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Abstract

Motivation: Non-homogeneous dynamic Bayesian networks (NH-DBNs) are a popular modelling

tool for learning cellular networks from time series data. In systems biology, time series are often

measured under different experimental conditions, and not rarely only some network interaction

parameters depend on the condition while the other parameters stay constant across conditions.

For this situation, we propose a new partially NH-DBN, based on Bayesian hierarchical regression

models with partitioned design matrices. With regard to our main application to semi-quantitative

(immunoblot) timecourse data from mammalian target of rapamycin complex 1 (mTORC1) signal-

ling, we also propose a Gaussian process-based method to solve the problem of non-equidistant

time series measurements.

Results: On synthetic network data and on yeast gene expression data the new model leads to

improved network reconstruction accuracies. We then use the new model to reconstruct the topol-

ogies of the circadian clock network in Arabidopsis thaliana and the mTORC1 signalling pathway.

The inferred network topologies show features that are consistent with the biological literature.

Availability and implementation: All datasets have been made available with earlier publications.

Our Matlab code is available upon request.

Contact: m.a.grzegorczyk@rug.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Dynamic Bayesian networks (DBNs) have become a popular tool

for learning the topologies of cellular regulatory networks from time

series data. The classical (homogeneous) DBN models assume that

the network parameters stay constant in time, so that the network

structure is inferred along with one single set of network parameters

(Friedman et al., 2000). Many regulatory processes are non-

stationary so that this homogeneity assumption is too restrictive. To

allow for time-dependent parameters, many authors have proposed

to combine DBNs with multiple changepoint processes (Ahmed and

Xing, 2009; Dondelinger et al., 2013; Grzegorczyk and Husmeier,

2013; Husmeier et al., 2010; Lèbre et al., 2010; Robinson and

Hartemink, 2010) or with hidden Markov models (Grzegorczyk,

2016). In those models a multiple changepoint process (or a hidden

Markov model) divides the temporal data into disjoint components

with component-specific network parameters. The network
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structure, the data segmentation and the component-specific net-

work parameters are inferred from the data. Those models are often

referred to as non-homogeneous DBNs (NH-DBNs).

In many real-world applications, in particular in systems biol-

ogy, data are often collected under different experimental condi-

tions. That is, instead of one single (long) time series that has to be

segmented, there are K (short) time series. The data are then intrin-

sically divided into K unordered components, and there is no need

for inferring the segmentation. In this situation, it is normally not

clear a priori whether the network parameters stay constant across

components (conditions) or whether they vary from component to

component (with the conditions). Three biological systems that we

will consider in this article are: Section 4.4: The parameters of a

metabolism-related regulatory network in Saccharomyces cerevisiae

can depend on the medium, in which yeast is cultured (glucose ver-

sus galactose). Section 4.5: The parameters of the circadian clock

network in Arabidopsis thaliana can depend on the dark: light

cycles, to which the plants were earlier exposed. Section 4.6: The

parameters of the mammalian target of rapamycin complex 1

(mTORC1) protein signalling network can change in the presence of

insulin. For more examples and a thorough discussion on the inte-

gration of single-cell data from multiple experimental conditions we

refer to Geissen et al. (2016).

If the parameters stay constant, all data can be merged and ana-

lysed with one single homogeneous DBN. If the parameters are

component-specific, then the data should be analysed by a NH-

DBN. The disadvantage of both approaches is that all parameters

are assumed to be either constant (DBN) or component-specific

(NH-DBN). In real-world applications there can be both types of

parameters, so that both models are inappropriate. For example, if a

variable Y is regulated by two other variables, X1 ! Y  X2, then

the interaction X1 ! Y can stay constant, while X2 ! Y might be

component-specific, e.g. for K ¼ 2 and in terms of a regression

model:

E½YjX1 ¼ x1;X2 ¼ x2� ¼
ax1 þ bx2 if k ¼ 1
ax1 þ cx2 if k ¼ 2

�
(1)

A DBN ignores that b and c are different. A NH-DBN has to

infer the same parameter a two times separately. Both model misspe-

cifications can increase the inference uncertainty, and are thus critic-

al for sparse data.

No tailor-made model for the situation in (1) has been proposed

yet. To fill this gap, we propose a partially NH-DBN model, which

infers the best trade-off between a DBN and a NH-DBN. Unlike all

earlier proposed NH-DBNs, the new partially NH-DBN model

operates on the individual interactions (network edges). For each

interaction there is a parameter, and the model infers from the data

whether the parameter is constant or component-specific. We imple-

ment the new model in a hierarchical Bayesian regression frame-

work, since this model class reached the highest network

reconstruction accuracy in the cross-method comparison by

Aderhold et al. (2014). But we note that the underlying idea is gener-

ic and could also be implemented in other frameworks, e.g. via L1-

regularized regression models (‘LASSO’).

In Section 2.5 we propose a Gaussian process (GP)-based

method to deal with the problem of non-equidistant measurements.

The standard assumption for all NH-DBNs is that data are meas-

ured at equidistant time points. For applications where this assump-

tion is not fulfilled, we propose to use a GP to predict the values at

equidistant data points and to replace the non-equidistant values by

predicted equidistant values. We will make use of the GP method

when analysing the mTORC1 data in Section 4.6.

2 Materials and methods

DBNs and NH-DBNs are used to infer networks showing the regula-

tory interactions among variables Z1; . . . ;ZN. The interactions are

subject to a time lag, so that there is no need for an acyclic network

structure. Hence, dynamic network inference can be thought of as

inferring the covariate sets for N independent regression models. In

the ith model, Zi is the response and the remaining N� :¼ N � 1 var-

iables Z1; . . . ;Zi�1;Ziþ1; . . . ;ZN at time point t � 1 are used as po-

tential covariates for Zi at time point t. The goal is to infer a

covariate set for each Zi, and the system of covariate sets describes a

network; see Section 2.6 for details. As the same regression model is

applied to each Zi separately, we describe it using a general nota-

tion, where Y is the response and X1; . . . ;Xn are the covariates.

2.1 Bayesian regression with partitioned design matrix
We consider a regression model with response Y and covariates

X1; . . . ;Xn. We assume that data were measured under K experimen-

tal conditions, which we refer to as K components. We further assume

that the data for each component k 2 1; . . . ;Kf g were measured at

equidistant time points t ¼ 1; . . . ;Tk. Let yk;t and xi;k;t denote the val-

ues of Y and Xi at the tth time point of component k. In dynamic net-

works, the interactions are subject to a time lagO, which is usually set

to one time point. That is, the values x1;k;t; . . . ;xn;k;t correspond to the

response value yk;tþ1. For each component k we build a component-

specific response vector yk and the corresponding design matrix Xk,

where Xk includes a first column of 1’s for the intercept:

yk ¼ ðyk;2; . . . ; yk;Tk
ÞT ; Xk ¼ 1 x1;k . . . xn;k

� �
where xi;k ¼ ðxi;k;1; . . . ;xi;k;Tk�1ÞT

For each k we could assume a separate Gaussian likelihood:

yk � N Tk�1ðXkbk;r
2
kIÞ ðk ¼ 1; . . . ;KÞ (2)

where I is the identity matrix, bk ¼ ðbk;0;bk;1; . . . ;bk;nÞT is the

component-specific vector of regression coefficients, and r2
k is the

component-specific noise variance. Imposing independent priors on

each pair bk; r
2
k

n o
, leads to K independent models. Alternatively,

we could merge the data y :¼ ðyT
1 ; . . . yT

KÞ
T and X :¼ ðXT

1 ; . . . ;XT
KÞ

T

and employ one model for the merged data:

y � N TðXb; r2IÞ where T :¼
XK

k¼1
ðTk � 1Þ (3)

so that b ¼ ðb0;b1; . . . ;bnÞT would apply to all components.

When some covariates have a component-specific and other

covariates have a constant regression coefficient, both likelihoods

(2) and (3) are suboptimal. For this situation, we propose a new par-

tially non-homogeneous regression model that infers the best trade-

off from the data. The key idea is to use a likelihood with a parti-

tioned design matrix.

For now, we assume that we know for each coefficient whether it

is component-specific or constant. Let the intercept and the first n1 <

n coefficients stay constant while the remaining n2 ¼ n� n1 coeffi-

cients are component-specific. We then have the regression equation:

yk;tþ1 ¼ b0 þ
Xn1

i¼1
bi � xi;k;t þ

Xn

i¼n1þ1
bk;i � xi;k;t þ �k;tþ1

where �k;tþ1 � Nð0;r2Þ, and the likelihood takes the form:

y � N TðXBbB;r
2IÞ (4)

where bB is a vector of ð1þ n1 þ K � n2Þ regression coefficients, and

XB is a partitioned matrix with T ¼
P
ðTk � 1Þ rows and ð1þ
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n1Þ þ ðK � n2Þ columns. For example, for K ¼ 2 the matrix XB has

the structure:

1 x1;1 . . . xn1 ;1 xn1þ1;1 . . . xn;1 0 . . . 0
1 x1;2 . . . xn1 ;2 0 . . . 0 xn1þ1;2 . . . xn;2

� �
;

where xi;k ¼ ðxi;k;2; . . . ;xi;k;Tk�1ÞT , and bB is of the form:

ððb0;b1; . . . ; bn1
Þ; ðbn1þ1;1; . . . ;bn;1Þ; ðbn1þ1;2; . . . ; bn;2ÞÞT

The first subvector of bB is the vector b� :¼ ðb0;b1; . . . ;bn1
ÞT of

the regression coefficients that stay constant, and then there is a sub-

vector bk :¼ ðbn1þ1;k; . . . ; bn;kÞT for each component k with the

component-specific regression coefficients. For the noise variance

parameter r2 we use an inverse Gamma prior, r�2 � Gamða;bÞ, and

on b� we impose a Gaussian prior with zero mean vector:

b� � N n1þ1ð0;r2k2
�IÞ (5)

For the component-specific vectors b1; . . . ;bK we adapt the idea

from Grzegorczyk and Husmeier (2013), and impose a hyperprior:

bk � N n2
ðl;r2k2

�IÞ ðk ¼ 1; . . . ;KÞ and l � N n2
ðl0;R0Þ (6)

The hyperprior couples the vectors b1; . . . ; bK hierarchically and

encourages them to stay similar across components. Re-using the

variance parameter r2 in (5 and 6) allows the regression coefficient

vectors and the noise variance to be integrated out in the likelihood,

i.e. the marginal likelihood pðyjk2
� ; k

2
�;lÞ to be computed analytical-

ly (see below). For k2
� and k2

� we also use inverse Gamma priors:

k�2
� � Gamða�; b�Þ and k�2

� � Gamða�;b�Þ

The prior of bB ¼ ðbT
� ; b

T
1 ; . . . ; bT

KÞ
T is a product of Gaussians:

pðbBjr2; k2
�; k

2
� ;lÞ ¼ pðb�jr2; k2

�Þ �
YK

k¼1
pðbkjr2; k2

�;lÞ

Given r2; k2
�; k2

� , and l, the Gaussians are independent, so that:

bBjðr2; k2
�; k

2
� ;lÞ � N 1þn1þK�n2

ð~l; r2 ~RÞ

with : ~l ¼ ð0T ; lT ; . . . ; lTÞT and ~R ¼ k2
�I� 0

0 k2
�I�

 !

where I� is the ðn1 þ 1Þ-dimensional and I� the ðK � n2Þ-dimensional

identity matrix. We have for the posterior distribution:

pðbB; r
2; k2
� ; k

2
�;ljyÞ / pðyjr2; bBÞ � pðbBjr2; k2

�; k
2
� ;lÞ . . .

. . . � pðlÞ � pðr�2Þ � pðk�2
� Þ � pðk�2

� Þ
(7)

A graphical model representation of the new regression model is

provided in Figure 1. The full conditional distributions of

bB; r2; k2
� ; k2

� and l can be computed analytically, so that Gibbs-

sampling can be applied to generate a posterior sample. As the deri-

vations are mathematically involved, we relegate them to Part A of

the Supplementary Material.

The marginalization rule from Section 2.3.7 of Bishop (2006)

yields:

pðyjk2
�; k

2
� ; lÞ ¼

C T
2 þ a
� �
CðaÞ � p

�T
2ð2bÞa

detðCÞ1=2
� . . .

. . . � 2bþ ðy�XB~lÞTC�1ðy�XB~lÞ
� �� T

2það Þ

where T :¼
XK

k¼1
ðTk � 1Þ; and C :¼ IþXB

~RXT
B :

(8)

2.2 Inferring the relevant covariates and their types
In typical applications, there is a set of N� variables, and the subset

of the relevant covariates has to be inferred from the data. Each

covariate can be either constant (d ¼ 1) or component-specific

(d ¼ 0). Let P ¼ X1; . . . ;Xnf g be a subset of the N� variables, and

let d ¼ ðd0; d1; . . . ; dnÞT be a vector of binary variables, where di

indicates whether Xi has a constant (di ¼ 1) or component-specific

(di ¼ 0) regression coefficient. The first element, d0, refers to the

intercept.

The goal is then to infer the covariate set P and the correspond-

ing indicator vector d from the data. For any combination of P and

d, the partitioned design matrix XB ¼ XB;P;d can be built, and the

marginal likelihood pðyjk2
�; k

2
� ; l;P; dÞ can be computed with (8).

We get for the posterior:

pðP; d; k2
� ; k

2
�; ljyÞ / pðyjk2

�; k
2
� ;l;P; dÞ � pðPÞ � pðdjPÞ � . . .

. . . � pðljP; dÞ � pðk2
�Þ � pðk2

�Þ

where pðljP; dÞ is a Gaussian, whose dimension is the number of

component-specific coefficients. For the covariate sets, P, we follow

Grzegorczyk and Husmeier (2013) and assume a uniform distribu-

tion, truncated to jPj � 3. The prior pðdjPÞ will be specified in

Section 2.5. To generate samples from the posterior, we use a

Markov Chain Monte Carlo (MCMC) algorithm, which combines

the Gibbs-sampling steps for bB; r2; k2
� ; k2

� and l with two blocked

Metropolis Hastings (MHs) moves. In the first MH move the vector

d is sampled jointly with l, and in the second MH move P is

sampled jointly with d and l. As the implementation of the MCMC

algorithm is involved, we relegate the mathematical details to Parts

B and C of the Supplementary Material.

2.3 Competing models
A homogeneous model merges all data, while a non-homogeneous

model assumes each component k to have specific parameters; see

(2). The new partially non-homogeneous model infers the best

trade-off: Each regression coefficient can be either constant or com-

ponent-specific.

For a fair comparison, we also allow the non-homogeneous

model to switch between a homogeneous and a non-homogeneous

Fig. 1. Graphical model representation of the regression model with parti-

tioned design matrix. Variables that have to be inferred are in white circles.

The data and the fixed hyperparameters are in grey circles. The vector bB de-

terministically depends on b� and b1; . . . ; bK . The vector bk in the plate is con-

dition-specific
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state. However, like all models that have been proposed so far, it

operates on the covariate sets. All covariates have either component-

specific (S ¼ 0) or constant (S ¼ 1) regression coefficients. In our

method comparison, we include:

• DBN: A homogeneous model that merges all data, see (3).
• NH-DBN: The NH-DBN model switches between two states.

We have a DBN for S ¼ 1, and the likelihood takes the form of

(2) for S ¼ 0.
• coupled NH-DBN: This model from Grzegorczyk and Husmeier

(2013) is an NH-DBN that globally couples the regression

coefficients.

2.4 Specifying the covariate type prior
The NH-DBNs can switch between: ‘all covariates are constant’

(S ¼ 1) versus ‘all covariates are component-specific’ (S ¼ 0). Those

states refer to d ¼ 1 and d ¼ 0 of the partially NH-DBN. To match

the priors, we set:

pðS ¼ 1Þ
pðS ¼ 0Þ ¼

pðd ¼ 1jPÞ
pðd ¼ 0jPÞ (9)

For P ¼ X1; . . . ;Xnf g; d contains n þ 1 binary elements, which

we assume to be independently Bernoulli distributed. To fulfil (9)

the Bernoulli parameter must depend on n ¼ jPj. We get: pðd ¼
1jPÞ ¼ hnþ1

n and pðd ¼ 0jPÞ ¼ ð1� hnÞnþ1. From (9) we obtain:

r :¼ pðS ¼ 1Þ
pðS ¼ 0Þ ¼

hnþ1
n

ð1� hnÞnþ1
() hn ¼

r

1þ r

� �1=ðnþ1Þ

and pðdjPÞ ¼ h
Pn

i¼0
di

n � ð1� hnÞ
Pn

1¼0
ð1�diÞ

For mixture models it is often assumed that the number of compo-

nents ~K has a Poisson distribution (Green, 1995). We truncate it to
~K 2 1;Kf g:

pðS ¼ 0Þ ¼ qðKÞ
qð1Þ þ qðKÞ and pðS ¼ 1Þ ¼ qð1Þ

qð1Þ þ qðKÞ

where qð:Þ is the density of the Poisson distribution with parameter

h ¼ 1.

2.5 GP smoothing for non-equidistant data
The regression models assume that the time lag O between the re-

sponse value yk;tþ1 and the covariate values x1;k;t; . . . ;xn;k;t is the

same for all t. If the data within a component k were measured at

time points t1; . . . ; tTk
, with varying distances Oi :¼ ti � ti�1, the

models lead to biased results. For this scenario, we propose to re-

place the observed non-equidistant response values by predicted

equidistant response values. We propose the following GP-based

method:

• Determine the lowest time lag O� ¼ min O2; . . . ;OTk

	 

, where

Oi :¼ ti � ti�1.
• Given the observed data points ðt; yk;tÞ : t ¼ t1; . . . ; tTk

	 

, use a

GP to predict the whole curve ðt; yk;tÞ
	 


t�0
.

• Extract the response values at the time points:

t1 þO�; . . . ; tTk
þO�.

• Build the response vector and design matrix such that the values

x1;k;ti
; . . . ; xn;k;ti

are used to explain the predicted response value

yk;tiþO� (i ¼ 1; . . . ;Tk). The new lag is then constant; Ot ¼ O�.

A GP is a stochastic process Yk;t

	 

t�0

, here indexed by time,

such that every finite subset of the random variables has a Gaussian

distribution. A GP can be used to estimate a non-linear curve

ðt; yk;tÞt�0 from noisy observations. We here assume the relationship:

yk;t ¼ f ðtÞ þ �t where �t � Nð0; r2Þ is observational noise, and the

non-linear function f ð:Þ is unknown. We estimate f ð:Þ by fitting a

GP to the observed data. The GP defines a distribution over the

functions f ð:Þ, which transforms the input (t1; . . . ; tTk
Þ into output

(yk;t1
; . . . ; yk;tTK

Þ, such that

ðYk;t1
; . . . ;Yk;tTK

ÞT � N Tk
ð0;Kþ r2IÞ (10)

where I is the identity matrix, and the elements of the Tk-by-Tk co-

variance matrix, K, are defined through a kernel function: Ki;j ¼
n2 � kðti; tjÞ with signal variance parameter n2. The kernel function

kð:; :Þ is typically chosen such that similar inputs ti and tj yield corre-

lated variables Yti
and Ytj

. A popular and widely used kernel is the

squared exponential kernel with: kðti; tjÞ ¼ exp � 1
2 �
ðti�tjÞ2

l2

� �
where l

is the length scale. For the unobserved vector yk;� :¼

ðyk;t1þO� ; . . . ; yk;tTk
þO� ÞT we then have the predictive distribution:

yk;� � Nðŷk;�; R̂k;�Þ (11)

with

ŷk;� :¼ ðK� þ r2IÞ � ðKþ r2IÞ�1 � y
R̂k;� :¼ ðK�� þ r2IÞ � ðK� þ r2IÞðKþ r2IÞ�1ðK� þ r2IÞT

(12)

where y :¼ ðyk;t1
; . . . ; yk;tTK

ÞT is the observed response vector, and

K� and K�� are Tk-by-Tk matrices, whose elements are given by:

ðK�Þi;j :¼ n2 � kðti þO�; tjÞ and ðK��Þi;j :¼ n2 � kðti þO�; tj þO�Þ. Before

inferring the GP, we standardize y to mean 0, and we impose log-

uniform priors on the GP parameters (r2; n2 and l). For predicting

the unobserved response vector, we have to make two decisions:

1. The GP parameters can either be sampled via MCMC simula-

tions or their maximum a posteriori (MAP) estimates can be

computed.

2. Given GP parameters, the vector yk;� can be sampled from (11)

or it can be set equal to its predictive expectation, ŷk;�, defined

in (12).

We have implemented and cross-compared all four combina-

tions. For lack of space, we here report the results obtained for pre-

dictive expectations based on MAP estimates. A comparison of the

four approaches can be found in Part D of the Supplementary

Material.

2.6 Learning topologies of regulatory networks
Assume that the variables Z1; . . . ;ZN interact with each other in

form of a network and that data were collected under K conditions

and that the conditions influence some of the interactions. Let Dk

denote the N-by-Tk data matrix which was measured under condi-

tion k. The rows of Dk correspond to the variables and the columns

of Dk correspond to Tk time points. Dk;i;t denotes the value of Zi at

time point t under condition k.

The goal is to infer the network structure. Interactions for tem-

poral data are usually modelled with a time lag, e.g. of order O ¼ 1.

An edge, Zj ! Zi, indicates that Zj has an effect on Zi in the follow-

ing sense: For all k the value Di;k;tþ1 (Zi at t þ 1) depends on Dj;k;t

(Zj at t).

There is no acyclicity constraint, and DBN inference can be

thought of as inferring N separate regression models and combining

the results. In the ith model Y :¼ Zi is the response. The remaining

N� :¼ N � 1 variables Z1; . . . ;Zi�1;Ziþ1; . . . ;ZN are the potential
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covariates. For each Y :¼ Zi we infer a covariate set Pi, and the

covariate sets P1; . . . ;PN describe a network N . There is the edge

Zj ! Zi in the networkN if and only if Zj 2 Pi.

We can thus apply the partially non-homogeneous model to each

Y ¼ Zi separately, to generate posterior samples. We extract the

covariate sets, Pð1Þi ; . . . ;PðRÞi (i ¼ 1; . . . ;N), and we merge them to a

network sample N ð1Þ; . . . ;NðRÞ. The rth network NðrÞ possesses the

edge Zj ! Zi if and only if Zj 2 PðrÞi . For each edge Zj ! Zi we can

then estimate its marginal posterior probability (‘score’):

ŝ j;i ¼
1

R

XR

r¼1
Ij!iðN ðrÞÞ where Ij!iðN ðrÞÞ ¼

1 if Zj 2 PðrÞi

0 if Zj 62 PðrÞi

(

When the true network is known, we can evaluate the network

reconstruction accuracy with precision-recall curves. For each w 2
½0;1� we extract the nðwÞ edges whose scores ŝ j;i exceed w, and we

count the number of true positives TðwÞ among them. Plotting the

precisions PðwÞ :¼ TðwÞ=nðwÞ against the recalls RðwÞ :¼ TðwÞ=M,

where M is the number of edges in the true network, gives the preci-

sion–recall curve (Davis and Goadrich, 2006). We refer to the area

under the curve as AUC value. The higher the AUC, the higher the

reconstruction accuracy.

3 Implementation

For the inverse Gamma distributed parameters (r2; k2
� ; k2

�) we use

shape and rate parameters from earlier works, e.g. in Grzegorczyk

and Husmeier (2013) and Lèbre et al. (2010): r�2 �
Gamð0:005; 0:005Þ and k�2

� ; k�2
� � Gamð2; 0:2Þ and for the hyperp-

rior on l we use l0 ¼ 0 and R0 ¼ I. Other settings led to comparable

results what indicates robustness w.r.t. those hyperparameters. To

ensure a fair comparison we use the same hyperparameters for the

competing models; cf. Section 2.3.

For generating posterior samples, we run the MCMC algorithm

from Section 2.2 for 100 000 (100k) iterations. We set the burn-in

phase to 50k and we sample every 100th graph during the sampling

phase. This yields R ¼ 500 posterior samples for each response Y ¼
Zi. We merge the individual covariate sets PðrÞi (i ¼ 1; . . . ;N;

r ¼ 1; . . . ;R) to a network sample N ð1Þ; . . . ;N ðRÞ, as explained in

Section 2.6. For each edge Zj ! Zi we then compute its edge score

ŝ j;i.

We used scatter plots of edge scores from independent simula-

tions to monitor convergence. In Section 4.3 we study convergence,

scalability and the computational costs for model inference.

We implement the GP method with the squared exponential ker-

nel and used the Matlab package ‘GPstuff’ (Vanhatalo et al., 2013)

to numerically determine the MAP estimates of the parameters via

scaled conjugate gradient optimization. We also tested other kernels,

such as the Matern 3/2 and 5/2 kernel, and for them we obtained

very similar results.

4 Empirical results

4.1 Pre-study 1: GP smoothing
Our first objective is to provide empirical evidence that the proposed

GP method from Section 2.5 can yield substantial improvements. To

this end, we generate values for 10 autoregressive (AR) variables:

Xi;t ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� g

p
�Xi;t�1 þ

ffiffiffi
g
p � �i;t ðt ¼ 0; . . . ;120; i ¼ 1; . . . ;10Þ (13)

where all �i;t’s are independently N(0, 1) distributed, Xi;1 � Nð0;1Þ
for all i, and g 2 ð0;1Þ. This yields: Xi;t � Nð0; 1Þ for all t and all i.

We further assume that X1 and X2 are covariates for:

Ytþ1 ¼ b0 þ b1X1;t þ b2X2;t þ �y;tþ1 (14)

where �y;tþ1 � Nð0;0:012Þ.
In a second scenario we replace (13) by moving averages (MA):

Xi;t ¼
Xt

j¼t�q
�i;j ðt ¼ 0; 1; . . . ; 120; i ¼ 1; . . . ;10Þ (15)

where all �i;t’s are independently Nð0; ðqþ 1Þ�1Þ distributed, so that

again Xi;t � Nð0; 1Þ for all i and t.

We generate data for both scenarios (AR and MA) with

different parameter settings ðb0;b1; b2Þ in (14) and g in (13), respect-

ive q in (15). We thin the data out and keep only the observations at

the time points t 2 0;1; 3; 5;10; 15; 30; 45; 60; 120f g, as the same

time points were measured for the mTORC1 data; see Section 4.6.

The standard regression approach uses the covariate values at ti
for explaining Y at tiþ1, although the time lag steadily increases. The

GP method from Section 2.5 predicts the response values at ti þO�,
and replaces ytiþ1

(observed Y at tiþ1) by ŷtiþO� (predicted Y at

ti þO�), where O� ¼ 1.With both approaches we run MCMC simu-

lations on each dataset, and from the MCMC samples we compute

for each covariate Xi the score that Xi is a covariate for Y.

Our results show that the proposed GP method finds the true

covariates X1 and X2, while the standard approach cannot

clearly distinguish them from the irrelevant variables X3; . . . ;X8.

Figure 2 shows histograms of the average covariate scores for

AR data with bi ¼ 1 and g ¼ 0:2, and for MA data with bi ¼ 1 and

q ¼ 10.

4.2 Pre-study 2: Synthetic RAF-pathway data
The RAF pathway, as reported in Sachs et al. (2005), consists of

N ¼ 11 nodes and 20 directed edges. The topology of the RAF path-

way is shown in Part E of the Supplementary Material. We generate

data with K ¼ 2 components and Tk ¼ 10 data points each.

Fig. 2. Average scores (posterior probabilities). In each histogram, the dark

grey bars refer to the scores of the true covariates, and the light grey bars

refer to the irrelevant variables. Covariate values were generated via AR (top)

and MA processes (bottom). The left histograms show the scores of a stand-

ard regression (without GP processing). The right histograms show the

scores when the proposed GP method is used. Error bars indicate SDs
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The parent nodes of each node Zi build its covariate set Pi. We as-

sume a linear model with component-specific regression coefficients:

zi;k;tþ1 ¼ bi
k;0 þ

X
j:Zj2Pi

bi
k;j � zj;k;t þ ei

k;t ðk ¼ 1; 2Þ

where zi;k;t denotes the value of node Zi at time point t in component

k, and bi
k;j is the regression coefficient for Zj ! Zi in component k.

The noise values ei
k;t and the initial values zi;k;1 are sampled from in-

dependent Nð0; 0:052Þ distributions. For Zi there are 2ðjPij þ 1Þ
component-specific regression coefficients. For each Zi we collect

them in two vectors bi
k (k ¼ 1, 2), and we sample the elements of bi

k

from N(0, 1) Gaussian distributions. We then re-normalize the vec-

tors to Euclidean norm one: bi
k  bi

k=jbi
kj (k ¼ 1, 2). We distinguish

six scenarios:

• (S1) Identical: We withdraw bi
2 and assume that the same regres-

sion coefficients apply to both components. We set: bi
2 ¼ bi

1 for

all i.
• (S2) Identical signs (correlated): We enforce the coefficients to

have the same signs, i.e. we replace bi
2;j by: bi

2;j :¼ signðbi
1;jÞ �

jbi
2;jj for all i and j.

• (S3) Uncorrelated: We use the vectors bi
k for component k (k ¼

1, 2). The component-specific coefficients bi
1;j and bi

2;j are then

uncorrelated for all i and all j.
• (S4) Opposite signs (negatively correlated): We withdraw the

vector bi
2 and we set: bi

2;j ¼ ð�1Þ � bi
1;j. The coefficients bi

1;j and

bi
2;j are then negatively correlated.

• Mixture of (S1) and (S3): We assume that 50% of the coefficients

are identical for both k, while the other 50% are uncorrelated.

We randomly select 50% of the coefficients and set: bi
2;j ¼ bi

1;j.

The other 50% of the coefficients stay unchanged (uncorrelated).
• Mixture of (S1) and (S4): We withdraw bi

2 and we assume that

50% of the coefficients are identical for both k, while the other

50% have an opposite sign. We randomly select 50% of the coef-

ficients and set: bi
2;j ¼ bi

1;j. For the other coefficients we set

bi
2;j ¼ ð�1Þ � bi

1;j.

For each scenario we generate 25 datasets. We then analyse

every dataset with each model. Figure 3 shows the average AUC

values for reconstructing the RAF pathway. Only for scenario (S1),

where all coefficients are constant, the models perform equally well.

For (S2–S6) the homogeneous DBN is substantially worse than the

NH-DBNs. The coupled NH-DBN is slightly superior to the (non-

coupled) NH-DBN. The proposed partially NH-DBN yields the

highest average AUC scores.

4.3 Pre-study 3: Scalability and computational costs
To study the scalability of the new network reconstruction method,

we generate data for random network structures with N 2
10; 25; 50; 100f g nodes. For each node Zi we first sample the num-

ber of parents xi from a Poisson distribution with parameter k ¼ 1

(‘Poisson in-degree distribution’), before we randomly draw a parent

set Pi from a uniform distribution over the system of all parent sets

with cardinality xi, Pi : jPij ¼ xif g. Given the network structure,

we generate data as described in Section 4.2, i.e. via regression rela-

tionships using K ¼ 2 and Tk ¼ 10. Here we present and discuss the

results for the scenario: ‘Mixture of (S1) and (S3)’. For each N we

generate 10 independent datasets, i.e. 40 in total. Next, we measure

how many MCMC iterations W we can perform in 1 h. With our

Matlab implementation on a desktop computer with Intel Xeon 2.5

GHz processor and 8GB of RAM, the average numbers of iterations

per hour are: W ¼ 208 637 (N ¼ 10), W ¼ 83 615 (N ¼ 25), W ¼
41 666 (N ¼ 50) and W ¼ 19 855 (N ¼ 100).

To monitor convergence and network reconstruction accuracy in

real-time, we perform long MCMC simulations. For each N we se-

lect the numbers of iterations such that the simulation takes 16 h.

During the simulations we sample 200 equidistant networks per

hour (i.e. 3200 networks in total). When withdrawing the first 50%

of the networks (‘burn-in’), we have Rh ¼ 100h networks after h

hours. We use those Rh networks to assess the performance after h

hours of computational time. For running two independent 16 h

long MCMC simulations on each of the 40 datasets (computational

time: 1280 h), we use a computer cluster.

To assess convergence, we consider scatter plots of the edge

scores of two independent MCMC simulations on the same dataset.

For the largest networks with N ¼ 100, Figure 4a shows superim-

posed scatter plots for different computational times. It can be seen

that after 2–4 h only few edges points deviate from the diagonal, i.e.

only few edge scores differ between independent simulations. This is

a good indication of convergence. The corresponding scatter plots

for the smaller networks with N 2 10; 25; 50f g can be found in Part

F of the Supplementary Material. As expected, the Supplementary

Figures show that the rate of convergence decreases with the size of

the network N.

The upper panel of Figure 4b monitors the average precision-

recall AUC scores along the computational time. The four AUC

curves run into plateaus. Already after 1–2 h the AUCs (i.e. the aver-

age network reconstruction accuracy) does not improve anymore.

The two curves for N ¼ 10 and ¼ 25 converge to AUC ¼ 0.72, while

the AUC limits are lower for N ¼ 50 (AUC ¼ 0.58) and N ¼ 100

(AUC ¼ 0.49). The individual AUC curves are shown in Part F of

the Supplementary Material. Taking into account that a network

among N ¼ 100 nodes had to be inferred from 20 data points (K ¼
2 conditions with Tk ¼ 10 data points each), the rather low network

reconstruction accuracy (AUC ¼ 0.49) is not surprising. To show

that higher AUCs can be reached for networks with N ¼ 100 nodes,

we repeat the study with Tk ¼ 20 and ¼ 40. The bottom panel of

Figure 4b monitors the average AUC scores for N ¼ 100 and

Tk 2 10; 20; 40f g. Here, we had to adapt the numbers of MCMC

iterations per hour to W ¼ 12 707 (Tk ¼ 20), and W ¼ 9343

Fig. 3. Network reconstruction accuracy for RAF pathway. The histograms

show the average precision-recall AUC values. Each AUC is averaged across

25 datasets and the error bars indicate SDs. The bars refer to: the homoge-

neous DBN (white), the NH-DBN model (light-grey), the coupled NH-DBN

(dark-grey) and the partially NH-DBN (black). For (S2–5) the AUC differences

are significantly in favour of the new partially NH-DBN (two-sided paired

t-test P-values < 0.05)
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(Tk ¼ 40Þ. The new curves also run into plateaus and reach higher

limits: AUC ¼ 0.70 and ¼ 0.83. The results of this section are com-

pactly summarized in Table 1.

4.4 Reconstructing the yeast gene network topology
By means of synthetic biology, Cantone et al. (2009) designed a net-

work with N ¼ 5 genes in S.cerevisiae (yeast); Figure 5 shows the

true network. With quantitative Real-Time Polymerase Chain

Reaction, Cantone et al. (2009) then measured in vivo gene expres-

sion data: under galactose- (k ¼ 1) and glucose-metabolism (k ¼ 2).

T1 ¼ 16 measurements were taken in galactose and T2 ¼ 21 in glu-

cose. The data have become a benchmark application, as the net-

work reconstruction accuracies can be cross-compared on real

in vivo gene expression data. Figure 5 shows the results, and again a

clear trend can be seen: The homogeneous DBN yields the lowest

AUC value. The NH-DBN model yields higher AUCs and can be

further improved by coupling the regression coefficients (coupled

NH-DBN). The proposed partially NH-DBN reaches the highest

network reconstruction accuracy. The results are thus consistent

with the results for the RAF-pathway data in Section 4.2.

4.5 The circadian clock network in A.thaliana
The circadian clock network in A.thaliana orchestrates the gene

regulatory processes, related to the plant metabolism, with respect

to the daily changing dark: light cycles of the solar day. The mechan-

ism of internal time-keeping allows the plant to anticipate each new

day, at the molecular level, and to optimize its growth. In K ¼ 4

experiments Arabidopsis plants were entrained in different dark:

light cycles, before the gene expressions of N ¼ 9 circadian clock

genes were measured under experimentally controlled constant light

condition. The numbers of observed time points are T1 ¼ 12 and Tk

¼ 13 for k ¼ 2, 3, 4. For further details on the experimental proto-

cols we refer to Grzegorczyk (2016). Figure 6a shows a network

that was inferred with the new partially coupled model. For the pre-

diction, we extracted the 21 edges with edge scores higher than the

threshold w ¼ 0:5. A proper biological evaluation of the network is

hindered and beyond the scope of this article, as the true circadian

clock network has not been fully discovered yet. However, our pre-

dicted network in Figure 6a contains many edges that are consistent

with hypotheses from the plant biology literature. In particular, the

high-scoring feedback loop LHY$TOC1 seems to be the most im-

portant key feature of the circadian clock network (see, e.g. Locke

et al., 2006). Moreover, it has been reported that LHY is a regulator

of the genes ELF3 and ELF4 (Alabadi et al., 2001; Kikis et al.,

2005). Also the edge LHY !CCA1 is not unexpected, as LHY and

CCA1 are known to be biological homologues (Miwa et al., 2007).

(a) (b)

Fig. 4. Convergence analysis. (a) For each of 10 datasets two independent MCMC simulations have been performed. The edge scores of the two simulations can

be plotted against each other. Each panels refer to a computational time and show 10 superimposed scatter plots. (b) Both panels show curves of the average

AUC value against the computational time. In the upper panel the network size N varies, while the no. of data points is kept fixed. In the lower panel for N ¼ 100

the no. of data points is varied

Table 1. Summary of scalability results

Nodes N 10 25 50 100 100 100

Data points 2 � Tk 20 20 20 20 40 80

Iterations per hour 208 637 83 615 41 666 19 855 12 707 9 343

AUC limit 0.72 0.72 0.58 0.49 0.70 0.83

Note: See Section 4.3 for further details.

Fig. 5. Network reconstruction accuracy for yeast gene expression data. The

histogram shows the average precision-recall AUC values, averaged across

25 MCMC simulations, with error bars indicating SDs. The AUCs are: 0.61

(DBN), 0.69 (NH-DBN), 0.81 (coupled NH-DBN) and 0.87 (new NH-DBN). All

three AUC differences are significant in terms of two-sided t-tests (P < 10–3)
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Four more edges, for which we could find biological literature refer-

ences, are: GI !TOC1 (Locke et al., 2005), ELF3 !LHY (Kikis

et al., 2005), ELF3!TOC1 (Dixon et al., 2011) and ELF3!PRR9

(Chow et al., 2012).

4.6 The mTORC1 network
The mammalian target of rapamycin complex 1 (mTORC1) is a ser-

ine/threonine kinase which is evolutionary conserved and essential

in all eukaryotes (Saxton and Sabatini, 2017). mTORC1 is at the

centre of a multiply wired, complex signalling network, whose top-

ology is well studied and contains several well-characterized feed-

back loops (Saxton and Sabatini, 2017). Hence, we used the

mTORC1 network as a surrogate based on which we can objectively

evaluate the predictive power of our partially NH-DBN model for

learning network structures. The signalling network converging on

mTORC1 is built by kinases, which inactivate or activate each other

by phosphorylation. Thus, a protein can be phosphorylated at one

or several sites, and the phosphorylations at these positions deter-

mine its activity. Signalling through the mTORC1 network is eli-

cited by external signals like insulin or amino acids. Dalle Pezze

et al. (2016) relatively quantified 11 phosphorylation states of 8 key

proteins across the mTORC1 signalling network by immunoblot-

ting; for an overview see Table 2. Dynamic time course data were

obtained under two experimental conditions, namely upon stimula-

tion with amino acids only (k ¼ 1), and with amino acids plus insu-

lin (k ¼ 2). The phosphorylation states were measured at Tk ¼ 10

time points: t ¼ 0; 1;3;5; 10; 15; 30; 45;60;120 minutes, so that the

time lag increases from 1 to 60. We therefore apply the GP method

from Section 2.5 to predict equidistant response values, before ana-

lysing the data with the proposed partially NH-DBN. The 12 edges

with scores higher than w ¼ 0:5 yield the network topology shown

in Figure 6b. A literature review shows that 11 out of the 12 edges

have been reported earlier.

We focus first on the five interactions with the highest scores

w > 0:8. Two out of these five interactions are enzyme-substrate

relationships: p70-S6K is a kinase which is directly activated by

mTORC1 through phosphorylation at threonine 389 [p70-S6K-

pT389] (Saxton and Sabatini, 2017). Thus, p70-S6K-pT389 repre-

sents a direct readout of mTORC1 activity. p70-S6K phosphorylates

IRS1 at serine 636, [IRS1-pS636] (Tzatsos and Kandor, 2006) and

mTOR at serine 2448 [mTOR-pS2448] (Dibble and Cantley, 2015),

and both edges are correctly identified by our model [p70-S6K-

pT389!IRS1-pS636, p70-S6K-pT389!mTOR-pS2448]. Two

other interactions with a high score are between AKT-pT308

$AKT-pS473. The two phosphorylations are predicted by our

model to influence each other, and a positive feedback between

phosphorylation events on S473 and T308 of AKT has indeed been

demonstrated biochemically (Manning and Toker, 2017). Another

high score prediction is between IRS1-pS636 and p70-S6K-pT389

[IRS1-pS636 !p70-S6K-pT389]. Phosphorylation at S636 inhibits

IRS1, thereby leading to inhibition of mTORC1 and its substrate

p70-S6K-T389 (Tzatsos and Kandor, 2006). Thus, the negative

feedback between IRS1-pS639 and p70-S6K-pT389 explains the

learned edge between them [IRS1-pS636!p70-S6K-pT389]. In add-

ition, IRS1 inhibition by phosphorylation at S636 results in reduced

(a) (b)

Fig. 6. Shown are the edges whose scores exceeded the threshold w ¼ 0:5; edges are labelled with their scores. Edges with scores higher than w ¼ 0:8 are in bold.

(a) Inferred circadian clock network in Arabidopsis thaliana. (b) Inferred topology of the mTORC1 signalling pathway

Table 2. mTORC1 timecourse data

Protein Full name Sites

mTOR mammalian target of rapamycin pS2481, pS2448

PRAS40 proline-rich AKT/PKB substrate 40 kDa pT246, pS183

AKT Protein kinase B pT308, pS473

IRS1 insulin receptor substrate 1 pS636

IR-beta insulin receptor beta pY1146

AMPK AMP-dependent protein kinase pT172

TSC2 tuberous sclerosis 2 protein pS1387

p70-S6K Ribosomal protein S6 kinase beta-1 pT389

Note: Overview to the 8 proteins and the 11 measured phosphorylation

sites.
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phosphorylation of AKT at threonine 308, which is in agreement

with the learned edge between IRS1-pS636 and AKT-pT308 [IRS1-

pS636!AKT-pT308].

We could also find evidence for 6 of the remaining 7 edges with

scores in between 0.5 and 0.8. PRAS40 is an endogenous mTORC1

inhibitor (Saxton and Sabatini, 2017). The edge from PRAS40-

pT246 to PRAS40-pS183 corresponds to a well-described mechan-

ism of PRAS40 regulation: AKT phosphorylates PRAS40 at T246

[PRAS40-pT246], which allows subsequent phosphorylation of

PRAS40-S183 by mTORC1 (Nascimento et al., 2010). This inter-

action is accurately resembled by our model [PRAS40-pT246!
PRAS40-pS183]. PRAS40’s double phosphorylation dissociates

PRAS40 from mTORC1, leading to its derepression (Nascimento

et al., 2010). This mechanism is resembled by the edge between

PRAS40-S183 and mTOR-S2481 [PRAS40-pS183!mTOR-

pS2481], the latter being an autophosphorylation site which directly

monitors mTOR activity (Soliman et al., 2010). Furthermore, the

model suggests an edge between p70-S6K-pT389 and PRAS40-

pS183 [p70-S6K-pT389!PRAS40-pS183]. Both are mTORC1 sub-

strate sites (Nascimento et al., 2010; Saxton and Sabatini, 2017)

and are therefore often targeted in parallel. The only predicted edge

for which there is to the best of our knowledge no literature evidence

is between mTOR-pS2448 and TSC2-pS1387 [mTOR-pS2448

!TSC2-pS1387]. TSC2 is activated by phosphorylation at S1387

and inhibits mTORC1 (Hindupur et al., 2015). Our model predic-

tion that mTORC1—when phosphorylated at S2448 by p70-S6K—

regulates TSC2 remains to be experimentally tested.

After having identified 11 of 12 edges as true positives, we per-

formed a literature review to find false negative edges, i.e. edges that

our model did not extract, although it has been reported that they

exist. This way, we could identify two false negative edges, namely:

IR-beta-pY1146!AKT-pT308 and AMPK-pT172!TSC2-pS1387,

which were reported in Vigneri et al. (2016) and Mihaylova and

Shaw (2012), respectively. Finally, we note that this does not imply

that the remaining edges that our model did not extract can be

assumed to be true negatives. Nowadays incomplete knowledge

about the topology of the mTORC1 pathway renders the safe identi-

fication of true negative edges impossible. The absence of literature

reports on an edge does not necessarily imply that it does not exist.

5 Conclusion and discussion

We propose a new partially NH-DBN model for learning network

structures. When data are measured under different experimental

conditions, it is rarely clear whether the data can be merged and

analysed within one single model, or whether there is need for a

NH-DBN model that allows the network parameters to depend on

the condition. The new partially NH-DBN has been designed such

that it can infer the best trade-off from the data. It infers for each in-

dividual edge whether the corresponding interaction parameter is

constant or condition-specific. Our applications to synthetic RAF

pathway data as well as to yeast gene-expression data have shown

that the partially NH-DBN model improves the network reconstruc-

tion accuracy. We have used the partially NH-DBN model to predict

the structure of the mTORC1 signalling network. As the measured

mTORC1 data are non-equidistant, we have applied a GP-based

method to predict the missing equidistant values. Results on synthet-

ic data (see Section 4.1) show that the proposed GP-method (see

Section 2.5) can lead to substantially improved results.

All but one of the predicted interactions across the mTORC1

network are reflected in experiments reported in the biological

literature. Dalle Pezze et al. (2016) built an ODE-based dynamic

model which allows to predict signalling responses to perturbations.

Like for many ODE-based models, the topology of this model was

defined by the authors, based on literature-knowledge. The ODE

model simulations could reproduce the measured mTORC1 time-

course data. Interestingly, all the connections predicted by our new

partially NH-DBN model form part of the core model by Dalle

Pezze et al. (2016). Hence, we present an alternative unsupervised

learning approach, in which the topology of signalling networks is

inferred directly from the data. The new model is thus a complemen-

tary tool that enhances dynamic model building by predicting the

network’s topology in a purely data-driven manner.

Although it worked well for the mTORC1 data, we note that the

GP method from Section 2.5 requires the time series to be sufficient-

ly smooth. For non-smooth time series the method might not be able

to properly predict the values at unobserved time points, leading to

biased response values. Then, network reconstruction methods, such

as the new partially NH-DBN, will inevitably infer distorted net-

work topologies and wrong conclusions might be drawn. The as-

sumption of smoothness is therefore crucial for the complete

analysis pipeline to work. Our results in Section 4.3 show that the

new partially NH-DBN can also be used to infer larger networks.

However, our results suggest that there is then need for more data

points (or higher signal-to-noise ratios, respectively) to reach accur-

ate network predictions. A conceptual advantage of our partially

NH-DBN is that it has two established models, namely the homoge-

neous DBN (d ¼ 1) and the globally coupled NH-DBN (d ¼ 0) as

limiting cases. The new model operates between them, and as we

follow a model averaging approach, it is less susceptible to over-

fitting. The edge scores of the partially NH-DBN take the two estab-

lished models as well as all ‘in-between’ models into account. For

sparse data, we would thus expect low edge scores, indicating that

we might average across too many models.
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