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A B S T R A C T   

Purpose: To evaluate the role of the first and second-order texture parameters obtained from T2-weighted fat- 
saturated DIXON images in differentiating paragangliomas from other neck masses, and to develop a statistical 
model to classify them. 
Method: We retrospectively evaluated 38 paragangliomas, 18 nerve-sheath tumours and 14 other miscellaneous 
neck lesions obtained from an IRB approved study conducted between January 2016 and June 2019; using a 
composite gold standard of histopathology, cytology and DOTANOC PET CT (A total of 70 lesions in 63 patients). 
Fat-suppressed T2weighted-DIXON axial images were used. First and second-order texture-parameters were 
calculated from the original and filtered images. Feature selection using F-statistics and collinearity analysis 
provided 14 texture parameters for further analysis. Mann-Whitney-U test was used to compare between the 
groups and p-values were adjusted for multiple comparisons. ROC curve analysis was used to obtain optimal cut- 
offs. 
Results: A total of ten texture features were found to be significantly different between paragangliomas and non- 
paraganglioma lesions. Minimum from the histogram of grey levels was lower in paragangliomas with a cut off of 
≤113.462 obtaining 62.9 % sensitivity and 77.27 % specificity in differentiating paragangliomas from non- 
paragangliomas. Logistic regression model was trained (n-49) using forward feature selection, which when 
evaluated on the validation set(n-21)- obtained an AUC of 0.855(95 %CI, 0.633 to 0.968) with a positive like-
lihood ratio of 4.545 (95 %CI, 1.298–15.923) in differentiating paragangliomas from non-paragangliomas. 
Conclusion: Texture analysis of a routine imaging sequence can identify paragangliomas with high accuracy. 
Further development of texture analysis would enable better imaging workflow, resource utilisation and imaging 
cost reductions.   

1. Introduction 

Complex regional anatomy with surrounding critical vascular 
structures and multicompartmental spread of disease make neck masses 
a unique clinico-radiological challenge. Paragangliomas are one of the 
more frequently encountered non-epithelial neoplasms in the neck. 
Similar anatomical distribution (often in the carotid space) and non- 

specific symptomatology makes clinical differentiation of para-
gangliomas from other neck lesions challenging [1–3]. Percutaneous 
biopsy from paragangliomas can often mimic a wide range of benign and 
malignant head neck [4–6] pathologies. Further, the additional risks of 
adrenergic crisis [7,8] and bleeding from the hyper-vascular tumour 
makes preoperative biopsy of paragangliomas’ difficult [5,9]. Nuclear 
scans (In-111 pentetreotide, FDG-PET, gallium Ga-68 DOTATATE 

Abbreviations: FDG-PET, fluorodeoxy-glucose positron emission tomography; NST, nerve sheath tumour; LoG, laplacian of gaussian; GLCM, grey level co- 
occurrence matrix; IMC1, informational measure of correlation 1; IMC2, informational measure of correlation 2; IDM, inverse difference moment; MCC, maximal 
correlation coefficient; IDMN, inverse difference moment normalized; ID, inverse difference; IDN, inverse difference normalized; ROC, receiver operator charac-
teristics; AUC, area under the curve. 
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PET/CT and gallium Ga-68 DOTATOC) have a unique role in the 
work-up of paragangliomas. Over 40 % of paragangliomas are familial 
[8,10,11] and up to 85 % of familial cases may have multicentric disease 
[12,13]. Radioisotope studies confirm the molecular diagnosis of para-
gangliomas (offsetting the need for biopsy) and also evaluate disease 
multicentricity in the same scan, thus compensating the additional 
expenditure associated with these scans [14]. 

Semi-quantitative descriptors like lesion heterogeneity are 
commonly used in characterising neck lesions- for example, the salt and 
pepper appearance of paragangliomas and the target appearance of 
schwannomas. Texture analysis takes this semi-quantitative premise 
further [15,16]. It quantifies mathematically- the pixel to pixel hetero-
geneity of tumour appearance on imaging. Texture analysis can objec-
tively predict histology and prognosticate tumours. Texture analysis 

based non-invasive tumour characterisation of paraganglioma from the 
point of care T2 weighted images could indicate a nuclear scan over 
further contrast administration, thus improving the imaging workflow. 
Given this background, we evaluate the role of the first order and 
second-order texture parameters obtained from T2 fat-saturated images 
in differentiating paragangliomas from other neck masses (including 
nerve sheath tumours NSTs) and develop a simple statistical model to 
classify them. 

2. Materials and methods 

2.1. Inclusion and exclusion criteria 

This study retrospectively evaluated the fat-saturated DIXON T2 

Fig. 1. Flow chart demonstrating the inclusion of patients in the study. 
LN- lymph node. 
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weighted images in a subset of patients with head and neck tumours, 
obtained during an institutional review board-approved study con-
ducted for MRI evaluation of neck masses at our institute between 
January 2017 to June 2019. All patients with neck masses referred for 
imaging from the Otorhinolaryngology, Head & Neck Surgery depart-
ment were included in this study, and informed consent was obtained. 
Patients with clinical or ultrasound proven thyroid or parathyroid 
masses, clinically evident multiple lesions, epithelial carcinomas with 
possible neck metastasis, and ultrasound evident cystic lesions were 
excluded (Fig. 1). 

A total of 70 lesions in 63 patients consisting of 38 paragangliomas 
(group-A) in 31 patients(7 patients had two lesions),18 NSTs in 18 pa-
tients (group-B) and 14 other lesions in 14 patients (group-C) were 
included (Table 1). Preoperative, post-operative tissue-based biopsy and 
DOTA-NOC PET/CT based diagnosis of paragangliomas using somato-
statin receptor expression was considered as the composite gold 
standard. 

2.2. MR imaging 

All patients were imaged on a 3 T MRI scanner (Ingenia 3 T, Philips, 
The Netherlands) using a 16- channel neurovascular coil in the supine 
position. An axial T1-weighted DIXON sequence, T2-weighted DIXON 
sequence in sagittal, coronal and axial planes were obtained; subse-
quently, diffusion-weighted imaging, dynamic contrast-enhanced T1 
perfusion imaging and post-contrast T1 weighted images in three planes 
were also acquired. The fat-saturated images obtained from the axial T2- 
weighted DIXON sequence was used for texture analysis (TR 
2500− 3500 ms; TE 90 ms; fast imaging mode: turbo spin echo, shot 
mode: multishot, TSE factor 21; slice thickness 4 mm; flip angle 90, 
number of signal averages - 1; field of view 190 × 190 mm; acquired 
matrix size 272 × 218; reconstructed matrix size- 320 × 320; recon-
structed voxel size 0.59 × 0.59 mm: acquisition time ~4 min). 

2.3. Tumour segmentation 

The fat-saturated T2 axial images were exported in DICOM format 
from the departmental PACS server and opened on an open-source 
image viewer- 3D Slicer 4.11.0 (https://download.slicer.org/). Two ra-
diologists- A.G and S.M with 6 and 16 years of experience respectively in 
head neck imaging in consensus segmented the tumour The slice with 

the largest bulk of the tumour was selected, and a whole tumour 2D 
region of interest was drawn (Figs. 2a). Post-contrast sequences and T1 
weighted images were consulted to avoid areas of haemorrhage and 
necrosis. The tumour periphery was not included to avoid volume 
averaging from surrounding tissues. 

2.4. Texture extraction 

PyRadiomics open-source software(version, 2.0.1.) (https://pyr 
adiomics.readthedocs.io/en/latest/index. html) [17] was used to 
extract texture features. A Laplacian of Gaussian (LoG) filter with sigma 
values of 2, 3, 4, and 5 mm; and wavelet transform using high- and 
low-frequency band-pass filter combinations were used for image 
filtration. Pixel thickness rescaling using cubic B-spline interpolation 
(resultant pixel size 2 × 2 × 2 mm3); along with grey-level normalisation 
using a ± 3σ technique and grey-level discretisation (bin–width, 5) was 
check once performed (Fig. 2 a and b). First-order texture parameters 
and second-order grey level co-occurrence matrix (GLCM) parameters 
were extracted from the original as well as the filtered images. A total of 
520 texture features were obtained from each lesion (Table 2) 

2.5. Image interpretation 

The T1weighted and the T2 weighted DIXON images (including both 
the non-fat-saturated and fat-saturated images) were interpreted in 
consensus by two radiologists (SRM (4 years’ experience) and SM(16 
years’ experience) blinded to clinical history and patient details. Non- 
consensus was resolved by discussion with a third radiologist. . Each 
tumour was considered separately; and for every tumour- location:[CS- 
carotid space, JF- Jugular Fossa, MC – multi-compartmental, PPS- para- 
pharyngeal space, SCF- supraclavicular fossa, PCS- posterior cervical 
space, IT- infra-temporal fossa, PVS- peri vertebral space]; slice number; 
laterality (for lesion localisation); intralesional flow voids on T2 and T1 
weighted images; salt and pepper appearance on T2 weighted images; 
necrosis; target appearance (all with binary responses “yes” or “no”); T2 
weighted signal intensity (“hyperintense”, “isointense”, “hypointense”); 
heterogeneity(“mild”, “moderate” or “marked”); typical displacement of 
internal and external carotids arteries (“yes”, “no” or “not applicable”) 
and presence of intralesional haemorrhage on T1-weighted images 
(“yes” or “no”) was recorded. Each lesion was classified on a Likert scale 
representing the confidence that the lesion is a paraganglioma with the 
following grades – “0- unlikely”; “1-uncertain”; “2-probable”. 

3. Statistical analysis 

The entire data was split using stratified random sampling in a 7:3 
ratio. The larger data set was used for all statistical analysis while the 
smaller data set was set aside for validation of the cut-offs obtained. 
Ranking of the texture parameters versus categorical targets of para-
ganglioma (group-A) and non-paraganglioma lesions (group-B + C) was 
done using F statistics, and the image texture variables with p values 
<0.05 were selected for further analysis. Out of the 520 texture pa-
rameters, 145 were selected. The highly correlated texture parameters 
were subsequently considered redundant and were filtered out. For this, 
the Pearson’s correlation coefficient between each of the 145 texture 
features was determined. For each texture parameter, the count of 
correlated columns was established for a threshold of Pearson correla-
tion coefficient r = 0.62. The column with the most correlated additional 
columns was retained, and all the other correlated columns were filtered 
out. This was repeated until only 14 texture features were retained for 
further analysis. 

Box and whisker plots were used for data visualization (Fig. 3). The 
selected texture features were tested for normality using the Kolmogorov- 
Smirnov (K–S) test. The Mann- Whitney U test was used to compare the 
texture parameters between paragangliomas and NSTs(group A versus B), 
and between paragangliomas versus non-paraganglioma lesions (group A 

Table 1 
Pathology of the various lesions included in the study and their anatomical 
distribution in the supra and infrahyoid neck.  

Paraganglioma 38 (54.298%) 

Benign 33 
28 CS/4 J F/ 1 
MC 

Malignant 5 5 CS 
Nerve sheath tumour 18(25.71%) 

Neurofibroma 2 2 CS 

Schwannoma 16 13 CS/2 PPS/ 
SCF 

Miscellaneous lesions 14(20.00%) 
Metastatic Papillary carcinoma 2 1 PCS, 1 MC 
Malignant Rhabdoid mesenchymal tumour 1 1 PPS 
Aggressive lymphoma 1 1 CS 
Chondroid lesion/ chondrosarcoma/ Osteochondroma 
with malignant transformation 

3 
1 IT/1 PPS/1 
IT 

Nasopharyngeal angiofibroma 2 2 MC 
Synovial sarcoma 1 1 PVS 
Sinonasal Glomangiopericytoma 1 1 PPS 
High-grade vasoformative neoplasm/Monophasic 
synovial sarcoma 1 1 IF 

Metastatic carcinoma – unknown primary 2 1 PCS/PPS 
Total 70 

CS- carotid space, JF- Jugular Fossa, MC – multicompartmental, PPS- para- 
pharyngeal space, SCF- supraclavicular fossa, PCS- posterior cervical space, IT- 
infratemporal fossa, PVS- peri vertebral space. 
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versus B + C). The false discovery rate was controlled using the Benja-
mini–Hochberg procedure with a corrected p-value of <0.05 being taken 
as significant. 

Receiver Operator Characteristics (ROC) curve (Fig. 4) was calcu-
lated for the texture features found to be significantly different between 
the groups using the testing data set. Bootstrapped Youden index was 
used to obtain the optimal cut-off with associated sensitivity and spec-
ificity from the testing set(n-49). This cut off was then applied to the 

validation dataset (n-21) and sensitivity, and specificity was deter-
mined. Logistic regression models were trained to differentiate a para-
ganglioma from a non-paraganglioma lesion. Multinomial logistic 
regression with the stochastic average gradient (SAG) solver was used. 
All categorical data were normalised using z-score (Gaussian) normal-
isation. A forward feature selection loop was used to identify the best 
subset of features for algorithm training. The loop starts with no feature 
selected and iteratively the feature that improves the model the most is 

Fig. 2. a The T2 weighted DIXON fat-saturated images were opened, and two radiologists drew a 2dimensional ROI on the slice with the largest bulk of the tumour. 
Areas of haemorrhage, necrosis and the peripheral part of the tumour were avoided. Image normalisation and pixel resampling were done, followed by texture 
extraction from the original and filtered images. Laplacian of Gaussian and wavelet-based filtration was used. b A flow chart summarizing how texture features were 
obtained and further analysed. 
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added to the feature set. Additional parameter optimisation loop was 
run to identify the optimal learning rate/ step size strategy and the prior 
distribution of the coefficients in the resulting model (Uniform; Gauss or 
Laplace). The feature selection and parameter optimization loops were 
run on the training set alone with the testing set being held entirely 

separate from model training to avoid the peeking effect. A total of two 
models were trained – M1- using texture features and M2 – using both 
texture and radiologist identified features. The models were evaluated 
for reproducibility on the validation set (n = 21), and the diagnostic 
accuracies were determined (Fig. 2 b). All data handling and logistic 

Table 2 
First-order and second-order grey-level co-occurrence matrix-based texture parameters were obtained from the normalized original images and from filtered images. 
Wavelet-based and Laplacian of Gaussian Filters were used. A total of 520 texture parameters were obtained.  

Informational Measure of Correlation (IMC) 1; Informational Measure of Correlation (IMC) 2; Inverse Difference Moment (IDM); Maximal Correlation Coefficient 
(MCC); Inverse Difference; Moment Normalized (IDMN); Inverse Difference (ID); Inverse Difference Normalized (IDN). 

Fig. 3. Box and whisker plot of the texture features found to be significantly different between non-paragangliomas and paragangliomas. The texture feature plotted 
is displayed along the longitudinal axis. The central box represents the values from the lower to upper quartile (25 to 75 percentile). The middle line represents the 
median. The horizontal line extends from the minimum to the maximum value, excluding outside and far out values which are displayed as separate points. The last 
two boxes represent the difference in texture features between paragangliomas and nerve sheath tumours. (Inverse Difference (ID); Informational Measure of 
Correlation (IMC) 2). 
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regression training were done on KNIME Analytics Platform- 4.1.0 (htt 
ps://www.knime.com/downloads) [18]. MedCalc Statistical Software 
(version 14.8.1, MedCalc) was used for statistical analysis and to 
generate the graphs. 

4. Results 

A total of 70 lesions, including 38 paragangliomas, 18 nerve sheath 
tumours and 14 other neck lesions were included in the study. Median, 
5th and 95th Percentiles for the parameters across the four groups – 

Fig. 4. a Receiver Operating Characteristic (ROC) curve of the true positive rate (Sensitivity) plotted as a function of the false positive rate (100-Specificity) for 
different cut-off points for the texture features found to be significantly different between (a) paragangliomas and non-paraganglioma lesions and (b) between 
paragangliomas and nerve sheath tumours. Inverse Difference (ID); Informational Measure of Correlation (IMC) 2. 
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group-A, B, C and B + C were calculated and is presented in Table 3. 

4.1. Paraganglioma versus non-paraganglioma lesions (Group A versus 
B + C) 

Of the total 14 features compared; ten texture features were found to 
be significantly different between the two groups (adjusted p-value 
<0.05) (Table.3). The diagnostic accuracies of the cut-offs obtained for 
the texture parameters from the testing-set, along with the associated 
cut-offs are provided in Table 4. The minimum first-order-histogram 
values obtained from the normalized original images was lower in 
paragangliomas [113.14 ± 96.6- mean +-S.D] as compared to non- 
paraganglioma lesions [185.32 ± 113.62 mean+-S.D]. Wavelet HHH 
glcm Cluster Prominence had the most significant AUC (0.727) with a 
81.48 % sensitivity and 59.09 % specificity in paraganglioma identifi-
cation. First-order-Kurtosis obtained from the wavelet LHL filtered im-
ages was lower in paragangliomas (3.71 ± 1.09 mean +-S.D) as 
compared to non-paraganglioma lesions (5.3 ± 3.04 mean +-S.D) with 
62.96 % sensitivity and 68.18 % specificity. Similarly, first-order kur-
tosis from wavelet HHH filtered images was lower in paragangliomas 
(3.59 ± 0.75mean +- S.D) versus non-paragangliomas (4.26 ± 1.18 
mean+-S.D). Amongst the other texture parameters, wavelet LLH glcm 
Id had an AUC of 0.71(95CI, 0.563− 0.831) with a 96.3 % sensitivity and 
40.91 % specificity.(Figs. 3 and 4a). 

4.2. Paraganglioma versus NSTs (group A versus B) 

Two texture features were found to be significantly different between 

NSTs and paragangliomas when adjusted for multiple comparisons. 
Paragangliomas had a lower minimum greyscale value (113.14±96.6 
mean+-S.D) compared to NSTs (213.85±130.03 mean +- S.D). A cut off 
of ≤202.5758 had 85.19 % sensitivity and 61.54 % specificity in iden-
tifying a paraganglioma from a NST (Figs. 3 – last two plots and 4 b). 
GLCM correlation a second-order texture parameter from the Wavelet 
LLH filtered images were lower in paragangliomas versus NSTs with an 
AUC of 0.641. 

4.3. Radiological image analysis 

36 paragangliomas (n = 38) were hyperintense on T2 weighted im-
ages [94.74 % (95CI, 82.25–99.36)] with 26 showing mild [68.42 % 
(95CI, 51.35–82.5)] and 11 demonstrating moderate T2heterogeneity 
[28.95 % (95CI, 15.42–45.9)]. Intralesional flow voids were seen in 23 
masses on the T2 weighted images[60.53 % (95CI, 43.39–75.96)] and in 
16 lesions on T1 weighted images[42.11 % (95CI, 26.31–59.18)]. The 
characteristic displacement of the internal and external carotids arteries 
was seen in a total of 31 tumours [81.58 % (95CI, 65.67–92.26)]. The 
classical salt and pepper appearance was seen in 13 cases[33.33 % 
(95CI, 20.63–49.02)], with intra lesional haemorrhage being present in 
8 [21.05 % (95CI, 9.55–37.32)]. Necrosis was noted in 8 [21.05 % (95CI, 
9.55–37.32)] giving rise to a spurious target appearance in 4 of them 
[10.53 % (95CI, 2.94–24.8)]. All the NSTs (n = 18) were hyperintense 
on the T2w sequences, with ten showing mild heterogeneity [55.56 % 
(95 %CI 30.76–78.47)] and 7 being moderately heterogeneous [38.89 % 
(95 %CI 17.3–64.25)]. 5 out of 18 NSTs showed intra lesional flow void 
on T2w images [27.78 % (95 %CI 9.69–53.48)]; with necrosis being seen 

Table 3 
Texture parameters selected for further analysis using two-step dimensional reduction were compared between the two sets - paragangliomas versus non- 
paraganglioma lesions and paraganglioma versus nerve sheath tumours using Mann- Whitney-U test with an adjusted p-value of<0.05 being taken as significant. 
(Inverse Difference (ID); Informational Measure of Correlation (IMC) 2).  

+Texture features Nerve sheath 
tumour N = 13 
Group B 

Paraganglioma 
N = 27 Group A 

Other neck 
lesions N = 9 
Group C 

Non-paraganglioma 
lesions (n = 22) Group 
B + C 

P-value(* is significant adjusted for multiple 
comparisons)  

Median  
(5th and 95th 

percentile) 

Median  
(5th and 95th 

percentile) 

Median  
(5th and 95th 

percentile) 

Median (5th and 95th 

percentile) 
Paraganglioma versus all 
non-paraganglioma lesion A 
versus B + C 

Paraganglioma versus 
Nerve sheath tumours 

original glcm Auto 
correlation 

1283.227 (379.532 
3185.353) 

1453.998 (510.98 
6552.004) 

1461.841 
(395.824 
1780.55) 

1372.534 (395.824 
3072.483)   

wavelet-LLH glcm Id 0.173 (0.111 
0.233) 

0.153 (0.11 0.213) 0.227  
(0.154 0.356) 

0.194 (0.131 0.292) 0.012* 0.427 

log-sigma-5− 0-mm- 
3D glcm Cluster 
Shade 

61.688 (15639.997 
1512.152) 

589.161 (1197.333 
6698.538) 

722.119 
(7494.751 
692.117) 

29.883 (7494.751 
1246.099) 

0.026* 0.199 

wavelet-LHL 
firstorder Kurtosis 

4.319  
(2.707 7.908) 

3.678 (2.065 5.268) 3.914 (3.195 
16.553) 

4.219 (2.979 8.812) 0.022* 0.071 

wavelet-HLH 
firstorder Range 

277.5 (121.051 
455.191) 

313.932  
(179.891 589.79) 

204.19 (140.822 
311.87) 

252.416 (140.822 
385.198) 

0.023* 0.411 

wavelet-HHH 
firstorder Kurtosis 

3.877 (2.365 
5.522) 

3.547 (2.69 5.028) 3.932 (3.017 
7.338) 

3.926 (3.017 6.871) 0.013* 0.103 

original firstorder 
Minimum 

256.252  
(3.214 444.176) 

102.733  
(30.566 296.279) 

138.495 (8.005 
222.003) 

195.153 (3.214 
323.267) 

0.027* 0.02* 

wavelet-LLH glcm 
Correlation 

0.627 (0.392 
0.712) 

0.606 (0.341 0.695) 0.656 (0.482 
0.764) 

0.651 (0.482 0.756) 0.035* 0.153 

log-sigma-4− 0-mm- 
3D glcm Imc2 

0.992 (0.928 
0.998) 

0.994 (0.97 0.999) 0.978 (0.937 
0.991) 

0.986 (0.937 0.998) 0.03* 0.479 

wavelet-HLL glcm 
Correlation 

0.1 (0.034 0.328) 0.024 (0.132 0.148) 0.01 (0.077 
0.128) 

0.071 (0.035 0.26) 0.07* 0.002* 

wavelet-HHH glcm 
Cluster 
Prominence 

74353.029 
(9065.688 
186994.448) 

74557.012 
(11612.69 
469793.981) 

12502.425 
(1886.475 
76614.47) 

21464.392 (2969.003 
155408.687) 

0.007* 0.199 

wavelet-LHL 
firstorder 
90Percentile 

56.47 (36.786 
106.52) 

67.207 (31.778 
117.895) 

41.493 (19.396 
101.81) 

52.527 (30.718 101.81) 0.033* 0.189 

wavelet-LLL glcm 
Joint Entropy 

7.975  
(6.405 9.943) 

7.688 (5.093 9.304) 8.848 (7.062 
9.382) 

8.016 (6.516 9.382) 0.051 0.231 

log-sigma-5− 0-mm- 
3D firstorder 
Skewness 

0.013  
(0.511 0.551) 

0.116 (0.77 0.849) 0.669 (1.515 
0.534) 

0.053 (1.088 0.543) 0.084 0.348  
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in 9 [50 % (95 %CI 26.02–73.98)]; 10 in 18 of the NST had the char-
acteristic target appearance [55.56 % (95 %CI 30.76–78.47)]. None of 
the NSTs showed salt and pepper appearance. All of the other pathol-
ogies (n = 14) were T2 hyperintense; with 7 [50 % (95CI, 23.04–76.96)] 
showing mild and 5 [50 % (95CI, 23.04–76.96)] moderate heteroge-
neity. Intra lesional flow void on T2 weighted sequences were present in 
5 [35.71 % (95CI, 12.76–64.86)]. Necrosis was present in 7[50 % (95CI, 
23.04–76.96)] with a consequent target appearance seen in 4 lesions 
[28.57 % (95CI, 8.39–58.1)]. The Chi square test showed that intra 
lesional flow void on T2weighted images (Pearson Chi-Square 6.174; p- 
value 0.046) and on T1 weighted images (Pearson Chi-Square 11.239; p- 
value 0.004); salt and pepper appearance on T2weighted images 
(Pearson Chi-Square 10.742; p-value 0.005); the presence of necrosis 
(Pearson Chi-Square 6.461; p-value 0.04); the classic target appearance 
(Pearson Chi-Square 13.04; p-value 0.001) and the typical displacement 
of internal and external carotids arteries (Pearson Chi-Square 24.437; p- 
value <0.001) was significantly different between the above three 
groups. 

19 out of 38 paragangliomas were confidently identified as such (“2- 
probable”) [50 % (95CI, 33.38–66.62)], while 14 were classified as “1- 
uncertain” [36.84 % (95CI, 21.81–54.01)] and 5 as “0- unlikely” [13.16 
% (95CI, 4.41–28.09)]. Out of the 18 NSTs; 14 were classified as being 
“0- unlikely” [77.78 % (95CI, 52.36− 93.59)], and 4 [22.22 % (95CI, 
6.41− 47.64)]as being” 1- uncertain” (Table 5). Classification of a lesion 
as “2-probable” or “0-unlikely” had 79.17 %(95CI, 57.849%–92.868%) 
specificity and 100.00 %(87.656%–100.000%) sensitivity with AUC of 
0.896 (96CI, 0.780 to 0.963) in characterising the lesion as para-
ganglioma. However, on conventional image analysis, 19 of a total 70 
[27.14 % (95CI, 17.2–39.1) cases were tagged “1- uncertain”. 

4.4. Statistical modelling to identify paragangliomas from non- 
paraganglioma lesions 

The model M1 using texture features alone obtained a sensitivity of 
90.91 % (95 %CI, 58.722%–99.770%) with a specificity of 80.00 %(95 
%CI, 44.390%–97.479%) in identifying a paraganglioma. It had an AUC 
of 0.855(95 %CI, 0.633 to 0.968) with a positive likelihood ratio of 
4.545 (95 %CI, 1.298–15.923). Inclusion of radiologists identified pa-
rameters along with texture features (M2) resulted in even better AUC of 
0.905(95 %CI, 0.696 to 0.988) with a sensitivity of 90.91 % (95 %CI, 
58.722%–99.770%) and specificity of 90.00 % (95 %CI, 55.498%– 
99.747%) with a positive likelihood ratio of 9.091 (95 %CI, 
1.403–58.913). While the AUC of M1, M2 and radiologist classification 
were not statistically different, M2 tended towards a better accuracy. In 
the test data (n = 21), both the model M1 and M2 accurately classified 
all “1-uncertain” lesions as either paraganglioma or non-paraganglioma 
lesion. The various parameters used in model training along with the 
features included in the models, model coefficients and statistics are 
provided in supplementary table1. 

5. Discussion 

This study demonstrated that lesion heterogeneity quantified using 
first and second-order texture parameters from a single routine baseline 
sequence can differentiate paragangliomas from non-paraganglioma 
neck lesions. While studies have evaluated the role of texture analysis 
in head-neck epithelial carcinomas and cervical lymph nodal pathol-
ogies, no related literature was found evaluating primary head-neck 
non-epithelial tumours. Texture analysis can differentiate squamous 
cell carcinomas from lymphomas [19–21], predict nodal spread [22], 

Table 4 
ROC curves were plotted for the true positive rate as a function of the false positive rate at different cut-off points of the texture parameters found to be significantly 
different between paragangliomas versus non-paragangliomas, paragangliomas versus NSTs. (Inverse Difference (ID); Informational Measure of Correlation (IMC) 2).  

Paraganglioma versus 
non-paraganglioma lesion 

ROC curves were calculated on the testing data (n = 49) and Area under the curve, bootstrapped Youden Index 
and associated cut-offs and diagnostic metrics were determined along with 95 % confidence intervals. 

The cut-offs’ obtained from the 
validation set was tested on the 
testing set(n = 21), and associated 
sensitivity and specificity were 
tabulated. 

Variable Area under 
the ROC 
curve (AUC) 

95 % 
Confidence 
intervalb 

Associated 
criterion 

95 % Confidence 
interval 

Sensitivity Specificity Sensitivity Specificity 

log sigma 4 0 mm 3D glcm 
Imc2 

0.682 0.533 0.807 >0.9922 >0.9889 >0.9982 62.96 
(42.4–80.6) 

72.73 
(49.8–89.3) 

54.55 
(23.38–83.25) 

80 
(44.39–97.48) 

log sigma 5 0 mm 3D glcm 
ClusterShade 

0.687 0.539 0.812 >519.1965 >-1508.4452 
>1512.1521 

51.85 
(31.9–71.3) 

86.36 
(65.1–97.1) 

36.36 
(10.93–69.21) 

100 
(69.15–100.00) 

original firstorder 
Minimum 

0.685 0.537 0.810 ≤113.462 ≤75.4513 
≤241.7985 

62.96 
(42.4–80.6) 

77.27 
(54.6–92.2) 

54.55 
(23.38–83.25) 

60 
(26.24–87.84) 

wavelet HHH firstorder 
Kurtosis 

0.707 0.560 0.828 ≤3.7792 ≤3.5473 ≤5.1336 74.07 
(53.7–88.9) 

63.64 
(40.7–82.8) 

45.45 
(16.75–76.62) 

50 
(18.71–81.29) 

wavelet HHH glcm 
ClusterProminence 

0.727 0.581 0.845 >24704.5087 >4365.4508 
>155408.6871 

81.48 
(61.9–93.7) 

59.09 
(36.4–79.3) 

81.82 
(48.22–97.72) 

70 
(34.75–93.33) 

wavelet HLH firstorder 
Range 

0.69 0.542 0.814 >311.8698 >252.8476 
>455.1905 

51.85 
(31.9–71.3) 

81.82 
(59.7–94.8) 

36.36 
(10.93–69.21) 

80 
(44.39–97.48) 

wavelet LHL firstorder 
90Percentile 

0.678 0.530 0.805 >63.6969 >50.1495 
>106.5197 

55.56 
(35.3–74.5) 

81.82 
(59.7–94.8) 

54.55 
(23.38–83.25) 

80 
(44.39–97.48) 

wavelet LHL firstorder 
Kurtosis 

0.692 0.544 0.816 ≤3.8132 ≤2.6763 ≤5.2679 62.96 
(42.4–80.6) 

68.18 
(45.1–86.1) 

45.45 
(16.75–76.62) 

40 
(12.16–73.76) 

wavelet LLH glcm 
Correlation 

0.677 0.528 0.803 ≤0.6686 ≤0.6531 ≤0.6957 88.89 
(70.8− 97.6) 

45.45 
(24.4–67.8) 

81.82 
(48.22–97.72) 

30 (6.67–65.25) 

wavelet LLH glcm Id 0.71 0.563 0.831 ≤0.2128 ≤0.1949 ≤0.2701 96.3 
(81.0–99.9) 

40.91 
(20.7–63.6) 

81.82 
(48.22–97.72) 

40 
(12.16–73.76) 

Paraganglioma versus 
nerve sheath tumour 

ROC curves were calculated on the testing data (n = 40) and bootstrapped Youden Index was obtained with 
associated optimal cut off; sensitivity and specificity. 

The cut off obtained from the 
validation set was tested on the 
testing set(n = 16), and associated 
sensitivity and specificity were 
calculated. 

original first-order 
Minimum 

0.729 0.566 0.857 ≤202.5758 ≤109.211 
≤241.7985 

85.19 
(66.3–95.8) 

61.54 
(31.6–86.1) 

81.82 
(48.22–97.72) 

60 
(14.66–94.73) 

wavelet LLH glcm 
Correlation 

0.641 0.474 0.786 ≤0.6686 ≤0.6531 ≤0.6957 88.89 
(70.8–97.6) 

46.15 
(19.2–74.9) 

81.82 
(48.22–97.72) 

20 (0.51–71.64)  
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response to chemoradiotherapy [23] and p53 status [24] in head neck 
squamous cell carcinomas. Because of such promise, we hypothesized 
texture analysis could differentiate non-epithelial neck lesions as well. 
While advanced imaging sequences such as arterial spin labelling and 
dynamic contrast MRI have also found similar applications [25,26] 
texture analysiscan be used on routine sequences, allowing greater 
avaialbility. . 

Imaging texture is a mathematical extension of visual cues such as 
heterogeneity used by radiologists [15,27]. For example, type 1 
schwannomas, with high cellularity, nuclear palisading and Verocay 
bodies are relatively homogenous on T2 imaging. Type 2 schwannomas 
have loosely organised cellular structures with areas of myxomatous and 
cystic changes and hence are T2 heterogeneous with areas of T2 
hyperintense cystic degeneration [28]. Paragangliomas, on the other 
hand, are highly vascular. The flow voids in addition to intratumoral 
bleeds give rise to the classical “salt and pepper” appearance with T2 
imaging having 40 % sensitivity in diagnosing a paraganglioma [29]. 
Since T2 images are commonly used as a baseline image sequence, we 
hoped that texture analysis could objectify the visual cues from the T2 
images, thus avoiding contrast administration. 

First-order texture evaluates various features of the histogram ob-
tained from the frequency of grey levels in the tumour. The first-order 
minimum would be the lowest greyscale value seen in the histogram 
of the tumour while skewness quantifies the degree of asymmetry in the 
distribution of grey values and how much it deviates from a normal 
distribution. Kurtosis similarly shows how "peaked the distribution is"; 
and whether the maximum grey values are concentrated towards the tail 
or the middle of the histogram [15,27]. Paragangliomas in our study had 
lower minimum greyscale histogram values as compared to NSTs and 
other neck lesions. This may be due to paragangliomas having 
intra-tumoural flow voids on T2weighted images (which appear dark) 
with the resultant lower minimum greyscale values. Paragangliomas 
also had a lower kurtosis on the wavelet filtered images as compared to 
both NSTs and other neck lesions. The salt and pepper appearance of 
paragangliomas would result in a less peaked distribution of the grey 
values in the histogram and hence the lower kurtosis values (Fig. 5). 
Meanwhile the T2 hyperintensity seen because of the myxomatous areas 
in NSTs, would result in a greater peaked distribution of the grey values. 
Other neck lesions are usually also more T2 hyperintense, thus 
explaining their more peaked histograms. 

Second-order parameters describe the spatial distribution of the pixels 
in a tumour and would quantify the voxel to voxel variability of lesions 
based on the underlying differences in tissue architecture. While a 
detailed discussion of the underlying mathematics would be beyond the 
scope of this text – the several of the second-order texture parameters 
found significant in our study would reflect the differences in histological 
architecture, cellular distribution, necrosis and haemorrhage of para-
gangliomas and other non-paraganglioma lesions. The most significant of 
these were wavelet LLH glcm ID and wavelet HHH glcm Cluster Promi-
nence with 0.71 and 0.727 respectively as the area under the ROC curves. 

Texture features individually had moderate sensitivity and 

specificity in differentiating paragangliomas from non-paraganglioma 
lesions (Table 2). This was expected because of the overlap between 
the texture features obtained between these groups. We developed a 
logistic regression model, using texture parameters to classify a lesion as 
being either a paraganglioma or a non-paraganglioma, hoping a com-
bination of all the texture features would allow higher accuracies. The 
logistic regression model M1 using texture features alone obtained a 
very high sensitivity with a high positive predictive value in identifying 
paragangliomas. The models obtained accuracy rates similar to that of 
paraganglioma identification by an expperienced radiologist. The 
additional advantage of the model-based approach would be in the 
classification of lesions where a definitive radiological diagnosis is un-
certain (27.14 % in our study). Inclusion of radiologist opinion along 
with texture features tended towards even better accuracies –such a 
model could find utilisation as the second read to the interpreting 
radiologist. 

Fine needle aspirates or biopsies from paragangliomas may be 
mistaken for neurofibromas, neurofibrosarcomas or malignant mela-
nomas [4–6]. The risks of life-threatening bleed; haemorrhage induced 
fibrosis at the operative site and adrenergic crisis renders biopsy a less 
sought diagnostic pathway for paragangliomas. Imaging, thus, remains 
the primary workhorse of preoperative paraganglioma diagnosis. T2 
imaging characteristics, classical neck space location and enhancement 
patterns on CEMRI are used in conjunction for the preoperative diag-
nosis of suspected paragangliomas with a high diagnostic accuracy 
[30–32]. However, a third of all paragangliomas are familial, and up to 

Table 5 
The diagnostic performance of conventional imaging in paraganglioma identification.   

Confidence lesion is a Paragangliomas. 

Paraganglioma versus Non- Paraganglioma lesions  

Count 
Non-Paraganglioma lesions 

Count 
Paraganglioma 

Row Total 
Count/Row Total% Count/Row Total% 

Full dataset (n = 70) 
0- unlikely 28 84.85 % (95CI,68.1− 94.89) 5 15.15% (95CI,5.11− 31.9) 33 
1-uncertain 4 22.22 % (95CI,6.41− 47.64) 14 77.78 % (95CI,52.36− 93.59) 18 
2-probable 0 0% (95CI,0− 17.65) 19 100 % (95CI,82.35− 100) 19 

Training set(n = 49) 
0- unlikely 21 87.5% (95CI,67.64− 97.34) 3 12.5% (95CI,2.66− 32.36) 24 
1-uncertain 1 9.09% (95CI,0.23− 41.28) 10 90.91 % (95CI,58.72− 99.77) 11 
2-probable 0 0% (95CI,0− 23.16) 14 100 % (95CI,76.84− 100) 14 

Testing set (n = 21) 
0- unlikely 7 77.78 % (95CI,39.99− 97.19) 2 22.22 % (95CI,2.81− 60.01) 9 
1-uncertain 3 42.86% (95CI,9.9− 81.59) 4 57.14% (95CI,18.41− 90.1) 7 
2-probable 0 0% (95CI,0− 52.18) 5 100 % (95CI,47.82− 100) 5  

Fig. 5. Paragangliomas (lower panel) are highly vascular. Intra-tumoural flow 
voids on the T2weighted images would result in lower minimum greyscale 
values on the histogram as compared to NSTs(upper panel). NSTs are more 
heterogenous with Antoni A and B areas providing different signals on T2 im-
aging with multiple T2 hyperintense areas. This results in more significantly 
peaked curve of the histogram as compared to paragangliomas. 
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85 % of familial paragangliomas are multicentric [10,11]. Thus in par-
agangliomas, a follow up nuclear scan is often performed after a 
contrast-enhanced MRI based diagnosis to rule out multicentric disease. 

Texture analysis may find a place in the imaging workup of such 
lesions where the model may be used for lesion identification or as a 
second read (Fig. 6). Patients with neck lesions may be triaged using the 
statistical models to undergo a DOTANOC scan based on the T2 images 
directly, thus foregoing gadolinium administration. At the same time, 
lesions predicted to be a NST or non-paraganglioma lesion may undergo 
a CEMRI followed by a biopsy. For such a utilization, we believe an open 
source easily implementable texture analysis software would have 
greater utility [16]. 

5.1. Limitations 

The relatively small sample is a significant limitation. Because of a 
large number of texture parameters obtained; it is imperative to avoid 
multiple comparisons [16]. A two-step dimensional reduction using 
F-statistics and collinearity analysis was used because of the highly 
correlated texture features [33]. False discovery rate was further 
controlled using the Benjamini–Hochberg procedure and a corrected 
p-value of <0.05 was taken as significant. Additionally, all cut off ob-
tained from the bootstrapped Youden index as well as the logistic 
regression was validated on a validation set to evaluate reproducibility. 

The MRI signal in T2 images is relative, with variability between 
scanners and protocols affecting texture features obtained [34–36]. The 
cut-offs obtained from a single institute study on a single scanner may 
not be generalizable. To circumvent this problem, we normalised the 
images before calculating texture to try and improve reproducibility. 
Additionally, the pixel spacing was resampled using sitkBspline to 2,2,2, 
and LoG and wavelet filters were used (Fig. 1) to improve the stability of 
the extracted features. Despite these measures, our study should be 
considered as proof of concept and multi-institutional studies involving 
multiple scanners and imaging protocols would be required to develop a 
clinically implementable statistical model. Alternatively, because of the 
open-source nature of the texture analysis algorithm used in this paper, 
each institute could develop its own scanner specific cut-offs. 

In conclusion, though our results are preliminary and a proof of 
concept; nonetheless we have demonstrated that texture analysis of 
baseline fat-saturated T2 weighted images might be used to differentiate 
a paraganglioma from other non-epithelial neck tumours. After proper 
validation across multiple institutes and scanner protocols, the statisti-
cal models could evolve for clinical practice, triaging patients for a 

nuclear scan, avoiding contrast administration or biopsy and thus 
improving imaging workflow. 
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