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Abstract \
Despite the conventional definition of RNA binding proteins (RBPs) as controlling the metabolism of their bound RNAs, more and

more RBPs are found to function via distinct ways in complex biological processes. With the recent discovery of transcriptional
regulation activity of some RBPs, a hypothesis that RBPs could be multilayered regulators orchestrating gene expression has
emerged. Hematopoiesis is a stepwise process that needs to be fine-tuned to keep the subtle balance between hematopoietic stem
cell (HSC) stemness maintenance and downstream lineage commitment. Although the classic RBPs account for the
posttranscriptional regulation in hematopoiesis, the importance and multiple regulatory capacities of RBPs have not been well-
characterized. In this review, we summarize the recent findings of large-scale screening of novel RBPs and their novel transcriptional
regulation potentials. In hematopoietic system, this kind of multifaced regulators account for nearly a half of functional RBPs.
Therefore, further studies on identifying this new kind of multifaced RBPs and clarifying their regulatory mechanisms would help us
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better understand the precise and complex regulatory networks of gene expression in hematopoiesis.

1. RBPS ARE DIVERSIFIED REGULATORS
INVOLVED IN DIFFERENT REGULATION PATHWAYS

So far, there are approximately 20,000 protein-coding genes in
human genome, of which over 1500 have been annotated as RNA
binding proteins (RBPs) that regulate the biogenesis, fate, and
function of RNAs."

Conventional RBPs take part in the formation of ribonucleo-
protein complex and govern RNA processing to maintain
fundamental gene expression.> RBPs recognize and bind to
specific sequences or structures in RNA molecules via a set of
defined RNA binding domains (RBDs),® although studies on
decoding ribonucleoprotein structures revealed the existence of
protein—RNA interactions that do not require classical RBDs,*
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and this unconventional type of protein—RNA interaction is more
common than anticipated.

The canonical regulation mode of an RBP is to take “good
care” of its target RNAs on different aspects; however, emerging
evidences have indicated that the RNA-modulating pathway is
not universally applicable, as some RBPs can be recruited by
RNA, while the others can work independently, for instance,
PKR (interferon-induced, double-stranded RNA-activated pro-
tein kinase) and RIGI (retinoic acid-inducible gene I protein) can
be activated by abnormal RNA molecules derived from virus
replication'®'* and TRIM2S can activate the production of
interferon upon the stimulation of viral RNA molecules.'?
Furthermore, several RBPs have been reported to act on
chromatin, thus regulating gene transcription. For example,
Lin28A binds to genomic regions near the transcription start sites
and activates gene transcription by interplaying with DNA
methylcytosine oxidase (Tet1).'* Another study in Arabidopsis
thidopsis revealed that AGO1, a classical RBP involved in RNA
interference, could also bind to specific chromatin regions with
SWI /SNF complex to activate gene expression.'> Moreover, it
was reported that hnRNP U (heterogeneous nuclear ribonucleo-
protein U) bound to the active chromatin regions and facilitated
the maintenance of the 3D structure of chromatin together with
CTCF, RAD21 and other chromatin structural proteins.'®

Currently, the traditional conception of RBPs is being
overturned gradually, and increasing evidences prompt us to
redefine the role of RBP in multiple biological processes not only
as a key regulator of RNA metabolism.

2. RBPS PLAY CRITICAL ROLE IN HEMATOPOIESIS
AT THE POSTTRANSCRIPTIONAL LEVEL

Hematopoiesis is a stepwise process that requires multilayered
regulation to keep a subtle balance between hematopoietic stem cell
(HSC) stemness maintenance and downstream lineage commitment.
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Any perturbation in the balance would lead to severe pathological
phenotypes. On the other hand, efforts to discover novel key
regulators or pathways that regulate the hematopoietic homeostasis
may offer great opportunities to manipulate the composition of
hematopoietic cell pool, thus shedding lights on clinical management
of malignant hematological diseases.

Although numerous studies focused on transcriptional regula-
tion have proved the crucial role in hematopoiesis,'”'® the
pluripotency of HSC and its capacity to differentiate into all
blood cell subtypes by cell fate decision make it an extraordinary
complex system that must be controlled precisely at multiple
levels. Besides the classical “checkpoint” function on the way
from DNA to RNA, the regulatory events occurring on the RNA
molecules have won their reputation as a detrimental process in
hematopoiesis in recent years. This posttranscriptional regulation
mechanism forms an additional level for the rapid and precise
orchestration of protein expression during hematopoiesis.’
Importantly, it is well-recognized that RBPs are the key players
involved in this regulation network.

So far, several RBPs have been identified to regulate
hematopoiesis via regulating RNA splicing, RNA modification,
RNA translation, or RNA decay. The RNA splicing is the major
component of RBP-regulated pathways. For example, the RBP
Rbm135 regulates the splicing of c-Mpl receptor and affects the
thrombopoietin signaling pathway, thus contributing to the
quiescence and proliferation of HSC.2® Another splicing factor
Srsf2 has a role in HSC production and hematopoietic
reconstitution in mouse model.?"?? Previously, we identified

QKI5 could activate the processing of primary miR-124-1 and
decreased QKIS during erythropoiesis led to concomitant
reduction of mature miR-124, which facilitated erythrocyte
maturation.”> Furthermore, we also confirmed that RBP KSRP
promoted the processing of primary miR-129, thus inducing
granulocyte differentiation at the level of monocyte-macrophage
differentiation.>* The most well-characterized modification on
RNA is N®-methyladenosine (m®A),** which is dominated by the
“writer” protein METTL3 and METTL14.>**” METTL3
depletion induces loss of m®A modification, which then triggers
the expression of hematopoietic differentiation-associated genes;
therefore, Mettl3-deficient mice displayed T cell activation
deficiency.”® RBP Musashi-2 (MSI2), a repressor of mRNA
translation, has a key role in HSC self-renewal and lineage
determination by modulating TGF-B signaling pathway.?’ RBP
ZFP36 has been reported to control erythroid differentiation by
regulating RNA decay.>*! However, the current knowledge of
RBP’s function in hematopoietic system is still very limited and
mainly focus on the RNA-binding-associated activities; thus,
further investigation of multifunctional potency of the hemato-
logic RBPs is highly demanded.

3. INSIGHTS INTO THE MULTILAYERED
REGULATORY POTENCY OF NOVEL RBPS IN
HEMATOPOIETIC SYSTEM

Currently benefited from the development of large-scale
screening approaches for novel RBPs, we can have a glimpse
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Figure 1. Outline of newly identified RBPs and their potential function in hematopoietic system. A: Venn diagram of RNA binding proteins in the RBPdb and
ATtRACT database. The union of these two sets represents the classical human RNA binding proteins, consisting of 441 proteins. B: Venn diagrams comparing the
441 classical RBPs to the 1137 novel RBPs. The novel RBPs are identified by XRNAX-derived RNA binding proteomes or poly(A) interactomes. The histogram
described the proportion of novel and classical RBPs. C: The histogram describes the 66 novel and 24 classical RBPs associated with the hematopoietic process.
The hematopoiesis-related terms are collected in gene ontology database (http://geneontology.org/), with the following keywords: hemopoiesis; hematopoietic;
erythrocyte; megakaryocyte; monocyte; neutrophils; lymphocyte; myeloid. D: There are 405 novel and 219 classical RBPs identified in high-throughput studies

defining the human dsDNA interactomes.
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of the newly identified multipotent RBPs in hematopoiesis.
According to two most commonly used databases, RBPdb and
ATtRACT, there are only 441 classical RBPs annotated (Fig. 1A).
However, Castello et al identified 837 proteins that could bind to
RNA directly using a poly(A)-baiting protein capture screening
system.>? Among these recognized RBPs, 602 were found to
interact with RNA for the first time (Fig. 1B). Another
outstanding work carried out by Trendel et al described a
method named “XRNAX”, which extracted protein-cross-linked
RNAs based on organic phase separation.*® “XRNAX” could
purify broad-spectrum RNA and also provided a new protocol
for RNA binding protein screening, which picked up 1238 RBPs,
among them 995 were newly identified (Fig. 1B). These two
studies revealed in total 1137 novel RBPs that accounted for up to
70% of all RNA-protein interaction events as compared to
classical ones that only hit less than 30%.

As for hematopoietic system, we realized that the importance
of RBP in hematopoiesis should be recharacterized because of the
ever-expanding list of RBPs. Therefore, we obtained 954
hematopoiesis-associated genes from QuickGO database.>*%°
When we investigated the gene sets, only 24 classical RBPs were
involved in hematopoietic system. However, 66 RBPs from those
newly discovered RBP set were found to be associated with
different pathways in hematopoiesis (Fig. 1C). The increasing
number of RBPs demonstrated its crucial role of RNA-mediated
functions in hematopoietic system.

Indeed, the field of RBPs is far beyond our current
understanding, because not only a good deal of potential RBPs
are needed to be uncovered, but also the inadequate knowledge of
the multilayered regulation capacity of RBPs. A research profiling
the human protein-DNA interactome revealed 4191 DNA
binding proteins (DBPs).>® It is notable that when we looked
into this large set of DBPs, we observed 405 newly identified
RBPs and 219 classical RBPs (Fig. 1D). These discoveries
prompted us to reconsider the definition between DBP and RBP,
and the multiple regulatory potentials of RBP on both
posttranscriptional and transcriptional levels. For the hemato-
poietic system, we found 37 RBPs that were predicted to have the
ability to bind both RNA and DNA. They accounted for about
40% in all hematopoietic RBPs, suggesting a rather common
phenomenon for RBPs to have multifunction in one system.
Moreover, from the Encode project,®” we found 92 RBPs with
their defined ChIP-seq data, further proving that RBPs indeed
have multiple regulatory capacities, while 7 of them were
functionally proved in hematopoietic system.

Taken together, in complex systems such as hematopoiesis,
regulators tend to function precisely at multiple levels. Case
studies and large-scale screening have demonstrated that RBPs
could regulate gene expression at different levels. Development of
new techniques will definitely provide new insights of RBPs and
their novel regulatory pathways.
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