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LncRNA MALAT1 exhibits positive effects
on nucleus pulposus cell biology in vivo
and in vitro by sponging miR-503
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Abstract

Background: Intervertebral disc degeneration (IDD) is characterized by the loss of nucleus pulposus cells (NPCs)
and phenotypic abnormalities. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) are involved
in the pathogenesis of IDD. In this study, we aimed to investigate the functional effects of lncRNA MALAT1 on
NPCs in IDD and the possible mechanism governing these effects.

Results: We validated the decreased expression of MALAT1 in the IDD tissues, which was associated with
decreased Collagen II and Aggrecan expression. In vitro, overexpressed MALAT1 could attenuate the effect of IL-1β
on NPC proliferation, apoptosis, and Aggrecan degradation. In vivo, MALAT1 overexpression attenuated the severity
of disc degeneration in IDD model rats. Our molecular study further demonstrated that MALAT1 could sponge miR-
503, modulate the expression of miR-503, and activate downstream MAPK signaling pathways. The effects of
MALAT1 on NPCs were partially reversed/aggregated by miR-503 mimics/inhibitor treatment.

Conclusion: Our data suggested that the MALAT1-miR-503-MAPK pathway plays a critical role in NPCs, which may
be a potential strategy for alleviating IDD.

Keywords: Intervertebral disc degeneration, Long noncoding RNA MALAT1, microRNA-503, Nucleus pulposus cells,
Apoptosis, MAPK pathway

Background
Intervertebral disc degeneration (IDD) has been widely
regarded as making a significant contribution to low back
pain (LBP), a leading cause of chronic pain, at various
times and is an important cause of a series of spinal de-
generative diseases [1]. The intervertebral disc (IVD), con-
sists of three structurally connected parts: the peripheral
annulus fibrosus (AF), the central gelatinous nucleus pul-
posus (NP) and the cartilage endplates (CEPs) [2], and it is
the largest avascular organ. Nucleus pulposus cells (NPCs)

are highly hydrated in healthy IVDs, which can produce
abundant Aggrecan and Collagen II [3] and can ensure
the IVD mechanical function of distributing the axial
compressive forces acting on the spine and the multiaxial
flexibility together with AF, cartilaginous and bony end-
plates [4]. Loss of NPCs [5, 6] and imbalance of matrix
synthesis and degradation [7], play important roles in the
occurrence and development of IDD. Therefore, targeting
the function of NPCs represents a potential strategy for
the improvement of IDD.
Long noncoding RNAs (lncRNAs) are a class of noncod-

ing RNAs with a transcriptional length of more than 200
nucleotides, regulating gene expression in epigenetics, tran-
scription, and post-transcription [8]. Recently, accumulating
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evidence has shown that aberrantly expressed lncRNAs play
a vital role in the IDD process. The levels of MALAT1 were
significantly reduced in NPCs from IDD patients [9]. Re-
cent reports found that MALAT1, metastasis-associated
lung adenocarcinoma transcript-1, promoted caspase 3 ac-
tivity, regulated the secretion of cytokines, and was involved
in cell proliferation, migration, and apoptosis [10, 11].
These findings suggested that MALAT1 might participate
in IDD development by inducing NPCapoptosis and the se-
cretion of pro-inflammatory cytokines. However, little is
known about the role and mechanism of MALAT1 in IDD.
The genetic mechanisms of lncRNAs primarily include

miRNAs sponges. LncRNAs could posttranscriptionally
interact with miRNAs to serve as competing endogenous
RNAs (ceRNAs), thereby repressing miRNA expression,
and can inhibit translation or degradation of miRNA down-
stream targets. Yan et al. [12] demonstrated that MALAT1
could directly bind to miR-503 and modulate the expres-
sion of miR-503. miR-503, located on the chromosome
Xq26.3, is an intragenic miRNA and belongs to the miR-16
family [12]. Prevailing evidence suggests that miR-503 ex-
erts diverse biological functions, such as osteoblast prolifer-
ation and apoptosis, which are potentially amenable to
therapeutic manipulation for clinical application [13]. Add-
itionally, in several cell lines, MALAT1 could regulate
downstream MAPK and activator protein-1 (AP1) signaling
pathways, which play a critical role in intervertebral disc de-
generation [14–16]. However, the impact of MALAT1 on
the MAPK/AP1 pathway in NPC has not been determined.
In the present study, we found lower levels of

MALAT1 expression in IDD tissues and an association
with Collagen II/Aggrecan. We also analyzed the func-
tional effects of MALAT1 overexpression, and miR-503
mimics/inhibitor on NPC proliferation, apoptosis, and
ECM degradation in vitro and in vivo. In addition, we
investigated the involvement of the MAPK/AP1 signal-
ing pathway in this process.

Results
Expression of MALAT1 in lumbar IDD tissues and the
correlation with the prognosis of IDD
To investigate the effect of lnc-MALAT1 in IDD, we ex-
amined its expression in tissue specimens, including 10
normal specimens and 37 lumbar IDD specimens. The
results showed that MALAT1 expression was signifi-
cantly down-regulated in the lumbar IDD specimens
(Fig. 1a). We evaluated the progression of the above 37
IDDs according to the Pfirrmann grading (mild degener-
ation: 3–4, 21, severely degraded: 5–6, 16). The
MALAT1 level was lower in severely IDD specimens
than in mild IDD specimens (Fig. 1b). IDD is character-
ized by decreased cell number, increased matrix degrad-
ation [17] and increased proinflammatory cytokine
release [18]. Therefore, we examined the expression of

IL-1β, Collagen II and Aggrecan in IDD specimens and
normal specimens. Compared with normal specimens,
IL-1β mRNA levels were significantly up-regulated in
IDD specimens, while Collagen II and Aggrecan levels
were significantly down-regulated (Fig. 1c-e). This result
suggests that MALAT1 may play a potential role in IDD
progression.

IL-1β inhibits the function of NPCs and the expression of
MALAT1
Elevated levels of proinflammatory mediators increased
Aggrecan and Collagen II degradation, and increased deg-
radation of extracellular matrix (ECM) has been widely
regarded as a significant contributor to intervertebral disc
degeneration (IDD). After stimulation with IL-1β, the pro-
liferation and number of human NPCs were inhibited
(Fig. 2a-b). Additionally, IL-1β reduced the expression of
MALAT1 (Fig. 2c). We found that IL-1β can reduce the
expression of Aggrecan and Collagen II (Fig. 2d-f).

MALAT1 modulates IL-1β-induced dysfunction of NPC
proliferation, apoptosis, and ECM degradation in vitro
Next, the function of MALAT1 in IL-1β-stimulated
NPCs was evaluated by measuring Collagen II and
Aggrecan protein levels, cell proliferation, and cell senes-
cence in human NPCs (Fig. 3a). MALAT1 overexpres-
sion reversed the effect of IL-1β on NPC proliferation
(Fig. 3b), NPC number (Fig. 3c), and cell apoptosis
(Fig. 3d-e) induced by IL-1β. Overexpression of
MALAT1 reversed the inhibitory effect IL-1β on Colla-
gen II and Aggrecan protein levels (Fig. 3f-h). These data
indicate that MALAT1 overexpression partially reverses
the effect of IL-1β on NPC.

MALAT1 modulates IL-1β-induced IDD and inhibits
apoptosis in the rat model
After 4 weeks of modeling, characterization of rat lumbar
vertebral IDD caused by unbalanced dynamics and static
forces was observed on X-ray films. After the injection of
MALAT1 into the L4/L5 and L5/L6 discs of the rats, there
was no significant difference between the two groups
(Fig. 4a). At 4 weeks after injection, the MRI of the inter-
vertebral disc in the OV-MALAT1 group showed stronger
signal intensity than the control group (Fig. 4b).
The intervertebral disc AF of the OV-MALAT1 group

showed normal structure or mild serpentine appearance,
while the control group showed mild to moderate ap-
pearance, eventually showing a serious serpentine ap-
pearance, contour reversal, and rupture (Fig. 4c). At four
weeks after injection, the histological score of the Ov-
MALAT1 group was significantly lower than that of the
OV-NC group (P < 0.05) (Fig. 4d). The apoptosis of
intervertebral disc cells was detected by in situ TUNEL
staining. After four weeks of injection, the ratio of
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apoptotic cells in the annulus fibrosus (external or in-
ternal) of the OV-MALAT1 group was significantly
lower than that of the OV-NC group (Fig. 4e-f).

MALAT1 acts as a sponge for miR-503
In general, lncRNAs could interact with miRNAs, and
affect miRNA-binding target genes and downstream sig-
naling pathways. Therefore, we investigated whether
miRNAs are involved in the effect of MALAT1 on IDD.
Bioinformatic analysis showed that MALAT1 binds to
miR-503 (Fig. 5a). Luciferase reporter experiments
showed that the transfection of miR-503 mimics signifi-
cantly inhibited the luciferase activity of wild-type
MALAT1, but not mutated MALAT1 (Fig. 5b). Knock-
down of MALAT1 significantly increased the level of
miR-503 expression in NPCs (Fig. 5c), but the transfec-
tion of miR-503 mimics did not change the MALAT1
levels in NPCs (Fig. 5d). Additionally, the expression
levels of miR-503 were detected in the clinical sample.
As Fig. 5e shows, the miR-503 expression level was
markedly higher in IDD tissue than in normal tissue.
Furthermore, Spearman’s rank correlation analysis re-
vealed that MALAT1 expression was negatively

correlated with miR-503 (Fig. 5f). These data indicated
that MALAT1 acts as a sponge for miR-503.

MALAT1 inhibits miR-503 to regulate the function of
NPCs and the MAPK pathway
We further verified the combined effect of MALAT1 and
miR-503 on NPC proliferation, apoptosis, and ECM deg-
radation, as well as the involvement of the MAPK path-
way. Upon IL-1β stimulation, MALAT1 overexpression
remarkably enhanced the NPC proliferation and NPC
number (Fig. 6a-b) and reduced NPC apoptosis (Fig. 6c-
d), but was attenuated by miR-503 mimics or aggravated
by miR-503 inhibitor treatment. Furthermore, MALAT1
overexpression increased the protein levels of Collagen II
and Aggrecan; the effect of MALAT1 overexpression was
partially eliminated by miR-503 mimics. In contrast, miR-
503 inhibitor increased Collagen II and Aggrecan protein
levels (Fig. 6e-g).
Previous studies have shown that MALAT1 can affect

the MAPK/AP1 signaling pathway [19], which is an import-
ant pathway for IVD [15]. Therefore, we examined the rela-
tionship between MALAT1, miR-503 and the MAPK
pathway. Immunoblot results showed that overexpression

Fig. 1 The expression of MALAT1 in lumbar IDD tissues and the correlation with prognosis of IDD a MALAT1 expression in 10 normal and 37 IDD
tissue specimens determined by real-time PCR assays. b MALAT1 expression in 37 IDD tissue specimens was delineated according to the
Pfirrmann grading groups (mild n = 21, severe n = 16). c–e The mRNA expression of IL-1β, Collagen II and Aggrecan in 10 normal and 37 IDD
tissue specimens was determined using real-time PCR assays. The data are presented as mean ± SD of three independent experiments
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of MALAT1 significantly reduced IL-1β-induced phosphor-
ylation levels of p-fos, p-p38, and p-cJuN, and the effect of
MALAT1 overexpression was partially eliminated by miR-
503 mimics or aggravated by a miR-503 inhibitor (Fig. 7).

Discussion
An increasing number of study have indicated the im-
portant roles of lncRNAs in IDD. In this study, we dem-
onstrated that MALAT1 was downregulated in IDD
tissues. MALAT1 overexpression promoted NPC prolif-
eration and suppressed IL-1β-induced apoptosis, as well
as IL-1β-induced degradation of ECM, indicating the
protective effect of MALAT1 in IDD. Furthermore, we
found that MALAT1 could sponge miR-503 and regulate
the downstream factors of MAPAK pathway.
During the progression of IDD, NPCs produce exces-

sive inflammatory mediators including TNF-α and IL-1β
[20, 21], which is considered an important cause of IDD
[22–24]. This phenomenon is observed with the senes-
cence or apoptosis of NPCs, as well as the degradation
of many protein components of the extracellular matrix
(ECM) including Collagen II and Aggrecan. Therefore,
we first focused on the expression of MALAT1 and ECM-
degrading Collagen II/Aggrecan between normal and de-
generative IVD tissues. The results showed that MALAT1

levels were decreased in IDD tissues, and Collagen II/
Aggrecan were decreased. Moreover, in severe degeneration
specimens, MALAT1, Collagen II, and Aggrecan levels
were more downregulated. In Zhang et al. ‘s study [25], the
expression level of MALAT1 was significantly reduced in
NP cells isolated from IDD patients compared with con-
trols. These findings suggested that reduced MALAT1 ex-
pression might participate in IDD development.
It is well known that NPCs are involved in resisting

mechanical loads, and the synthesis of ECM is important to
maintain spinal stability. The loss of NPCs correlates with
the pathological process of IDD [26]. Therefore, we next fo-
cused on the effect of MALAT1 overexpression on NPC
apoptosis and ECM degradation. Functionally, restored ex-
pression of MALAT1 partially attenuated the IL-1β-
induced suppression of NPC proliferation, cell apoptosis,
and degradation of ECM. At seven weeks after injection
with a MALAT1-overexpressing lentiviral vector, rats ap-
peared to have reduced spine curvature. Although no im-
proved effect on the characterization of lumbar IDD
was observed from X-ray, MALAT1 overexpression
treatment improved the overall histological score
shown by HE staining, which coincided with the degree
of disc degeneration by MRI imaging. Under unbal-
anced dynamic and static forces of the spine, apoptosis

Fig. 2 The expression and function of MALAT1 in IL-1β-stimulated NPC. a cell proliferation and b cell numbers of human NPCs in response to IL-
1β stimulation were detected (scale bars, 50 μm). c The expression of MALAT1 in response to IL-1β stimulation was determined using real-time
PCR assays. d The content of Collagen II in human NPCs (NPCs) in response to IL-1β stimulation was determined using Immunofluorescence
staining assays. e-f The protein levels of Collagen II and Aggrecan in NPCs in response to IL-1β stimulation were determined using
Immunoblotting assays. The data are presented as mean ± SD of three independent experiments. *P < 0.05, compared to control group
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in disc cells could be induced in the rat model [27]. In
vitro, MALAT1 overexpression reduced IL-1β-induced
apoptosis of NPCs. Additionally, we found that
MALAT1 overexpression treatment could reduce
TUNEL-positive NPCs in IDD rats. These findings indi-
cate that suppressing NPC apoptosis by MALAT1 over-
expression may contribute to the attenuation of IDD.

As mentioned, the primary mechanism of lncRNAs may
serves as ceRNA by sponging miRNAs to regulate the
downstream target mRNAs or related signal pathways.
Based on a previous study and bioinformatic soft predic-
tion, miR-503 might be a potential target of MALAT1
[12]. The luciferase reporter assay confirmed this predic-
tion. Furthermore, miR-503 suppression mitigated the

Fig. 3 The effect of MALAT1 on NPCs proliferation, apoptosis, and ECM degradation a NPCs were transfected with OV-NC or OV-MALAT1 under
IL-1β stimulation, the cell was observed. b and c The cell viability was determined using CCK8 assays and cell counting. d and e The cell
apoptosis was determined using Annexin V/PI staining. f-h The protein levels of Collagen II and Aggrecan were determined using
Immunoblotting assays. The data are presented as mean ± SD of three independent experiments *P < 0.05, compared to control group; #P < 0.05,
compared to IL-1β + OV-NC (negative control) group
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positive effects of MALAT1 on NPC cell proliferation and
apoptosis induced by IL-1β, while miR-503 mimics en-
hanced this effect. A previous study showed that miR-503
plays an important role in the pathogenesis of postmeno-
pausal osteoporosis [28]. In IVD, both Ji et al. [29] and Li
et al. [30]‘s study demonstrated that miR-503 levels are
significantly upregulated in IVD patients compared with
controls, which is consistent with our results in this study.

Degeneration of the IVD appears to be mediated by
several pathways. The MAPK pathway has been
regarded as a crucial regulators of IVVD [31]. The
MAPKs pathway can activate the downstream transcrip-
tion factor AP1 (JUN, ATF, c-Fos, Maf) and then control
many cellular processes including cell growth, differenti-
ation, and apoptosis [32–34]. Several studes have shown
that inhibition of MAPK/AP1 pathway is a potential

Fig. 4 The function of MALAT1 in vivo (a) Lateral radiographies of the rat lumbar spine and disc height index (DHI) in control groups andMALAT1
group. b MRI at seven weeks after injection and change of MRI grade in control groups and MALAT1 group. c-d HE staining and comparison of
the grade of IDD control groups and MALAT1 group. e-f Cell apoptosis according to in situ TUNEL staining. The data are presented as mean ± SD
of three independent experiments. *P < 0.05, compared to OV-NC group
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therapeutic target for IDD. Our data showed that
MALAT1 overexpression decreased IL-1β-upregulated
p38, JUN and Fos levels, and miR-503 mimics or inhibi-
tors attenuated or enhanced their phosphorylation level.
These results are also consistent with previous studies
[35–37], and imply that the mechanism governing
MALAT1 may be the MAPK/AP1 signaling pathway. In
addition, we found that miR-503 can antagonize the
regulation of MAPK by MALAT1. Unfortunately, the
mechanism governing the activity of miR-503 in the
MAPK/AP1 pathway was not investigated. According to
the existing evidence, miR-503 may not directly target
genes in the MAPK/AP1 pathway, but indirectly regulate
the MAPK/AP1 pathway by targeting such proteins as

RANK and NFκB [28, 38]. We also predicted the targets
of miR-503 through miRwalk 3.0 software [39] and
found a few putative targets in given pathways, including
MAPK, Wnt, Insulin pathway et al. (Table S1). This
finding supports the potential role of MAPK/AP1 path-
ways in IVD degeneration.

Conclusions
MALAT1 acts as a sponge and ceRNA for miR-503 and
alleviates IL-1β-induced NPC apoptosis and degenerative
processes through the MAPK signaling pathway. Our
present study may help to elucidate the molecular mech-
anisms underlying IDD and provides a potentially effect-
ive therapeutic strategy for IDD.

Fig. 5 MALAT1 acts as a sponge for miR-503 (a) Schematic representation of binding sites between MALAT1 and miR-503 predicted by StarBase
software. b Wild-type and mutant-type MALAT1 luciferase reporter gene vectors were constructed and named wt-MALAT1 and mut-MALAT1;
mut-MALAT1 contained a 4 bp mutation on any of the predicted miR-503 binding sites. The above vectors were co-transfected into HEK-293 cells
with miR-NC or miR-503 mimics; the luciferase activity was determined. c NPCs were transfected with MALAT1 siRNA; the expression of miR-503
was determined using real-time PCR. d NPCs were transfected with miR-NC or miR-503 mimics; the expression of MALAT1 was determined using
real-time PCR. e The expression levels of miR-503 in IDD tissues and normal ones were determined by RT-qPCR. f The correlation between
MALAT1 and miR-503 was analyzed using Spearman’s rank correlation analysis. The data are presented as mean ± SD of three independent
experiments. *P < 0.05
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Methods
Human tissue samples
This study was approved ethically by the First Affiliated
Hospital of Kunming Medical University, and written in-
formed consent was obtained from every participant.
Degenerative NP tissues were obtained from 37 patients
(average age 52.9 ± 9.6) with IDD, and normal NP tissues
from 10 lumbar trauma patients (average age 21.7 ± 3.2)

were excised by surgical resection, which was served as a
control. The degree of disc degeneration was evaluated
via a magnetic resonance imaging (MRI) scan according
to the Pfirrmann grading classification. All specimens
were collected within 3 h after disc excision, divided into
two parts and frozen in liquid nitrogen for storage. All
tissue samples were collected with written informed con-
sent in accordance with the Declaration of Helsinki and

Fig. 6 the effect of miR-503 on MALAT1 modulate the function of NPC NPCs were co-transfected with miR-503 mimics or inhibitor and OV-
MALAT1 under IL-1β stimulation; (a) and (b) The cell viability was determined using CCK8 assays and cells counting. c-d The cell apoptosis was
determined using Annexin V/PI stain. e-g The protein levels of Collagen II and Aggrecan were determined using Immunoblotting assays. d The
protein levels of the MAPK pathway were determined using Immunoblotting assays. The data are presented as mean ± SD of three independent
experiments. *P < 0.05, compared to control group; ##P < 0.01, compared to IL-1β + si-circSEMA4B group
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with the approval of the Medical Ethics Committee of
the First Affiliated Hospital of Kunming Medical Univer-
sity (Approval number: 2018061811, Date: 2018/06/18,
Kunming, China). All of the animal experiments in this
study were performed in accordance with the National
Institutes of Health Guide for Care and Use of Labora-
tory Animals, and were approved by the laboratory ani-
mal ethical committee of Kunming Medical University.

NPC isolation and culture
Normal human nucleus pulposus (HNP) tissues were
gently separated from lumbar trauma patients under
aseptic conditions, washed with D-Hank’s solution 3–5
times, and then cut into small pieces with ophthalmic
scissors(< 1 mm3). Subsequently, tissues were placed
overnight in 5 ml of 0.1% type II collagenase (GIBCO,
NY, USA) at 37 °C for 8 h. The digested fluid was filtered
through 200 meshes filters, followed by filtration and
centrifugation at 1000 rpm for 5 min. The supernatant
was removed, and the precipitate was suspended in 3ml
of medium and centrifuged at 1000 rpm for 5 min. The
supernatant was removed again, and the NPCs were
seeded into a culture flask in DMEM/F12 medium
(GIBCO, NY, USA) containing 15% fetal bovine
serum (FBS, GIBCO, NY, USA), 100 μg/ml strepto-
mycin and 100 U/ml penicillin under 5% CO2 and
saturated humidity at 37 °C. The culture medium was
changed three times a week, and NPCs were subcul-
tured at a ratio of 1:3 after reaching 80% confluence.

Cell morphology was observed under an inverted
microscope (DM6000B; Leica Microsystems, Japan).
The concentration of HNPCs were adjusted to 1 ×
104/ml, and the cells were seeded into 24-well plates
with glass coverslips for 48 h. Cells were fixed in for-
maldehyde for 20 min, followed by three washes with
phosphate-buffered saline (PBS).

Plasmid construction, dual-luciferase assays, and cell
transfections
The lncRNA MALAT1 overexpression plasmid (OV-
MALAT1) and negative control (OV-NC) were purchased
from GenePharma (Shanghai, China). The following se-
quence of siRNA oligonucleotides (si-MALAT1) was used
to knockdown MALAT1 expression: 5′-CACAGGGAAA
GCGAGUGGUUGGUA-3′. The sequence of the noncod-
ing control siRNA (si-NC) was 5′-UUCUCCGAAC
GUGUCACGU-3′. si-MALAT1, si-NC, mir-503 mimics,
miR-503 inhibitor, and corresponding negative controls
were purchased from RiboBio Co. (Guangzhou, China).
Lipofectamine 2000 (Thermo Fisher Scientific, Waltham,
USA) was used for transfection. Twenty-four hours before
transfection, NP cells were seeded at 2 × 104 cells/well in a
96-well plate. Cells were transfected with OV-NC or OV-
MALAT1 using Lipofectamine 2000. Twenty-four hours
after transfection, cells were treated with 150 ng/mL IL-1β
for 6 h. Forty-eight hours later, NPCs were used for the
following experiments.

Fig. 7 the effect of miR-503 on MALAT1 regulated MAPK signaling pathway a NPCs were transfected with a vector, upon IL-1β stimulation; the
phosphorylated protein levels of p38, JUN, Fos were determined using Immunoblotting assays. The data are presented as mean ± SD of three
independent experiments. *P < 0.05, compared to control group; #P < 0.05, compared to IL-1β group; & P < 0.05, compared to
IL-1β + OV-MALAT1 group
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Luciferase assay
To verify whether there is a director interaction between
MALAT1 and miR-503, a pmirGLO Dual-Luciferase
miRNA target expression vector was used for 3′-un-
translated region (UTR) luciferase assays (Promega,
Madison, WI). 293 T cells were plated (5 × 104 cells per
well) in 24-well plates and cells in each well were
cotransfected with miR-503 and wild type or mutant tar-
get sequences using Lipofectamine 2000. Cells were then
harvested 48 h after transfection, and the activities of
firefly and Renilla luciferases were measured by using
the Dual-Luciferase Reporter Assay System with the
miR-NC set at 1.0. In addition, cells were seeded in 6-
well plates (1 × 106 cells/well, 2 ml medium per well) and
cultured normally for 24 h. Firefly luciferase activity was
normalized to Renilla luciferase activity for each sample.

RNA extraction and quantitative real-time PCR (qRT-PCR)
TRIzol reagent (Life Technologies, Gaithersburg, MD,
USA) was used to extract total RNA from cells according
to the manufacturer’s instruction. Then, cDNA was syn-
thesized using 1 μg of total RNA as template and a Rever-
tAidTM First Strand cDNA Synthesis Kit (Fermentas,
Maryland, USA). Quantitative real-time PCR (qRT-PCR)
analyses were performed with SYBR® Premix Ex Taq™(Ta-
kara, Japan) using a StepOne-Plus Real-Time PCR System
(Applied Biosystems, USA). The PCR amplification in-
cluded an initial denaturation at 95 °C for 1min, 35 cycles
of denaturation at 95 °C for 1 min, annealing at 60 °C for
2min, and extension for 30 s, at 72 °C. Results of the log-
linear phase of the growth curve were analyzed, and rela-
tive quantification was performed using the 2-ΔΔCT

method with GAPDH serving as a housekeeping gene. U6
snRNA was used as an internal control to normalize the
expression levels of miRNAs. The PCR primers used were
as follows: MALAT1, 5′- GACGGAGGTTGAGATGAA
GC-3′ and 5′- ATTCGGGGCTCTGTAGTCCT-3′; IL-
1β, 5′- GACGGAGGTTGAGATGAAGC-3′ and 5′- AT
TCGGGGCTCTGTAGTCCT-3′; Collagen II, 5′- GAC
GGAGGTTGAGATGAAGC-3′ and 5′- ATTCGGGGCT
CTGTAGTCCT-3′; Aggrecan, 5′- GACGGAGGTTGAG
ATGAAGC-3′ and 5′- ATTCGGGGCTCTGTAGTCCT-
3′; GAPDH, 5′-GAAGGTGAAGGTCGGAGTC-3′ and
5′-GAAGATGGTGATGGGATTTC-3′.

NPC proliferation by CCK-8
The viability of HNPCs was evaluated using Cell Counting
Kit-8 (Dojindo, Kumamoto, Japan), according to the manu-
facturer’s instructions. In brief, cells were seeded in 96-well
plates, and cultured for 8, 16, 24 h and stimulated with 150
ng/mL IL-1β (GIBCO, NY, USA) for 8, 16, and 24 h, re-
spectively. NPCs were incubated with CCK-8 reagent for 1
h, and absorbance at 450 nm was measured with a micro-
plate reader (Tecan, Männedorf, Switzerland).

NPC apoptosis by Annexin V/propidium iodide (PI)
staining
Cell apoptosis was detected using the Annexin V-FITC/
PI staining method. After the cells were cultured for 24
h and stimulated with different concentrations of IL-1β
(150 ng/mL) for the same culture time, they were
washed twice with precooled PBS and digested with
0.25% trypsin, and the density was adjusted with DMEM
to 1 × 106 cells/mL. After fixing with precooled 70% al-
cohol for 24 h, the cells were centrifuged at 1000 r/min
for 5 min, followed by two washes with PBS. Next,
100 μL of 1 × 106 cells/mL cell suspension was added to
5 μL of Annexin V-FITC (Dojindo, Kumamoto, Japan)
and 10 μL of PI, and the culture was incubated at room
temperature for 15 min and washed twice with PBS. Cell
apoptosis was analyzed using FACS Calibur Flow Cyt-
ometer (BD, USA). Each group had three replicates, and
each process was repeated three times.

Immunofluorescent staining
NPCs were plated on coverslips in 6-well plates at 2 × 105

cells/well for 48 h. After cyclic stretching, the cells were har-
vested for fluorescence labeling of Collagen II. Briefly, cells
were washed twice with PBS and fixed with 4% paraformal-
dehyde for 15min. Then, after incubation with PBS contain-
ing 0.2% Triton X-100 for 10min, cells were treated with
PBS containing 5% bovine serum albumin (BSA) for 20min
to block nonspecific protein binding. After blocking, the cells
were incubated overnight at 4 °C with primary antibodies
(anti-Collagen II, 1:100, Santa Cruz) and then incubated with
fluorescent secondary antibodies (1:200, Santa Cruz) at room
temperature for 2 h. The staining results were visualized
under a fluorescence microscope in the same field.

Protein extraction and wWestern blot analysis
Total protein was extracted, and the protein concentration
was quantified using a BCA protein assay kit (Beyotime
Biotechnology, Jiangsu, China). A total of 20 μg of protein
from each sample was used for Western blotting. The
samples were separated by SDS-PAGE(10%) at 200 V for
50min. After transferring the proteins onto polyvinylidene
fluoride (PVDF) membranes, the blotting was performed
at 300mA for 45min. After blocking with 5% (w/v) dry
milk in TBS for 1 h at room temperature. Membranes
were incubated with the primary antibodies. The primary
antibodies used in this study included monoclonal anti-
Collagen II (1:1000), Aggrecan (1:500) (Cell Signaling
Technology, Beverly, MA), Fos (1:500), p38 (1:500), JNK
(1:500) and their phosphorylated antibodies (1:500, Santa
Cruz, CA, USA) and anti-GAPDH polyclonal antibody (1:
2000 Santa Cruz, CA, USA) at 4 °C overnight. Then the
membranes were incubated with HRP-conjugated anti-
rabbit or anti-mouse antibody (1:10000, Cell Signaling
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Technology, Beverly, MA) for 2 h at room temperature.
Finally, the blots were developed with an enhanced chemi-
luminescence kit (Millipore, Billerica, MA, USA), and the
bands were quantified densitometrically using a Bio-Rad
imaging system (Hercules, CA). GAPDH was used as the
loading control.

Establishment of the rat IVD model
Thirty-two male male Sprague–Dawley rats (350 g, aged
three months) were obtained from Changsha Tian Qin Bio-
technology Co., Ltd. (Changsha, Hunan, China). Rats were
used for the experiments in vivo. Thirty-two rats were ran-
domly divided into four groups: normal group (Control; n=
8), IVD model group without treatment (NT; n = 8), IVD
model with the treatment of NC-overexpressing lentivirus
(OV-NC; n = 8), and IVD model with the treatment of
MALAT1- overexpressing lentivirus (OV-MALAT1; n = 8).
All procedures were performed according to the National In-
stitutes of Health Guide for Care and Use of Laboratory Ani-
mals and approved by the laboratory animal ethics
committee of Kunming Medical University.
The rat model of IVD was built by annulus fibrosus (AF)

needle puncture. In brief, general anesthesia was adminis-
tered using 3.6% chloral hydrate and 10mL/kg intraperito-
neal. After successful anesthesia, SD rats were placed supine
on the operation table, the limbs were fixed, and the tail was
disinfected. According to the tail body surface markers of the
rat, the tail bones C5 and C6 were determined. The middle
part of the vertebral body was tilted by 45° to the left and
right, and two diameters of 0.8mm Kirschner wire were
drilled. The carbon fiber loops were successively fixed on the
crossed Kirschner wires, and the carbon fiber rods and
springs were inserted. The experimental group was given a
spring nut to fix the pressure, and the four springs were
compressed to 10mm/kg body weight (simulating the
weight of the lumbar spine when the rat was walking up-
right). The compression length of the spring was controlled
by a Vernier caliper; the control group did not pressurize the
spring. After the operation, the two groups of animals were
kept in a single cage, and penicillin 200,000U was intramus-
cularly injected for three days to prevent infection.
SD rats were anesthetized with isoflurane gas (under a

small animal anesthesia instrument). After anesthesia, the
rats were placed on the operating table to fix the limbs.
Under the guidance of fluoroscopy, in the three positions
C6-C7, C8-C9, C10-C11, a 20 gauge needle was used to
puncture the dorsal side, the puncture needle passed
through the center of the intervertebral disc, until the op-
posite side, rotated 180°, and held for 10 s. The wound
was wrapped with gauze after surgery and anti-infective
treatment was carried out. One week after surgery, the
rats were anesthetized again, and a small incision was
made to the left of the puncture site to expose the position
of the previous puncture. The intervertebral disc was

pierced with a 33 gauge needle, followed by injection of
OV-MALAT1 lentivirus or OV-NC lentivirus, and injec-
tions were repeated four weeks later.

X-ray and MRI examination
At four weeks after injection, X-ray and MRI examina-
tions were performed on all rats in the study. After exami-
nations, five rats in each group were sacrificed by
intraperitoneal injection of sodium pentobarbital. The tis-
sues at the corresponding sites were harvested, fixed in 4%
paraformaldehyde, and decalcified with 10% EDTA solu-
tion. The treated tissue was embedded in paraffin and sec-
tioned in the sagittal plane. The disc was collected and
stored at − 80 °C for further expression analysis.

Histomorphology and TUNEL assay of the lumbar spine
After the MRI examination, the rats were killed by intra-
peritoneal administration of overdose pentobarbital so-
dium. Lumbar spines including L4–L6 levels were
harvested en bloc and then fixed in 4% paraformaldehyde
for 48 h, decalcified at 4 °C in 20% ethylenediamine tetraa-
cetic acid for 5–7 weeks, embedded in paraffin, and sec-
tioned (4 μm) along the midsagittal plane. Sections were
used for hematoxylin-eosin (HE) or terminal deoxynucleo-
tidyl transferase (TdT)-mediated dUTP nick end labeling
(TUNEL). IDD was scored based on histomorphological
features of HE-stained sections according to the classifica-
tion system [28]. The average scores of L4–L5 and L5–L6
were recorded as the grade of lumbar IDD in each rat.
Total and TUNEL-positive disc cells were counted below
three to five noncontinuous high-power fields (magnifica-
tion, × 400) in each of the two regions (outer or inner AF)
from each of two discs per specimen and summed up.
The percentage of TUNEL- positive disc cells compared
with total disc cells was then calculated.

Statistical analysis
Statistical differences between two groups were analyzed
using Student’s t-test. Differences among three or more
groups were analyzed using one-way analysis of variance
and Tukey’s post hottest test. Data analysis was performed
with GraphPad Prism 5 (Graphpad Software, La Jolla, CA,
USA) and presented as the means ± SD. The difference
was considered to be significant when p < 0.05.

Supplementary information
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1186/s12860-020-00265-2.

Additional file 1: Table S1 Significant pathways on putative target
genes (3-UTR region) of miR-503.
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