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Cellular inhibitors of apoptosis proteins 1 and 2 (cIAP1/2) are members of the inhibitor of apoptosis protein (IAP) family that has
been implicated in the pathology of human cancers due to their overexpression and function as blockers of cell death in various
cancers. As a result, small molecule IAP antagonists have been developed and are currently under clinical evaluation for potential
therapeutic use. In contrast, recent evidence has indicated a tumour-suppressing role for the cIAPs. Mutations in or loss of cIAPs
have been identified as molecular lesions that contribute to constitutive activation of NF-κB in hematopoietic malignancies. These
studies reveal a context-dependent role for the cIAPs wherein both their overexpression and loss may contribute to tumourigenesis.

1. Cellular Inhibitor of Apoptosis
Proteins (cIAPs)

The inhibitor of apoptosis proteins (IAPs) are potent
suppressors of apoptosis and the human family is com-
prised of eight members: cellular IAP 1 (cIAP1), cellular
IAP 2 (cIAP2), X-linked IAP (XIAP), neuronal apopto-
sis inhibitory protein (NAIP), melanoma IAP (ML-IAP),
survivin, Apollon, and IAP like protein 2 (ILP2) [1]. All
IAP proteins are characterized by the presence of one to
three baculovirus IAP repeat (BIR) domains, which are
zinc-binding regions of approximately 70 amino acids that
mediate protein-protein interactions [2]. A number of IAPs
also contain a RING (really interesting new gene) domain
that confers ubiquitin protein ligase (E3) activity and are
capable of auto-ubiquitination, as well as ubiquitination of
proteins involved in apoptosis and signaling [3].

cIAP1 and cIAP2 can bind caspases, but do not directly
inhibit them [4]. Instead, they exert their antiapoptotic
effects through protein-protein interactions and by mod-
ulating the levels of other proteins through their function
as ubiquitin ligases. Firstly, cIAP1/2 can bind to Smac and
sequester it from XIAP, allowing XIAP to inhibit caspases
and suppress apoptosis [5]. Furthermore, the cIAPs can

target caspases and Smac for degradation by mediating their
ubiquitination [5, 6]. The ubiquitin ligase activity of the
cIAPs is conferred by the presence of the RING domain
in their carboxy terminus and their substrates include
themselves and proteins involved in signaling [7], including
multiple substrates in the tumour necrosis factor receptor
(TNFR) complex [8, 9]. This function imparts a role for
cIAPs in the regulation of NF-κB activation.

2. Regulation of NF-kB by cIAPs

Activation of NF-κB signaling regulates a large number
of genes involved in a wide range of biological functions
including cytokines, adhesion molecules, chemokines, and a
number of genes that contribute to survival by promoting
proliferation and inhibiting apoptosis [10].

The cIAPs can regulate the canonical and noncanonical
NF-κB pathways in contrasting ways (Figure 1). cIAP1/2
plays a critical role in TNF receptor (TNFR) signaling to
canonical NF-κB [11]. Binding of TNF-α to TNFR induces
the formation of complex I, consisting of TRADD (TNF
receptor-associated death domain), TRAF2 (TNF receptor-
associated factor 2), and RIP1 (receptor interacting protein
1) [12]. TRAF2 recruits cIAP1/2 to the complex, where
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Figure 1: cIAP1/2 participates in positive and negative regulation of NF-κB. cIAP1/2 are recruited to an activated TNF receptor where
they mediate K-63 polyubiquitination of RIP1. RIP1 subsequently activates the IKK complex, resulting in activation of canonical NF-κB
complexes. In contrast, cIAP1/2 represses activation of canonical and noncanonical NF-κB signaling by ubiquitinating NIK, leading to its
degradation. Mutation or loss of cIAP1/2 results in accumulation of NIK, resulting in activation of both canonical and noncanonical NF-κB.
Activated NF-κB complexes promote the transcription of various growth and survival factors, such as IL6 (Interleukin 6) and BAFF (B-cell
activating factor). cIAP, cellular inhibitor of apoptosis; IKK, IκB kinase; NIK, NF-κB inducing kinase; RIP, receptor interacting protein; TNF,
tumour necrosis factor; TNFR, TNF receptor; TRAF, TNFR-associated factor; TRADD, TNFR-associated death domain.

they are required for TNFR-induced activation of NF-
κB signaling. The RING domains of cIAP1/2 catalyze the
activating K63-linked polyubiquitination of RIP1, which
activates the TAK1 (transforming growth factor-β-activated
kinase 1) kinase complex [13]. This complex mediates
the phosphorylation of IKK, which in turn phosphorylates
IκB to signal its degradation and activates canonical NF-
κB [14]. The K63-linked polyubiquitination of RIP1 also
suppresses the activation of caspase-8 and formation of the
proapoptotic complex II [15], thereby preventing apoptosis.
The expression of prosurvival genes stimulated by TNF-α
activation of NF-κB signaling is believed to play a major role
in the protection against TNF-α-induced cell death [16].

In contrast, cIAP1/2 can also repress NF-κB activity.
As previously mentioned, cIAP1/2 participate in a multi-
subunit ubiquitin ligase complex that includes TRAF2 and
TRAF3. This complex targets NIK and tonically represses it
to limit the activation of both the canonical and noncanoni-
cal NF-κB signaling [17–19]. Mutations in the constituents
of this complex, including cIAP1/2, lead to constitutive
activation of NF-κB [20, 21].

Thus, the cIAPs can both positively and negative regulate
the NF-κB pathway. While cIAPs participate in the activating

ubiquitination of RIP to result in activation of the canonical
pathway in response to TNF/death ligands, they conversely
ubiquitinate NIK in an inhibitory manner to suppress the
both the canonical and noncanonical pathways.

3. Oncogenic Role of cIAPs

True to its name, the cIAPs play an important role in the inhi-
bition of apoptosis. They are induced to promote survival
during cellular stresses such as detachment from extracellular
matrix [22] and ER stress [23]. They are also induced by pro-
survival signaling such as nuclear factor (NF)-κB [24, 25].
Not surprisingly, their antiapoptotic activity is exploited for
tumour cell survival, and their expression is induced by
potent oncogenes such as Ras [26] and E6 [27]. Many mem-
bers of the IAP family, including the cIAPs, are overexpressed
in a number of human cancers and are associated with poor
prognosis [28]. Direct genetic evidence has demonstrated
the cIAPs as protooncogenes. Chromosomal amplification
of the 11q21–23 region, which encompasses both cIAP1
and cIAP2, is observed in a variety of cancers, including
renal cell carcinomas, glioblastomas, gastric carcinomas, and
nonsmall cell lung carcinomas [29–31]. Additional genetic
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evidence comes from MALT (mucosa-associated lymphoid
tissue) lymphoma. Approximately 50% of surveyed cases
displayed a t(11,18) (q21; q21) translocation, which results
in a fusion of the BIR domains of cIAP2 with the carboxy
terminus of the paracaspase domain of MALT1 [32, 33]. The
resulting fusion protein promotes constitutive activation of
NF-κB, leading to increased prosurvival signaling.

3.1. IAP Antagonists. The anti-apoptotic function of IAPs
and their overexpression in a wide variety of cancers make
them attractive therapeutic targets. As such, a number of
strategies to target IAP proteins in cancer are currently
under investigation. One focus has been on the generation of
molecules that mimic the aminoterminus of mature Smac.
These Smac mimetics disrupt IAP : caspase and IAP : SMAC
interactions and can stimulate cell death [34]. Originally
designed to target XIAP, these antagonists exhibit higher
affinities for the cIAPs, triggering autoubiquitination and
proteasomal degradation. Following treatment with an IAP
antagonist, it is speculated that the downregulation of
cIAPs result in the accumulation of NIK, which activates
noncanonical NF-κB signaling and leads to autocrine TNF-
α production [35–37]. In the absence of cIAPs, activation of
survival genes by p65/RelA is greatly reduced [14, 38]. TNF-α
instead triggers the formation of the pro-apoptotic complex
II, consisting of FADD, caspase-8, and deubiquitinated
RIP1, resulting in apoptosis [39]. While treatment with IAP
antagonists as a single agent has shown some success in a
limited number of human cancer cell lines, their cytotoxicity
is often augmented when used in combination with other
agents such as TNF-α and tumour necrosis factor-related
apoptosis-inducing ligand (TRAIL) [30, 40].

4. Tumour Suppressing Role of cIAPs

While overexpression of cIAPs likely promote tumouri-
genesis by inhibiting apoptosis through their interac-
tions with components of the apoptotic machinery (i.e.,
SMAC/DIABLO), the loss of cIAPs in a number of blood
malignancies is associated with pro-survival activation of
NF-κB signaling. Recent studies have shown that mutations
or translocations resulting in the loss of cIAPs are, in part,
responsible for constitutive activation of NF-κB signaling in
several cancers. Two independent groups reported that con-
stitutive activation of NF-κB signaling in multiple myeloma
may be attributable to alterations in cIAP2 or components
of the NIK-regulating complex including cIAP1, TRAF2,
and/or TRAF3 [20, 21]. The resulting NIK-mediated acti-
vation of both canonical and noncanonical NF-κB signaling
is essential for promoting tumour cell survival in multiple
myeloma [20]. Aberrant activation of NF-κB is also detected
in a majority (∼60%) of splenic marginal zone lymphomas
(SMZL) [41]. Investigation into possible molecular lesions
in the NF-κB pathway revealed disruption of cIAP2 as a
contributor to constitutive NF-κB activation. Out of 101
SMZL cases analyzed, 11% of cases harboured abnormalities
in cIAP2 by inactivating mutations, missense mutations
and gene deletions. These mutations were all monoallelic,

suggesting that genetic lesions in cIAP2 may have a dominant
negative effect. All of the SMZL primary cases displaying
cIAP2 mutations showed constitutive activation of NF-κB
signaling, including accumulation of NIK.

Rossi et al. recently showed that genetic disruption
of cIAP2 in chronic lymphocytic leukemia is associated
with fludarabine resistance and a poor outcome similar to
that attributed to TP53 abnormalities [42]. Additionally,
progressive but fludarabine-sensitive disease was devoid of
cIAP2 mutations/loss, indicating that the genetic lesions are
specifically associated with a chemoresistant phenotype. The
loss of cIAP2 in these lesions was found to be associated with
constitutive activation of NF-κB, consistent with its role as a
negative regulator of NIK. Interestingly, disruption of cIAP2
through inactivating mutations and/or gene deletions was
found to be mutually exclusive with TP53 abnormalities.

Since NF-κB is a known negative regulator of p53 [43],
it is possible that the loss of cIAP2 in these cells results
in reduced p53 function, thus obviating the requirement
for inactivating mutations in TP53. In line with this, our
lab has shown that in breast mammary epithelial cells, the
downregulation of cIAP2 results in reduction of wild-type
p53 protein (unpublished data). This may also explain why
CLL patients lacking functional cIAP2 display a similar
outcome as patients with TP53 abnormalities.

5. Conclusion

Transient activation of NF-κB signaling is utilized by normal
B-lymphocytes to promote cell survival and differentiation
as a response to antigens [44]. However, aberrant activation
of NF-κB is a major contributor to the oncogenesis [45].
The loss of cIAPs in a number of lymphoid malignancies
results in constitutive activation of both canonical and non-
canonical NF-κB signaling, leading to increased survival
and proliferative signals. In contrast to the oncogenic role
typically attributed to IAPs, these recent studies have shown
a tumour-suppressing role for the cIAPs in limiting NF-
κB activity. These studies underscore the importance of
the cellular context under which cIAPs are therapeutically
targeted since overexpression and loss can both contribute
to cancer cell progression.
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