques in other disciplines.
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and tree estimation using SATé. Methods Mol Biol 2014;1079:
219–44.

72. Liu K, Warnow TJ, Holder MT, et al. SATe-II: very fast and
accurate simultaneous estimation of multiple sequence
alignments and phylogenetic trees. Syst Biol 2012;61(1):
90–106.

73. Mirarab S, Nguyen N, Warnow T. SEPP: SATé-enabled phylo-
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