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Improving predictive
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Objective: To mitigate the burden associated with heart failure (HF), primary

prevention is of the utmost importance. To improve early risk stratification,

advanced computational methods such as machine learning (ML) capturing

complex individual patterns in large data might be necessary. Therefore, we

compared the predictive performance of incident HF risk models in terms of

(a) flexible ML models and linear models and (b) models trained on a single

cohort (single-center) and on multiple heterogeneous cohorts (multi-center).

Design and methods: In our analysis, we used the meta-data consisting of

30,354 individuals from 6 cohorts. During a median follow-up of 5.40 years,

1,068 individuals experienced a non-fatal HF event.We evaluated the predictive

performance of survival gradient boosting (SGB), CoxNet, the PCP-HF risk

score, and a stacking method. Predictions were obtained iteratively, in each

iteration one cohort serving as an external test set and either one or all

remaining cohorts as a training set (single- or multi-center, respectively).

Results: Overall, multi-center models systematically outperformed single-

center models. Further, c-index in the pooled population was higher in

SGB (0.735) than in CoxNet (0.694). In the precision-recall (PR) analysis for

predicting 10-year HF risk, the stacking method, combining the SGB, CoxNet,

Gaussian mixture and PCP-HF models, outperformed other models with

PR/AUC 0.804, while PCP-HF achieved only 0.551.

Conclusion: With a greater number and variety of training cohorts, the model

learns a wider range of specific individual health characteristics. Flexible ML

algorithms can be used to capture these diverse distributions and produce

more precise prediction models.
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Introduction

Amajor burden of modern society is progressive increase in

age-associated disorders such as cardiovascular (CV) diseases.

Due to population aging and unhealthy lifestyle, the prevalence

of heart failure (HF) in low- to middle-income countries will

rise by 50% in the next 5–10 years (1). According to the

World Health Organization, proper early risk stratification

and management could help reduce the burden of this

chronic disorder.

There are currently a number of clinical risk scores indented

for specific populations and risk groups (2–6). For example,

the Pooled Cohort Equations to Prevent HF (PCP-HF) score

is recommended to use for 10-year incident HF prediction in

a general population (7). Most of the recommended scores

are, however, based on a linear model and might therefore

lack the specificity and sensitivity in certain subgroups. The

wide variety of scores may also cause slow adoption in

clinical practice.

The use of advanced analytic techniques such as machine

learning (ML) might improve the predictive performance of

models by employing a higher number of interrelated and non-

linear features. In addition, training ML models on a wide

range of patient groups might create tools generally applicable in

different settings. Recently, the number of publications applying

ML for both prognosis and diagnosis of CV disease sharply

increased, with 85% of these decided in favor of ML as opposed

to traditional linear methods (8). The most popular choices

include tree-based boosting and bagging methods, such as

survival gradient boosting (SGB) and random survival forests

(RSF) (9). However, a substantial obstacle in the adoption of

ML in CV risk prediction, including HF, is the lack of adequate

external validation in a large number of individuals with varied

characteristics, as well as the ability to exploit flexible models

when trained in various populations using a large number of

relevant features (8).

Therefore, we proposed to test predictive model

performance in a spectrum of train and test populations

systematically instead of selecting a single derivation and

validation cohort. Similarly, choosing an appropriate evaluation

strategy (internal, external, etc.) is crucial (10). Thus, we

additionally evaluated the influence of obtaining more diverse

training data (multi-center) on the predictive performance of

incident HF prediction models.

Objectives

The main objective of our analysis was to evaluate the

predictive performance of the incident HF risk prediction

models in the general population. Specifically, we compared

the predictive performance of a linear model (CoxNet), non-

linear model (SGB), currently used HF risk score (PCP-

HF), and a stacking method (combining prediction of tested

models). We also evaluated the predictive performance of

models when trained on multiple heterogeneous cohorts

(multi-center) rather than on single cohort. In addition,

we reported features selected by the models and assessed

their achieved predictive performance for the given number

of features.

Methods and materials

Study design is outlined in Figure 1.

Cohorts

In our analysis, we included 6 cohorts from the Heart

“Omics” in Aging (HOMAGE) meta-data—the Anglo-

Scandinavian Cardiac Outcomes Trial (ASCOT), the

Flemish Study on Environment, Genes, and Health Outcomes

(FLEMENGHO), the Health Aging and Body Composition

(Health ABC), HVC database, Valutazione della PREvalenza di

DIsfunzione Cardiaca asinTOmatica e di scompenso cardiaco

(PREDICTOR), and the Prospective Study of Pravastatin in

the Elderly at Risk (PROSPER). The final dataset included

33 features consisting of clinical (e.g., medical history, HR,

SBP), biochemical (e.g., blood glucose, creatinine), and ECG

(e.g., duration QRS) variables. For a complete list of included

features, see Supplemental Table 1. The unfiltered input data of

the individuals consisted of 43,817 individuals. We removed

participants younger than 30 and older than 80 years old

(n = 4,709), with HF diagnosis at baseline (n = 3,462), with

missing outcome (n = 5,058), with missing blood pressure

measurements (n = 107), and with invalid follow-up time (n =

127). The final study population included 6 cohorts consisting

of 30,354 subjects.

By sending anonymized data, the contributing partners

confirmed that their study complies with good clinical

practice (Helsinki Declaration), that all participants provided

written informed consent, and that at the time of its

conduct the study conformed to national regulations on

clinical research in humans and on the protection of

privacy. The HOMAGE database was described in depth

elsewhere (11, 12).

Outcome of interest

The primary outcome of interest in this study is incident

non-fatal HF, defined as HF hospitalization. The specificities of
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FIGURE 1

Study design.

non-fatal HF in each of the cohorts were described elsewhere

(11, 12).

ML algorithms

We evaluated the predictive performance of the following

two models: a flexible survival ML model (Survival Gradient

Boosting, SGB) and a linear Cox proportional hazard model-

CoxNet. SGB is a non-linear machine learning method based on

training regression trees with the objective of optimizing Cox

partial likelihood. CoxNet is a standard linear Cox proportional

hazard model, regularized by both L1 and L2 norms. As an

alternative, we also employed the stacking method, consisting of

the above-mentioned CoxNet and SGB, together with PCP-HF

score and unsupervised Gaussian mixture model. The stacking

method works in two layers, the output of the first layer of

base learners is the input of the second “meta” layer, consisting

of another model. For CoxNet, the features were standardized.

We used the Optuna library with the tree-structured parzen

estimator to optimize the model hyperparameters on an internal

validation set. For ML pipelines, we used the scikit-learn and

scikit-survival Python libraries. The code of the analysis is

available online1.

Model evaluation and statistical analysis

The discrimination of the models was evaluated using the

c-index. Predictive performance was evaluated iteratively, with

each cohort serving as a test set (external cohort validation).

In each iteration, the multi-center models were trained on the

remaining 5 cohorts (1 cohort test), while the single-center

models were trained on a single cohort. The final predictive

performance was obtained by evaluating the merged predictions

and, in the case of single-center models, averaged. The goal

was to compare the predictive performance of models trained

1 https://github.com/hcve/incidence-hf
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FIGURE 2

Predictive performance increased with multi-rather than single-cohort training data both in CoxNet (A) and survival gradient boosting (SGB) (B).
On the pooled dataset, SBG achieved a greater overall c-index than CoxNet (C). In terms of number required features to achieve maximum
predictive performance, SBG required 11 features and CoxNet 6 features (D).

FIGURE 3

Comparison of the most important features in CoxNet (A) and survival gradient boosting (B).
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FIGURE 4

Precision-recall curves for 10-year prediction showing stacking,
Survival Gradient Boosting (SGB), CoxNet, and PCP-HF. Stacking
exhibits the best discrimination.

in limited data (single-center) and those trained in a more

comprehensive sample (multi-center) (Figure 1).

All optimization/training pipelines were run 10 times, each

time with a different random seed, producing 10 slightly

different models. To provide a more stable prediction, each

prediction was a mean of predictions of these 10 models.

To obtain a more balanced estimate, samples were weighted

inversely to the proportions of sizes of their corresponding

cohorts. Therefore, in effect, each cohort had the same influence

on predictive performance. We performed the two-sample

Kolmogorov-Smirnov test to evaluate the statistical significance

of the difference in c-index of the models. We also performed

a feature importance analysis to illustrate which features were

important for specific models and, therefore, might carry

clinically useful information.

In addition, we used the 10-year binary endpoint to evaluate

the models in clinically relevant precision-recall (PR) analysis

(Figure 1). PR analysis is more sensitive to differences in false

positives and thus better captures the practical aspect of clinical

decision making. In the process of binarizing the outcome,

subjects censored before the endpoint were removed. The

predictions in the calibration plot were divided into bins on

the x axis according to the predicted probability of an event,

and this probability was put into comparison with empirical

event incidence in the given bin on the y axis. 95% confidence

intervals were calculated from 100 bootstrapped test scores,

thus quantifying uncertainty on the unseen data (assuming the

training data were given).

Results

Study population

The dataset consisted of 30,354 individuals (mean age

66 ± 9 years, 66.57% male), free of HF at the baseline.

For detailed cohort characteristics and missing values, see

Supplemental Tables 1, 2, respectively. During a median follow-

up of 5.40 years (IQR 4.28–6.52), 1,068 individuals experienced

at least one non-fatal HF event (6.46 events per 1,000 person-

years). For a detailed overview of the outcome statistics, see

Supplemental Table 3. In this study, we also evaluated the HF

prediction at the endpoint of 10 years. After removing censored

subjects, we obtained 2,883 subjects (891 events) for the 10-year

prediction (Figure 1).

Comparing predictive performance of
single-/multi-center and
linear/non-linear models

As illustrated in Figures 2A,B, multi-center models

systematically outperformed single-center models. For example,

when testing on the FLEMENGHO cohort, multi-center

SGB achieved c-index of 0.812, while only 0.714 in a single-

center setting. Overall, the c-index in the pooled population

(Figure 2C) was significantly higher (P < 0.0001) in non-linear

SGB (0.735; 95% CI: 0.728–0.742) than in linear CoxNet (0.694;

95% CI: 0.686–0.704). These c-index values corresponded to risk

discrimination between all individuals, and, therefore, represent

the situation of a heterogeneous population. The calibration

plot in Supplemental Figure 1 showed good calibration of both

methods, but SGB showed a certain overestimation of risk in

some individuals with lower risk.

Important features for incident HF
prediction

In this analysis, SGB achieved maximal predictive

performance with about 11 features, whereas CoxNet exploited

fewer features and achieved its maximal predictive performance

with only 6 features (Figure 2D). Figure 3 showed the

importance of the permutation obtained from changes in

predictive performance when supplied with shuffled input

features. The CoxNet predictive model relied heavily on age,

with a smaller influence of several other predictors, including

SBP, QRS duration, and body weight. On the contrary, SGB

employed a wider range of features beyond age, including serum

creatinine, blood pressure, blood glucose, BMI, ECG features,

antihypertensive treatment, and CV disease history.

Precision-recall of 10-year HF prediction
using novel and traditional scores

For predicting the 10-year risk of incident HF, the stacking

method, combining the SGB, CoxNet, Gaussian mixture, and
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PCP-HF models, achieved the best discrimination in the PR

analysis (Figure 4), with PR/AUC 0.804 (95% CI: 0.782–0.823).

SGB and PCP-HF performed similarly with PR/AUC of 0.541

(0.498–0.566) and 0.551 (0.528–0.589), respectively. CoxNet

achieved PR/AUC of 0.473 (0.442–0.503).

Discussion

Predictive performance of ML and linear
methods in incident HF prediction

In the line with previous studies focusing on the comparison

of ML methods with linear-based scores (9, 13–15), our study

supported the findings that the ML model (SGB) detected

more subtle patterns for incidence HF prediction than the

linear CoxNet. Simultaneously, the predictive performance

of ML algorithms varies dependent on a given task. Given

the heterogeneity of predictive performance, stacking is a

suitable tool capable of increasing predictive performance by

combining the output of several estimators (models) using

another ML meta-model. In our study, the stacking model,

consisting of SGB, CoxNet, Gaussian Mixture, and the PCP-

HF score, outperformed all tested models for 10-year incident

HF prediction.

The full capacity of ML in the deep characterization of

clinical phenotypes and therefore the delivery of personalized

medicine is still unknown. The potential of using ML in

HF prediction (and CV more broadly) depends strongly on

the depth and volume of representative data points available.

For example, Balabaeva et al. reported that temporal features

increased the predictivity of ML in assessment of symptomatic

HF prognosis (16). Therefore, integration of the temporal

domain into prediction models might be the next logical step

in the application of ML in CV/HF risk stratification. Using two

or more data points could help extrapolate the rate of change in

one’s health status more precisely.

Multi-center data increased predictive
performance in HF prediction

The collection of representative data is crucial for success

in the development of reliable risk stratification tools. Our

analysis showed that models trained on a combination of

cohorts outperformed models trained on a single cohort

(Figures 2A,B). These results advocated for use of large

and representative training data for developing robust

prediction tools. Indeed, flexible ML models, such as

gradient boosting, require a large training sample to cover

the full feature space. However, clinical data use must be in

accordance with data privacy and might struggle with pitfalls in

data sharing.

Dataset shift and multi-center data

One of the main reasons for maximizing the volume

of training data is to overcome the so-called “dataset shift”

problem. This problem relates to a shift in the distribution

of derivation and validation (test, real-world) cohorts (17). It

occurs for various reasons, such as differences in population

characteristics, hospital procedures, selection bias, etc. The

dataset shift manifests itself as a decrease in predictive

performance when the model is tested on an unseen population,

and therefore the external validation is crucial in estimating the

generalization of the model. One straightforward and effective

approach to combating the dataset shift is to train flexible

ML models on a large volume of representative data (17).

An example of difficulties originating from the lack of robust

predictive models trained on such diverse data is the need

to recalibrate current HF and/or CV risk scores for each

tested population (5). With a greater number and variety of

training samples, ML models can learn a wider range of health

profiles. Flexible ML algorithms, such as gradient boosting,

can thus be used to capture these diverse distributions and

produce more precise, personalized models for the prediction

of adverse events. For instance, the ML model that captures

personalized characteristics (e.g., ethnic differences) achieves

better predictive performance compared to the traditional

one (9).

Data sharing issues and regulation

As outlined above, to effectively evaluate the benefit

of ML in HF risk prediction, models need to be trained

and evaluated on diverse populations with extensive deep

phenotypes. On the other hand, there are some problems related

to data sharing and the aggregation of sensitive healthcare

information, as the protection of personal information is of

the utmost importance. This problematic is materialized in

General Data Protection Regulation (GDPR), which through

various means, including data minimization, strives to limit

sharing and storage of sensitive information. However, without

employing the full potential of high-quality data collected

globally, we will end up with numerous ML models struggling

to generalize and therefore deliver clinical value. To overcome

this issue, the use of federated learning (FL) could be an

alternative (18).

Federated learning

The objective of FL is to train ML models without

the requirement to collect data in a central place. FL

algorithms extract only the generally applicable clinical,

behavioral, and physiological characteristics, without the
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requirement for sensitive personal information. However,

there is a need for user-friendly FL tools to perform such

analyses in a practical way. Such tools could allow not

only federated learning (privacy-preserving collaborative

model training) but also federated analysis which could

supercharge the scientific progress in the CV field (and

others). Similarly, the integration of deep phenotypes

and the temporal domain will require specific tools for

clinical practice.

AI-based HF risk stratification tool in
clinical practice

To effectively deploy a validated and robust predictive

model in clinical practice, integration into the clinical workflow

must be as seamless as possible. This could require integrating

information from the electronic health records (EHR). However,

it might be notoriously difficult, e.g., in the European settings,

as there is currently a limited interoperable infrastructure. The

use of EHR should be human-centric with individuals having

full control over the use of their data. FL is compatible with

this approach by protecting personal data. One approach to

overcoming the heterogeneity of the healthcare systems is to

connect systems through a system-specific bridge (adapter).

Another approach is to use deep learning, which learns feature

representations directly from the EHR data. This system can

then transform the unstructured data from different systems

into a structure that can be pipelined into another ML

algorithm. These systems should be however open to ensure

trust and fairness and to facilitate integration into other

systems. Additionally, these systems might raise questions

regarding reliability and fairness. With many current scores,

there are online calculators allowing easy-to-use estimation of

individual risk. However, use in the clinical setting should

be cautious, as data privacy policy is not always clear and

could be a possible target of 3rd-party malware attacks (the

browser is more vulnerable). Therefore, an AI-based app

would serve as a more secure way to handle personal data

and would be more robust (e.g., working under internet

connectivity disruptions). Independently on the data input

method, the user experience (UX) needs to be user-friendly

and informative to aid in doctor-patient communication and

to provide the benefit of improved accuracy of ML-based

predictive models.

Conclusion

With a greater number and variety of training cohorts,

the model learns a wider range of specific individual health

characteristics. Flexible ML algorithms as well as the stacking

methods can be used to capture these diverse distributions and

produce more precise, personalized models for the prediction of

adverse events.
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