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Summary

The calpain family is named for the calcium dependence of the papain-like, thiol protease activity
of the well-studied ubiquitous vertebrate enzymes calpain-1 (µ-calpain) and calpain-2 (m-calpain).
Proteins showing sequence relatedness to the catalytic core domains of these enzymes are
included in this ancient and diverse eukaryotic protein family. Calpains are examples of highly
modular organization, with several varieties of amino-terminal or carboxy-terminal modules
flanking a conserved core. Acquisition of the penta-EF-hand module involved in calcium binding
(and the formation of heterodimers for some calpains) seems to be a relatively late event in
calpain evolution. Several alternative mechanisms for binding calcium and associating with
membranes/phospholipids are found throughout the family. The gene family is expanded in
mammals, trypanosomes and ciliates, with up to 26 members in Tetrahymena, for example; in
striking contrast to this, only a single calpain gene is present in many other protozoa and in
plants. The many isoforms of calpain and their multiple splice variants complicate the discussion
and analysis of the family, and challenge researchers to ascertain the relationships between calpain
gene sequences, protein isoforms and their distinct or overlapping functions. In mammals and
plants it is clear that a calpain plays an essential role in development. There is increasing evidence
that ubiquitous calpains participate in a variety of signal transduction pathways and function in
important cellular processes of life and death. In contrast to relatively promiscuous degradative
proteases, calpains cleave only a restricted set of protein substrates and use complex substrate-
recognition mechanisms, involving primary and secondary structural features of target proteins.
The detailed physiological significance of both proteolytically active calpains and those lacking key
catalytic residues requires further study.
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Gene organization and evolutionary history
This review focuses on the eukaryotic calpains, although

genome databases reveal bacteria, but no archaea, with

sequences related to the catalytic core domains (domains dI

and dII) of the classical calpains, the criterion used for

designating a protein as a calpain. Only single copies of

calpain-coding genes are found in the small number of

sequenced or partially sequenced protozoan genomes, such

as those of the apicomplexan parasites Plasmodium

falciparum, Theileria annulata and Cryptosporidium parvum

[1-3], and of the amitochondrial parasite Entamoeba

histolytica [4]. No calpain-like sequences were identified in

the human pathogen Giardia lamblia, a diplomonad often

considered to be the most basal eukaryotic organism [5].

Protozoan calpains lack a domain containing EF-hand-type

Ca2+-binding sites, as also do plant and fungal calpains, and

thus it seems likely that the proposed cysteine protease-

calmodulin gene fusion leading to the classical calpain

structure (for earlier reviews see [6-8]) occurred exclusively

within the animal lineage. The nomenclature recommended

for describing calpain proteins and the genes encoding them

is summarized in Box 1.



Uniquely within protozoa, the kinetoplastid parasites

Trypanosoma brucei, T. cruzi and species of Leishmania,

and the ciliate Tetrahymena thermophila [9-12] display

expansion of calpain genes. Fourteen genes encoding

calpain-related proteins have been identified in T. brucei, 17

in Leishmania major and 15 in T. cruzi [13]. Most of these

capn genes are organized as tandem repeats in a small

number of gene clusters that are syntenic between T. brucei,

T. cruzi and L. major, indicating that most of the observed

expansion and diversity was probably generated by gene-

duplication events in an ancestral kinetoplastid. The

macronuclear genome sequence of the ciliate T. thermophila

[12] predicts a surprisingly large number of 26 calpain-like

proteins. Analysis of human and mouse genomes has

identified 14 members of the calpain family. For the few

calpain genes analyzed in mammals, sizes range from 13 to

50 kb with 15 to 28 exons [7]. Phylogenetic trees have been

generated for isolated domains [8,14] and for the defining

catalytic core domain (dI-dII) in conjunction with the most

common, C2-like, auxiliary domain (dIII), of selected species

[14,15]. An analysis by Jekely and Friedrich [14] revealed

clear segregation of the EF-hand-containing capn gene

(Schistosoma, Caenorhabditis elegans CLP-1, Drosophila

A/B and the classic vertebrate capn) from the cluster

containing capn5(tra3) and capn6 [14]. Possible gene-

duplication events may explain the closer evolutionary

relationships between the pairs capn2 and capn8, capn3

and capn9, and capn1 and chicken µ/m [14]. Wang et al. [15]

also included capn11 and 12 in their phylogenetic analysis,

but neither report included capn10. Of interest would be a

more detailed analysis of domain dIII sequences in these

genes, to determine whether there is a general functional

homology between dIII domains that are related to the

calcium- and phospholipid-binding domain of protein

kinase C (C2-like domains), as is the case in mammalian

calpains 1, 2 and 3 [7] and Drosophila calpain B [16].

A phylogenetic tree rooted to the calpain-related sequence of

the prokaryote Porphyromonas gingivalis and based only

on the catalytic core (dI-dII) is shown in Figure 1, and
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Box 1. Summary of nomenclature used for members of the calpain family

Calpain: a protein or proteins comprising the functional unit. For example, calpain-2 is a heterodimer comprising a

catalytic subunit of about 80 kDa (the protein encoded by capn2) and a small subunit of about 28 kDa (the protein

encoded by cpns1/capn4); calpain-3 is either a monomer of a 94 kDa protein or a homodimer of that protein. The name

calpain replaces the designations CANP (calcium-activated neutral protease) and CDP (calcium-dependent protease),

among others.

CAPN or capn: mammalian gene (CAPN in humans and capn in mice and other mammals) with sequence relatedness

to the catalytic, papain-like core domains dI and dII (sometimes referred to as dIIa and dIIb) of the classic calpains, and

encoding a protein that is, or is part of, a calpain. For example, capn1 encodes the catalytic subunit of calpain-1, capn10

encodes calpain-10. Note that the functional forms of many proteins encoded by capn genes are not yet defined. Some

proteins encoded by capn genes lack key catalytic residues. The three Drosophila genes are called calp, as are the

calpain genes in Trypanosoma brucei. The calpain gene in Arabidopsis is called DEK1.

cpns: gene encoding a small subunit utilized by some calpains, for example, calpain-1 and calpain-2. cpns1 is also

known as capn4. The cpns designation is now preferred, as this gene is unrelated to the catalytic core domains currently

used to define capn genes. This gene encodes two domains: an amino-terminal unstructured glycine-rich region

(domain V in heterodimeric calpain) and a penta-EF-hand module (dVI) closely related to dIV of the proteins encoded

by capn1 and capn2.

Classic or classical calpains: capn genes and their encoded calpain proteins that also include a penta-EF-hand type

of calcium-binding domain with sequence relatedness to domain IV (dIV) of calpains-1 or -2 and domain VI (dVI)

encoded within cpns1. This domain is carboxy-terminal to the defining core in classic calpains. This group includes

calpain-1 (also called µ), calpain-2 (also called m), calpain-3 (also called p94), calpains 8, 9, 11, and the three Drosophila

calpains A, B and C (formerly CG3692). The group is also referred to as the ‘typical’ or ‘conventional’ calpains.

Non-classical calpains: genes and their calpain proteins lacking a penta-EF-hand domain. This group is also called

the ‘atypical’ or ‘non-conventional’ calpains. There is no simplified classification of these genes or their proteins yet

because a variety of alternative domains or modules may be present. Calpains shown to have C2-like domains (dIII)

carboxy-terminal to the core may comprise one group when those structures are defined, and may include capn5, 6, 7,

10, 12 and 14. Human CAPN5 and CAPN6 also include a more classic C2 domain formerly referred to as the T module.
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Figure 1
The phylogenetic relationship of calpains from diverse evolutionary groups of eukaryotes. Only the catalytic core domains (dI-II) were used to construct
the tree. Multiple alignments were done with Clustal X and bootstrapped with PAUP4* (1,000 iterations). Only values greater than 50% are indicated.
The tree was rooted with the calpain-related sequence from the prokaryote Porphyromonas gingivalis. A minus sign (-) indicates a nonstandard catalytic
triad; species names in bold contain EF-hand motifs and the amino- or carboxy-terminal location of the motif is indicated by superscript N or C. Gray
box, representative examples of classical calpains; yellow box, calpains containing a carboxy-terminal SOL domain; magenta box, calpains containing an
additional carboxy-terminal C2 domain (also referred to as a Tra3 or T domain); green box, calpains containing 21 amino-terminal transmembrane
domains; blue box, calpains containing a carboxy-terminal PalB-type domain. Species names: T. brucei, Trypanosoma brucei; T. thermophila, Tetrahymena
thermophila; S. histriomuscorum, Sterkiella histriomuscorum (a ciliate); E. histolytica, Entamoeba histolytica; D. melanogaster, Drosophila melanogaster; S. mansoni,
Schistosoma mansoni; C. elegans, Caenorhabditis elegans; H. sapiens, Homo sapiens; A. thaliana, Arabidopsis thaliana; A. gambiae, Anopheles gambiae; C. albicans,
Candida albicans; S. cerevisiae, Saccharomyces cerevisiae; P. falciparum, Plasmodium falciparum; C. parvum, Cryptosporidium parvum; P. gingivalis, Porphyromonas
gingivalis. Calpains listed with unpublished, nonstandard abbreviations: 3TM, three carboxy-terminal transmembrane domains; 5EF, five-EF-hand motifs;
21TM, 21 amino-terminal transmembrane domains; DI-II, domains dI-dII-only calpain without further recognizable motifs. Single calpains have been
identified in organisms where only species names are given. Sequences and accession numbers are available in Additional data file 1.
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suggests that the EF-hand-containing calpains from animals

(carboxy-terminal EF-hands) and Tetrahymena (amino-

terminal EF-hands) are phylogenetically well separated. This

raises the intriguing possibility that the acquisition of EF-

hands occurred through independent gene-fusion events in

these groups. The phylogenetic analysis also reveals a close

relationship of the Tetrahymena calpain containing 21

transmembrane motifs (21TM) with plant calpain

(Arabidopsis DEK1), thus raising the possibility of a

common origin for these unusual calpains. Lateral gene

transfer from a green alga-type endosymbiont of ciliates is

one possible mechanism.

Characteristic structural features
Calpains have a highly modular organization, as illustrated

in Figure 2, which shows the types of protein modules and

their organization within specific calpains. The catalytic

subunit of classical calpains has four domains, of which dI

and dII constitute the catalytic core, dIII is a C2-like domain

capable of calcium and phospholipid binding, and dIV

contains five EF-hand motifs, the fifth serving in some

calpains as a dimerization motif for binding to a ‘small

subunit’ (see below) or to form homodimers. The non-

classical calpains all have domains dI and dII (by definition),

but not all have dIII or dIV, and some contain other types of

modules (Figure 2). Although defined by their ‘catalytic’ core

sequence, an increasing number of calpains lack one or more

of the essential catalytic amino-acid residues, suggesting

functions unrelated to proteolysis. It has been speculated

that these ‘pseudo-proteases’ are involved in regulatory

processes [13,17]. A very recent report describes a role for

the non-catalytic calpain-6 in the stabilization of

microtubules [18].

Some of the classical calpains are heterodimers of the ‘large’

catalytic subunit with the so-called small subunit Cpns-1

(formerly known as Capn-4). Cpns-1 is composed of two

domains: dV, an amino-terminal glycine-rich unstructured

domain, and dVI, a penta-EF-hand module homologous

with dIV of the catalytic subunit. Domain dVI was the first

calpain module for which structures were solved in the

absence and presence of calcium (reviewed in [7]). These

structures provided crucial insight into the nature of

heterodimer formation in the classical calpains, anticipated

the small contribution of this domain to the calcium-induced

conformational change of the holoenzyme, and later

revealed details of the interaction of the Cpns-1 protein with

a peptide mimicking calpastatin, the endogenous and specific

inhibitor of the classic calpains 1 and 2 [19] (Figure 3a).

The determination of the calcium-free structure of calpain-2

from rat and human [20,21] was key to furthering our

understanding of the classic calpains (Figure 3b) and

revealed unanticipated insights. In contrast to most allo-

sterically regulated enzymes, where activation relieves steric

hindrance at a pre-formed active site, classic calpains

require a conformational change to realign the key residues

(Cys, His, Asn) to make them catalytically competent. In

addition, domain dIII in calpain-2 shows some structural

resemblance to C2 domains, which suggests possible addi-

tional mechanisms for binding calcium and phospholipids.

Mutagenesis experiments provide evidence for the function

of dIII as an electrostatic switch contributing to the

maintenance of the catalytic core in an inactive form and the

subsequent stabilization of the active enzyme [22,23]. The

structure of calpain-2 also provided a platform for modeling

the structures of calpain-1 (since confirmed by crystalli-

zation and structure determination of a chimeric calpain-1-

like enzyme [24]) and of calpain-3 [25].

The isolated catalytic core of calpain-1 (the dI-dII module,

referred to as ‘mini-calpain’) yielded a calcium-bound struc-

ture [26] (Figure 3c). Quite surprisingly, in some calpains,

for example rat calpain-1, the isolated core showed weak but

measurable Ca2+-dependent proteolytic activity, a result of

unpredicted and novel calcium-binding sites [26,27].

Comparisons between chimeric enzymes (mixtures of

domains from calpains 1 and 2 or 3), the inactive hetero-

dimer, and mini-calpains indicate some details of the

mechanism of regulation of catalytic function by calcium.

Activation of the enzyme core within the heterodimer

involves proteolytic removal of the amino-terminal ‘anchor’

helix (see Figure 3b) or the release of its binding to dVI,

weakening of the electrostatic interactions between dIII and

dII, and the binding of multiple calcium ions to the EF-hand

modules (dIV and dVI) and to dIII, which trigger changes

that permit binding of calcium to the calcium-binding sites

of the catalytic core. The weakening of the constraints that

maintain the dI-dII domains in their ‘inactive’ positions and

the cooperative Ca2+ binding to the core allow the

realignment of the core into its active state, in which it bears

a substantial structural resemblance to papain. The isolated

core also provides a useful reagent for screening calpain

inhibitors to find potential drug candidates [26-28].

Localization and function
Calpain function has been investigated by both genetic and

cell-biological routes. Table 1 summarizes these studies and

their results. The targeted deletion, and more recently the

conditional deletion, of the cpns1 gene [7,29] showed that at

least one classical calpain is essential for early embryo-

genesis in mammals. Targeted deletion studies have since

shown that capn1 is not essential [30] whereas capn2 is [31];

the function of calpains in development is not yet known,

however. Loss of capn9 in NIH3T3 cells results in a more

transformed phenotype, as shown by increased growth in

soft agar [32], but to our knowledge this gene has not yet

been targeted in whole organisms. Multiple genetic defects

that truncate, or otherwise inactivate, calpain-3 (also called

p94) seem to be a cause of limb-girdle muscular dystrophy
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Figure 2
A modular architecture is found in all members of the calpain protein family. All the identified human calpain genes (hCAPN) are depicted with selected
examples from other species. The presence of domains dI and dII is used to define the family. Domain dIII is defined as the classical calpain C2-like
domain; other C2 domains can also be present (see hCAPN5 and 6). Domain dIV is the penta-EF-hand module shared by classical calpains and their small
subunit Cpns-1 (where the penta-EF-hand module is known as domain dVI). Domain dV, specific to the small subunit Cpns-1 and without known motifs,
is not shown here. The black bars linking modules represent sequences without known motifs and are unique to individual calpains. *The classical calpain
hCAPN3 has two insertions, indicated by ∆ here. †These proteins have lost key catalytic residues and are predicted to lack protease activity. Species:
Dm, Drosophila melanogaster; Ce, Caenorhabiditis elegans; En, Emericella (Aspergillus) nidulans; Sc, Saccharomyces cerevisiae; Tt, Tetrahymena thermophila; Tb,
Trypanosoma brucei. Domain abbreviations: C2, protein kinase C conserved region 2 (domain involved in calcium-dependent phospholipid binding); IVdEF,
domain dIV with degenerate EF-hand motifs that are unlikely to bind calcium; EF, domain with EF-hand motifs distinct from domain dIV; KAC,
kinetoplastid acylated domain (myristic acid and palmitic acid chains are indicated by zigzag lines); MIT, microtubule interacting and trafficking molecule
domain; palB, palB-homologous domain; PKA, protein kinase A regulatory subunit domain; SOL, small optic lobe domain; TMD, transmembrane domain;
Zn, zinc finger domain. The functions of some of these protein modules are not yet defined. The domain structures were assembled using SMART [79]
and the peptidase database MEROPS [80].
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type IIa [25,33], thus identifying the importance of

calpain-3 in skeletal muscle integrity. Targeted deletion of

capn3 in mice produces a model for assessing its role in

muscle function and repair [33,34]. Specific splice variants

of capn3 occur in the lens of the eye and are linked to the

formation of cataracts [35]. One factor contributing to

increased susceptibility to type 2 diabetes, a multifactorial

disease, may be variations in the capn10 gene. This idea

still sparks controversy, as the initial observation identified

a polymorphism in a capn10 intron in populations with

increased risk for diabetes [7,36,37]. However, studies

show that calpain-10 may function in stimulated secretion

and/or pancreatic cell death [38,39], and thereby be

relevant to this disease. Two non-classical calpains, Tra3

and PalB (orthologs of calpain-5, capn5, and calpain-7,

capn7), mediate signal transduction pathways for sex

determination in nematodes [40] and adaptation to pH in

yeast [41], respectively.

Biochemical and cell-biological studies also provide signi-

ficant insights into calpain physiology. It is often

speculated that calpains function, or become activated,
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Figure 3
Structures of calpain modules and calpain-2. (a) Ribbon diagram of the structure of the penta-EF-hand module (domain dVI) of Cpns-1 from pig. It is
shown here as a homodimer (one chain green, one cyan). The short helical peptides (yellow and magenta) are 19-residue mimics of the conserved C
peptide of the calpain inhibitor calpastatin bound to dVI in the presence of calcium (orange spheres). The structure is from PDB 1NX1 (Todd et al. [19]).
(b) Ribbon diagram of the structure of the rat calpain-2 heterodimer. The catalytic core domains (dI-dII) are in light and dark blue, respectively. Catalytic
residues are shown as magenta sticks (with the engineered mutation of C105S) and the arrow designates the active-site cleft between domains dI and dII.
Domain dIII (brown) is C2-like. The penta-EF-hand domain dIV of the large subunit (Capn-2) is in yellow, and the similar domain dVI of the small subunit
(Cpns-1) is in orange. Domain dV, the amino-terminal glycine-rich region of the small subunit, was truncated by protein engineering; in the human
enzyme it is highly flexible and structurally unresolved [21]. The amino-terminal helix and linker loops are in green. The structure is from PDB 1DF0
(Hosfield et al. [20]). The dVI heterodimer in (a) is very similar to that formed between the dIV and dVI domains, and can be used to model this
interaction. (c) Ribbon diagram of the structure of the calcium-bound catalytic core (domains dI-dII) of rat calpain-1 based on PDB 1TL9 (Moldoveanu et
al. [26]). The bound inhibitor leupeptin is shown as gold, blue and red spheres; the magenta spheres are two calcium ions bound to hitherto unknown
sites. All ribbon diagrams were generated using PyMol (DeLano Scientific, Palo Alto, CA, USA).



when associated with membranes, despite their

predominantly cytoplasmic localization [6,7]. Although

membrane binding is not well substantiated for classical

calpains, predicted transmembrane segments in phytocalpain

and some ciliate calpains suggest an evolutionary link

between calpain function and membranes. At least two

acylated calpain-like proteins in the kinetoplastids L. major

and T. brucei are biochemically associated or co-localize with

cellular membranes ([42] and KE, unpublished work).

Acylated proteins are often associated with the cytoplasmic

face of membranes and lipid rafts, where they are implicated

in signal transduction [42,43]. Thus, the small amount of

calpain fractionating biochemically with membranes may be

the active, physiologically relevant, enzyme population,

although suggestions that vertebrate calpains localize to lipid

rafts or caveolae require further confirmation. Biophysical

studies demonstrate the ability of a conserved peptide

(GTAMRILGGVI) located in the amino-terminal domain dV

to form a membrane-penetrating α-helical structure [44],

providing one mechanism for calpains 1 and 2 to bind to

membranes. For many calpains, the C2-like domain (dIII)

provides an additional or alternative mechanism for

membrane association via its phospholipid-binding

properties. A recent study has demonstrated the importance

of dIII-mediated membrane binding of calpain-2 in living

cells [45]. In addition, the critical self-sealing repair of

damaged plasma membranes requires the activity of

ubiquitous calpains, which may act to remodel the underlying

cortical cytoskeleton [46].

In contrast to relatively promiscuous degradative proteases,

calpains cleave only a restricted set of protein substrates and

use complex substrate-recognition mechanisms, involving

primary and secondary structural features of target proteins.

Proteins identified as substrates for calpains include numerous

membrane-bound or membrane-associated proteins, such as

calcium-ATPase, the epidermal growth factor (EGF) recep-

tor, the ryanodine receptor, the calcium receptor, the NMDA

receptor (a glutamic acid receptor), β-integrins, aquaporin,

the transporters ABC-A1 and GLUT4, and proteins inter-

facing with receptors and the cytoskeleton, such as talin,

α-spectrin (α-fodrin) and ezrin, among many others (see Table

11 in [7] for a more extensive, though still incomplete, list).

A wide variety of receptors function upstream of the intra-

cellular activation of calpains (Table 2). The most thoroughly

studied models focus on the roles of calpains in cell motility

in response to either EGF [47] or integrin engagement [48].

Additional work links calpains to cell transformation and

oncogenesis [49,50]. Knockdown strategies utilizing anti-

sense RNAs or small interfering RNAs to study the roles of

calpains in cell transformation and in other cellular

processes have provided significant evidence for non-redun-

dant, distinctive functions for each ubiquitous calpain

isoform. Although less widely studied, there is also increasing

evidence for the externalization of calpains and their

extracellular contribution to tissue damage in response to

toxicants or other factors [51-53]. These destructive roles

may relate to the documented involvement of calpains in
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Table 1

The physiological functions of calpains as revealed by genetics

Gene disruption 
or mutation Model system Enzyme(s) Findings and implication for function

cpns1 (capn4)-targeted Mouse Calpains 1, 2, and Embryonic lethal, therefore some calpain is essential during 
probably 9 embryogenesis [29]

capn1-targeted Mouse Calpain-1 Viable, fertile mice, some platelet changes, calpain-1 is not 
essential for development [30]

capn2-targeted Mouse Calpain-2 Embryonic lethal, very early, implying essential role for 
calpain-2 [31]

capn3-targeted/naturally Mouse/human Calpain-3 Muscle-repair defects, myopathy/LGMD type IIa [33,34,69]
occurring mutations

capn9 random Mouse cell culture Calpain-9 Increased cell growth in soft agar suggests that calpain-9 is a 
homozygous knockout (NIH3T3 cells) potential tumor suppressor [32]

capn10 variation in Human Calpain-10 Potential risk factor for type 2 diabetes; transport of GLUT4 
population [36,38]

dek1-targeted/naturally Maize/Arabidopsis/tobacco Phytocalpain Embryonic lethal in maize, developmental defects [70]
occurring mutations

tra3 (capn5) mutant and C. elegans Tra3 Sex determination [40]
engineered

palB (capn7) mutant Emericella nidulans PalB pH signal transduction pathway [41]



pathways that trigger apoptosis and/or necrosis [54-59] and,

discovered most recently, autophagy [60,61]. Thus, there is

considerable evidence for a complex relationship between

calpain activity and the functions of both caspases and the

proteasome.

Frontiers
Despite great advances in our knowledge of calpains 1 and 2,

much is yet to be learned about the evolution of the family

and the range of functions of its members. Genomic

sequences from a wide range of organisms document the

extreme diversity and modular nature of the calpain protein

family. Current evidence suggests that the acquisition of the

penta-EF-hand module, characteristic of the classical

calpains, may be restricted to animals, but that EF-hands

may have been acquired independently in Tetrahymena

calpains. The use of different strategies for associating with

membranes, such as transmembrane domains, C2-like

domains, and acylation, support the importance of mem-

brane association in calpain function. More genomic infor-

mation from representative organisms, particularly protozoa,

is required to better analyze the evolutionary relationships

within this family. The proteolytic core module is now

relatively well characterized as to structure and function.

Distinguishing the overlapping or unique substrate specifi-

cities [62] and inhibitor sensitivities of the proteolytically

active calpain isoforms is expected to aid the design of

studies aimed at determining their roles in cellular path-

ways. For the family members lacking key catalytic residues,

218.8 Genome Biology 2007, Volume 8, Issue 6, Article 218 Croall and Ersfeld http://genomebiology.com/2007/8/6/218

Genome Biology 2007, 8:218

Table 2 

Functional diversity of calpains

Examples of proposed Selected 
calpain function(s) Model systems providing key supporting evidence Calpain implicated (possible substrates) references

Participant in signaling pathways

EGF-EGFR-induced motility Mouse NR6 fibroblasts and derivatives, Hs68 Calpain-2 (?) [7,45,47]
(human neonatal foreskin fibroblasts)

Integrin receptor-linked Platelets, bovine aortic endothelial cells, CHO, Calpain-1 leading edge; calpain-2 trailing [6,48,71]
motility CHO KI1 and SHI derivative, goldfish fin CAR, and edge (talin, filamin, spectrin, β-integrin)

immortalized mouse embryonic fibroblasts deficient in 
Cpns-1 (capn4-/-)

Integrin receptor-linked Mouse cell line NIH3T3 Calpain-2 (ezrin) [72]
adhesion

Downstream of VEGF Pulmonary microvascular endothelial cells Calpain-2 (?) [73]

Responsive to TRPM7 Flp in T rex 293 derivatives Calpain-2 (talin) [74]

Adaptation to alkaline Emericella (Aspergillus) nidulans, Candida albicans, PalB or Rim13/Clp1 [41,75]
environment Saccharomyces cerevisiae

Downstream of endothelin-1 Mice, HeLa cells, NIH3T3 or HEK293 Calpain-6 (a non-catalytic form; [18]
in development binds to and stabilizes microtubules)

Shear stress induced motility Human umbilical vein endothelial cells Calpain-2 (pp125FAK, ezrin) [76]

Cellular transformation and tumorigenesis

v-src-transformed cells HT1080 human fibrosarcoma, H1299 non-small Implied calpains 1 and 2 [48,77]
cell lung carcinoma (FAK, paxillin)

capn9 gene disruption Mouse cell line NIH3T3 Calpain-9 [32]

Necrosis and/or apoptosis

Toxicant induced damage to Rat/mouse exposure to selected toxicants Extracellular calpain (fibronectin) [51-53]
liver or kidney

Neuronal cell death C. elegans, cell culture (for example, SH-SY5Y), Isoforms not defined Bax, Bid, AIF, [55-57]
primary cells caspase)

Cerebellar granule cell survival Rat, primary cells Nuclear localized calpain-2 [78]

Apoptosis of pancreatic islet Islets (human, mouse) MIN6 β cells exposed to Calpain-10 [36,38,39]
cells ryanodine or palmitate and low glucose

Autophagy/apoptosis switch Neutrophil, Jurkat, USO2, cpns1-/- MEF Isoform not defined (Atg5) [60,61]

StrepB-induced apoptosis Macrophage Calpain-2 (Bax, Bid) [58]



alternative functions await discovery. Future work is also

needed to determine how the modules associated with the

core influence its function. There is likely to be interplay

between protein-protein interactions, membrane binding,

calcium binding (in many calpains) and, potentially, post-

translational modifications in the modulation of calpain

function. Many calpain proteins remain to be purified and

characterized biochemically, so the challenge of identifying

their relevant binding partners remains.

It is now established that some calpains are components of

regulatory networks involved in fundamental processes at

cellular (for example, motility) and organismal (for example,

embryogenesis) levels. Further work will determine if and

when specific isoforms and the multitude of their possible

splice variants are expressed in either a tissue-specific or

time-dependent manner in cells. Understanding the

function(s) of individual isoforms in a variety of physio-

logical contexts - from protozoa to humans - remains the

ultimate challenge. RNA interference will continue to make a

significant contribution to these goals, and the design of

calpain-resistant substrates [63,64] will provide a way of

documenting calpain-catalyzed, limited proteolysis in vivo.

The future development of biosensors to visualize calpain

activity (or activation), like those generated for other signal

pathway molecules [65], may also provide a major advance.

Efforts to develop cellular calpain ‘reporter’ substrates have

been described [66,67] and the tight binding of calpastatin

to active calpains 1 and 2 [6,7,68] may be exploited to

develop reporters that selectively recognize the active

conformation of these enzymes (D.E.C. and L.M. Vanhooser,

unpublished work). More data and new approaches are

needed to enhance understanding of the regulation of both

proteolytic and non-proteolytic calpains. Careful trans-

criptional, translational and activity-based profiling - ideally

able to detect the variety of splice variants - will be required

to establish detailed expression patterns for calpains in

relation to embryogenesis, differentiation or other cellular

processes. The time is ripe to define the regulatory circuits in

which calpains participate, to complete the assessment of

their in vivo substrates and to characterize the regulators of

all functions of calpains.

Additional data files
Additional data is available with this paper online. Additional

data file 1 contains the sequences and accession numbers of

the calpain sequences in the phylogenetic tree in Figure 1.
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