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Abstract

The benefits of mammography screening have been controversial, with conflicting findings

from various studies. We hypothesize that unmeasured heterogeneity in tumor aggres-

siveness underlies these conflicting results. Based on published data from the Canadian

National Breast Screening Study (CNBSS), we develop and parameterize an individual-

based mechanistic model for breast cancer incidence and mortality that tracks five stages of

breast cancer progression and incorporates the effects of age on breast cancer incidence

and all-cause mortality. The model accurately reproduces the reported outcomes of the

CNBSS. By varying parameters, we predict that the benefits of mammography depend on

the effectiveness of cancer treatment and tumor aggressiveness. In particular, patients with

the most rapidly growing or potentially largest tumors have the highest benefit and least

harm from the screening, with only a relatively small effect of age. However, the model pre-

dicts that confining mammography to populations with a high risk of acquiring breast cancer

increases the screening benefit only slightly compared with the full population.

Author summary

We developed a mathematical model of breast cancer incidence and mortality in a popula-

tion based on the CNBSS. All but three of the parameters could be estimated indepen-

dently from the literature or taken from the CNBSS report, with the remaining ones

calibrated to the outcomes of the CNBSS. The model includes three forms of heterogene-

ity: tumor aggressiveness describing the growth rate, maximum tumor size and age. The

treatment response is personalized to a certain extent through dependence of the hazard

rate of cancer mortality on tumor aggressiveness and detected tumor size. The model

accurately matches the cancer incidence and survival in the CNBSS. We then used the

model to quantify the benefit and harm of mammography screening, with benefit mea-

sured as the increase in 25-year survival, and harm as the increase in overdiagnosis.
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This is a PLOS Computational Biology Methods paper.

Introduction

Breast cancer is one of three most commonly diagnosed cancers in women, making up 30% of

all cancer cases in women in the United States in 2018 [1]. Screening mammography was

introduced to detect small and more treatable tumors before they cause symptoms. Several tri-

als, such as the Health Insurance Trial [2], the Edinburgh randomised trial [3, 4], the Canadian

National Breast Screening Study (CNBSS) [5] and the Swedish Two-Country Trial [6, 7], have

quantified the benefits of screening mammography. The Swedish study and many others

reported that breast cancer mortality was significantly reduced due to screening mammogra-

phy [6, 8], while the CNBSS found no benefits [5, 9]. In addition, Welch et al. also found no

benefit in their analysis of the SEER data [10]. These contradictory conclusions have spurred

intense debate over the benefits of screening mammography. The wide implementation of

screening mammography has led to an increased rate of small tumor detection and a decreased

rate of large tumor detection over the last decades [10]. The primary cost of screening is over-

diagnosis of small benign or unaggressive tumors that would have remained asymptomatic

during a patient’s lifetime, turning a healthy individual into a patient, and requiring follow-up

tests and treatments with deleterious side effects including death [11]. Overdiagnosis also

results in unwanted economic and psychological burdens. To address the controversy, the

WISDOM study based on a woman’s individual risk was initiated in the United States in 2016

[12].

Studies based on statistical or stochastic models [13–15] have quantified the influence of

various factors such as age, screening frequency and adherence behavior on the benefits and

harmful effects of mammography screening based on different data sources or trials other than

the CNBSS. Most of transition probabilities in these models were held constant or age-depen-

dent, and thus did not include the effects of tumor heterogeneity across patients. Using the

CNBSS, several analyses ([16, 17] and references therein) have estimated screening sensitivi-

ties, transition probabilities and sojourn time distributions. As far as we know, no study has

developed a mathematical model to quantify the benefits and harm of screening that explicitly

takes tumor heterogeneity into consideration. In this work, we propose a mechanistic model

focusing on differences among individuals that provides a mathematical tool to gain insight

into breast cancer progression. This model includes all possible transitions of breast cancer

before and after detection from cancer incidence and detection through progression, treat-

ment and mortality. Our central focus is on unmeasured heterogeneity, which we include

through variation in the aggressiveness of tumor growth and maximum tumor size. By includ-

ing unaggressive cancers (tumors with small aggressiveness of tumor growth and/or maximum

tumor size), we are able to model the role of unmeasured heterogeneity in incidence levels,

detected tumor sizes, and long-term outcomes to address the balance between costs and bene-

fits of screening. The benefits are measured as the increase in 25-year survival. The costs are

the increase in overdiagnosis quantified in two ways, through the difference in the number of

patients diagnosed [18], and through the number who would have died due to other causes if

treatment were relatively ineffective.

The proposed model is designed to first reproduce the cancer incidence and mortality in

the CNBSS with a minimum of parameter fitting to the data itself [5]. By varying key model

parameters, we simulate different scenarios of tumor aggressiveness and cancer treatment

effectiveness to quantify their effect on the benefit and harm of mammography screening in a

population.
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The paper first presents the model framework and describes how parameters were esti-

mated from the literature and the CNBSS. Because of the focus on unmeasured differences in

underlying cancers, we term this the Breast Cancer Heterogeneity Aggressiveness Model

(BCHAM). Using BCHAM, we experiment with the effectiveness of treatment and the under-

lying mean and variance of tumor aggressiveness to identify when mammography should pro-

vide the greatest benefit and the least harm.

Materials and methods

The CNBSS

The CNBSS has been described in detail [5, 19], and we here summarize its key features (Fig

1). The CNBSS was designed to investigate the benefits of mammography screening in women

aged 40–59. The patients were followed up for up to 25 years (22 years on average). A popula-

tion of 89, 835 healthy women aged 40–59 was randomly assigned to mammography (five

annual mammography screens) and control (no mammography). Women in the mammogra-

phy arm received both annual mammography and physical examination for the first 5 years of

follow-up. In the control arm, women aged 40–49 received only a single physical examination

at enrollment, and women aged 50–59 received annual physical examination for the first 5

years of follow-up. Participants were considered eligible if they were in good health, had no

mammography in the previous 12 months, and had no history of breast cancer. The number

of detected breast cancers, breast cancer mortality and all-cause mortality was recorded during

the follow-up period.

BCHAM: An individual-based stochastic model

We use a five-compartment model to track the number of women at each cancer stage via the

probabilities and rates of transition between consecutive stages (Fig 2). Let a denote the age of

a woman at enrollment and t the time since the beginning of follow-up. The rate of cancer

incidence, ca(t), is a bell-shaped function based on the report of Canadian Cancer Registry and

Health Statistics Division [20]. The rate of non-breast cancer mortality is captured by an expo-

nential function ha(t) obtained from the 1991 Canadian statistics reported in [21].

Several models of tumor growth have been used in the literature [22, 23]. We model

tumor diameter at time t with initial diameter dini at initial time tini, d(t, tini, dini, k), in

Table 1, with a Gompertz model of human breast cancer growth [22]. The key parameter k is

the tumor aggressiveness constant. Fig 3A illustrates the effects of tumor aggressiveness k
and maximum tumor size dmax on the Gompertz growth. Detection sensitivities of a tumor

are modeled by sigmoid functions [24]. Sm(d), Sp(d) and Ss(d) denote the tumor detection

sensitivities of mammography, physical screening and self-examination respectively during

the follow-up period. To capture undetected cancers entering the study, we let Sb(d) be the

tumor detection sensitivity of self-examination before the beginning of the study to eliminate

candidates with noticeable tumors. Mathematical formulas of these functions together with

their parameters are provided comprehensively in Table 1. Let td represent the time when a

tumor is detected (the time when a patient moves from Stage 2 to 3). Suppose that breast can-

cers originate from a single cell of the diameter d0 at time t0, the time when a woman moves

from Stage 1 to 2. Let dde = d(td, t0, d0, k) be the size of a tumor at detection time td > t0. The

hazard of cancer mortality depends on the size at detection, tumor aggressiveness and time

since detection according to h(dde, k, t − td) in Table 1, which follows a two-parameter Wei-

bull distribution based on the probability of cancer mortality [25]. This function includes a

parameter α that captures the effectiveness of treatment. The effects of α and detected tumor
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size dde on the hazard rate of cancer mortality are depicted in Fig 3B. All parameter values

are presented in Tables 1 and 2.

At enrollment, the participants can be in either the healthy or the undetected cancer com-

partment. As time passes, they can transfer between stages (Fig 2).

Fig 1. Flow diagram of the CNBSS [19]. Values in parentheses indicate the number of individuals in each compartment.

https://doi.org/10.1371/journal.pcbi.1008036.g001
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Stage 1. An individual in the healthy compartment may develop undetected breast cancer at

a rate ca(t) or die due to other causes apart from breast cancer at a rate ha(t) (solid

arrows in Fig 2).

Stage 2. During follow-up, an individual with undetected cancer can be detected with a prob-

ability of Sj(d), j 2 {m, p, s}, or die of other causes at a rate of ha(t) (long-dashed

arrows in Fig 2).

Stage 3. An individual with detected cancer may die of breast cancer at a rate of h(dde, k, t − td)
or of other causes at rate ha(t) (short-dashed arrows in Fig 2).

Here we assume that once an individual gets diagnosed, they will be labeled as detected can-

cer for the rest of their life regardless of survival status, which results in no individuals moving

from Stage 3 to Stage 1. Furthermore, it should be noted that tumor aggressiveness k, dmax and

age are incorporated as individualized factors. We simulate a population of N0 individuals.

The total women in the i-th compartment at time t is
PN0

k¼1
xk
i ðtÞ where xk

i ðtÞ; i ¼ 1; :::; 5 is an

indicator function of the stage i of an individual k at time t.

Parameter calibration based on the CNBSS

We simulate the model using the CNBSS [5] to calibrate model parameters that cannot be esti-

mated independently from the literature. In the CNBSS, the large number of breast cancers

detected during the first year of follow-up (253 and 170 diagnosed cancers in the mammogra-

phy and control arms respectively (Table 1 in [5])) suggests that at enrollment the participants

may have been either in the healthy or undetected cancer compartment. To capture this, we

Fig 2. Diagram of the stages of breast cancer incidence and mortality in BCHAM. Solid arrows indicate transitions from the

healthy state, long-dashed arrows from the undetected state, and short-dashed arrows from the detected state.

https://doi.org/10.1371/journal.pcbi.1008036.g002
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Table 1. Definitions, values and units of model parameters (see also Table 2). Citations indicate the source for parameter values, with three parameters estimated from

the data as noted.

Parameters Values Units

Cancer mortality hazard parameter Q [26] 0.0067 1/mmZ

Cancer mortality hazard parameter Z (estimated) 1.06

Cancer mortality hazard parameter ω [27] 1.272

Scale factor in cancer incidence γ (estimated) 1.54

Maximum tumor diameter ([22, 23]), dmax unif(1, 128)(1) mm

Tumor diameter of a single cell, d0 0.0124 mm

Current tumor diameter at time t with an initial diameter d0 at time t0, d(t, t0, d0, k) [22]
dmax

dmin

dmax

� �expð� 12kðt� t0ÞÞ mm

Tumor aggressiveness, k [22] logðkÞ 2 N ðmk;skÞ month−1

Cancer incidence parameters μage, σage [20] 76.86, 19.5 years old

True cancer incidence rate, ca(t) [20] 0:1967 g

sage

ffiffiffiffiffiffi
2p
p exp

� ðt þ a � mageÞ
2

2s2
age

 !

(2)
year−1

Rate of other cause mortality, ha(t) [21] 0.208 × 10−5exp(0.1196(t + a)) year−1

Detection sensitivity of a tumor size d, Sj(d), j 2 {b, m, p, s}, [28] expððd � bj2Þ=b1Þ

1þ expððd � bj2Þ=b1Þ

Detection sensitivity constants b1, bm2, bp2, bs2 [19, 28] 1.5, 6.33, 18.5, 20 mm

Detection sensitivity constant bb2 (estimated) 40 mm

Hazard rate of cancer mortality h(dde, k, t), based on [26, 27]
kadZ

deot
o� 1, a ¼

logðQ=15oÞ

logðkmÞ
¼ 3:19

Mean of log(k) adapted from [22], μk −2.9 month−1

Standard deviation of log(k) [22], σk 0.71 month−1

Mean of k, km expðmk þ s
2
k=2Þ ¼ 0:0708

(1) unif(1, 128) is a uniform distribution on the interval [1, 128].
(2) A polynomial approximation of ca(t) was used in programming to speed up model simulations.

https://doi.org/10.1371/journal.pcbi.1008036.t001

Fig 3. A) Effects of tumor aggressiveness k and maximum tumor diameter dmax on Gompertz growth. B) Effects of treatment effectiveness α and tumor

size at detection dde on the hazard rate in a semi-log graph where k is kept fixed at 0.1.

https://doi.org/10.1371/journal.pcbi.1008036.g003
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began each simulated patient as healthy 6 years prior to the study initiation, with 6 years as a

sufficient time period for previously originating cancers to be diagnosed before the first year of

the study. In accordance with the study design, we assume that cancers can be diagnosed only

by self physical examination with the detection sensitivity Sb(d) before the study. Patients who

get diagnosed, die of breast cancer or of other causes before the beginning of the study are not

included in the simulated population. A time step of 1 day is chosen for numerical simulation.

Due to the nature of discretization, possibilities of two events occurring during a period of a

time step are encompassed in our numerical simulations. In particular, Algorithm I in [29]

was used to speed up the simulation of Stage 1 and also eliminate the simultaneous occurrence

of undetected cancer and non-breast cancer death events. Because implementation of Algo-

rithm I requires the integration of the cancer incidence rate ca(t), we used a polynomial

approximation of ca(t). Moreover, we considered all possible cases including the concurrence

of detected cancer and non-breast cancer death events when simulating Stage 2. At any time

during the follow-up, if the death event occurs, the simulation is terminated.

Let Xi be the simulated outcomes, the number of detected cancers and the number of cancer

deaths, and Yi be the corresponding recorded observations from the study. For the jth realiza-

tion of our model, Sj is the sum of squared deviations, i.e. Sj = ∑i(Xi − Yi)
2. The three unknown

parameters (detection sensitivity constant bb2, scale factor in cancer incidence γ and cancer mor-

tality hazard parameter Z) are chosen to minimize the expected value of S. Model calibration is

carried out using the data only from the control arm. Then we simulate the model with the esti-

mated parameters over both arms to reproduce the outcomes of the CNBSS.

Statistics and calculation of overdiagnosis

To quantify the survival and overdiagnosis, we simulated each patient in the BCHAM 100

times, 50 times in the mammography and 50 in the control arm, with identical parameters and

time of onset of cancer. We used Cox proportional hazards (the coxph function in R [30]) to

evaluate the effect of mammography arm on survival from the time of acquiring cancer, thus

avoiding the effects of lead time bias [18]. To illustrate the effects, we conduct these regressions

on data broken up into sextiles of aggressiveness k and maximum tumor diameter dmax, and

by the time of cancer acquisition before, during or after the study. We term these 108 groups

as study subcohorts. To estimate confidence limits, we bootstrap the simulated patients by

sampling with replacement.

We quantify the number of diagnoses by computing the number of patients diagnosed in

each arm and comparing in each subcohort with a χ2 test. To test for overdiagnosis itself, we

compute the probability of death from other causes before death from cancer using the hazards

h and ha from Table 1 and integrating as in [31]. To minimize confounding the benefits of

treatment that sufficiently delay cancer-induced mortality to allow death from other causes,

Table 2. Study-specific values of BCHAM parameters based on the design of the CNBSS [5, 23].

Parameters Values

Age of participants, a unif(40, 59)

Average follow-up time, t 0–22

Population size, N0 see Fig 1

Mammography screening schedule for women aged 40–59 in the mammography arm, Tm {0th, 1st, 2nd, 3rd, 4th}

Physical examination schedule for women aged 40–59 in the mammography arm, Tp {0th, 1st, 2nd, 3rd, 4th}

Physical examination schedule for women aged 40–49, Tp in the control arm {0th}

Physical examination schedule for women aged 50–59, Tp in the control arm {0th, 1st, 2nd, 3rd, 4th}

https://doi.org/10.1371/journal.pcbi.1008036.t002
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we lower the treatment effectiveness parameter in the cancer mortality hazard h to its mini-

mum value α = 2.5.

Results

Fit with CNBSS results

The outcomes of the CNBSS were used to calibrate our model parameters. Only three

unknown parameters (bb2, γ and Z) were estimated using the data from the control arm. The

model was then simulated with the fitted parameters over both arms to reproduce the out-

comes of the CNBSS, which fall in the range of our model projections (more than half within

the first and third quartiles, Figs 4 and 5 and Table 3). Those simulation results include the

number of detected cancers, deaths from cancer, deaths from other causes, and the distribu-

tions of age at diagnosis in both arms. With this minimal calibration, the BCHAM is still able

to capture well the outcomes of the CNBSS.

Benefit and harm of mammography screening

The accurate fit of the model to the data under current conditions motivates testing how vari-

ous model parameters affect the balance between benefit and harm. We first quantify the bene-

fit of increasing the parameter α that describes the effectiveness of treatment (Fig 6). Value of

screening is estimated as the percent increase in survival after 25 years of follow-up. As can be

seen, when cancer treatment is highly effective, mammography screening provides only a min-

imal benefit.

To compare the benefit and harm as a function of age, tumor aggressiveness k, and maxi-

mum tumor diameter dmax, we simulate identical populations in both arms. In the simulation,

participants receive an annual mammography and physical examinations in the mammogra-

phy arm, or only an annual physical examination in the control for the first five years of fol-

low-up. The simulation of each patient was repeated 50 times to reduce variance due to

individual variation. Higher values of k and dmax strongly increase survival benefit from mam-

mography screening, and decrease overdiagnosis since a tumor with large k and dmax is more

likely (if not surely) to be malignant and a patient with this kind of tumor is less likely to be

overdiagnosed (Fig 7A). The effects of age are much weaker, with slightly improved benefits in

the middle age groups (women between the ages of 44 and 56). For patients with unaggressive

tumors (small values of k and/or dmax), mammography provides little benefit and the highest

harm. Our CNBSS-calibrated model estimates that the maximum benefit of mammography

screening is about 1.2% increase in 25-year survival shown in Fig 7A. This insignificant quan-

tity is consistent with the empirical data of the CNBSS which has shown no screening benefit.

The magnitudes of the benefit and harm strongly depend on the study to which the model

parameters are fitted.

We also illustrate overdiagnosis and survivorship as functions of whether patients first

acquired their cancer before, during, or after the study, and of the aggressiveness (k) and the

maximum tumor diameter dmax of their tumor. For overdiagnosis (Fig 8A and 8B), we com-

pare the difference in the number of patients per thousand diagnosed in the mammography

and control arms (top number) with the difference in the number of patients per thousand

who would have died of other causes with less effective treatment (α = 2.5, bottom number).

For survivorship (Fig 8C and 8D), we compare the difference in number of deaths per thou-

sand in the mammography and control arms (top number) with the hazard ratio of death due

to inclusion in the mammography arm (bottom number).

For patients who acquired an undetected tumor before the beginning of the study, those

with ultimately small tumors are highly overdiagnosed and experience reduced survival due to
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Fig 4. The number of simulated (box-plots) versus recorded (red square, CNBSS) breast cancers diagnosed and deaths

from breast cancer in mammography arm (MA) and control arm (CA).

https://doi.org/10.1371/journal.pcbi.1008036.g004
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the effects of the treatment. The greatest survival benefits accrue to patients with largest and

most aggressive tumors. Patients who acquire a tumor during the five years of the study show

a similar but weaker pattern of overdiagnosis, and no strong survival cost of overtreatment of

rapidly-growing but ultimately small tumors. Patients who acquired tumors after the conclu-

sion of the study show no effect of mammography as expected. These observations suggest that

overdiagnosis mainly occurs at the first screening [32].

To capture a high-risk population, such as women with germline BRCA1 and BRCA2

mutations, family breast cancer history, hormone therapy and smoking history, we assume an

increase of breast cancer incidence by a factor of 5 [33] over the baseline case. The main obser-

vations remain largely unchanged. In a high risk population, mammography screening is

slightly more beneficial for younger women, illustrated by a slight shift in the age effect in Fig

7B compared with Fig 7A.

Fig 5. Simulated (box-plots) versus recorded (red square, CNBSS) number of breast cancers diagnosed in mammography arm (MA) and control

arm (CA) by study year.

https://doi.org/10.1371/journal.pcbi.1008036.g005

Table 3. Comparison of simulated versus recorded ages at diagnosis (at cancer death in 25 years) for breast cancer

detecting during screening phase (from the beginning of follow-up to the 5th year) in mammography arm versus

control arm.

Mean Range

Simulated (recorded) Simulated (recorded)

Age at diagnosis (years):

In mammography arm 53.08(52.5) 40.00–63.84(40–64)

In control arm 53.44(52.6) 40.02–63.82(40–64)

Age at cancer death (years):

In mammography arm 60.97(59.9) 40.56–80.76(43–80)

In control arm 60.70(60.6) 41.43–80.30(43–83)

https://doi.org/10.1371/journal.pcbi.1008036.t003
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Fig 6. Survivorship as a function of the treatment effectiveness parameter α.

https://doi.org/10.1371/journal.pcbi.1008036.g006

Fig 7. Benefit (increase in probability of surviving patients after 25 years of follow-up) and harm (increase in probability of patients diagnosed

with cancers that would not have been the cause of death) of mammography screening. Size of dots indicates age, the size increases with age. Color

saturation increases with value of dmax. Markers indicate value of k, triangle (square) corresponds to the smallest (largest) value of k. A) The baseline

case, and B) the high risk case with an increase of breast cancer incidence by a factor of 5 in comparison with the baseline case presented.

https://doi.org/10.1371/journal.pcbi.1008036.g007
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Fig 8. Comparison of simulated mammography and control arms after bootstrap analysis. The aggressiveness class indicates the value of the tumor

aggressiveness parameter k (1 represents k< 0.0275, 2 from 0.0275–0.0400, 3 from 0.040–0.0543, 4 from 0.0543–0.0726, 5 from 0.0726–0.104 and 6

values greater than 0.104). The maximum tumor diameter class indicates the parameter dmax, with all values in mm (1 represents dmax< 22.36, 2 from

22.36–43.36, 3 from 43.36–64.16, 4 from 64.16–85.05, 5 from 85.05–106.4 and 6 values greater than 106.4). Ranges are from 500 bootstrap replicates of

the simulated data. Panels A) and B) show the difference in the number of patients per thousand diagnosed (top number) and the difference in the

number per thousand who would have died first of other causes with ineffective treatment (bottom number, α = 2.5). Colors indicate the significance of

the difference in probability of diagnosis in the two arms (red for higher in mammography arm, green for lower). Panels C) and D) show the difference

in the number of patients per thousand who died of any cause (top number) and the hazard ratio associated with mammography (bottom number) and

colors indicate the significance of the effect of mammography on survival (red for higher hazard in the mammography arm, green for lower).

https://doi.org/10.1371/journal.pcbi.1008036.g008
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Discussion

We have developed an individual-based mechanistic model of breast cancer incidence

and mortality in a population based on the Canadian National Breast Screening Study

(CNBSS). All but three of the parameters could be estimated independently from the litera-

ture or taken from the CNBSS report, with the remaining ones calibrated to the outcomes of

the CNBSS. The model includes three forms of heterogeneity: tumor aggressiveness describ-

ing the growth rate, maximum tumor size and age. The treatment response is personalized

to a certain extent through dependence of the hazard rate of cancer mortality on tumor

aggressiveness and detected tumor size. We did not include more specific differences in

response to therapy, such as through pre-existing resistance, due to lack of sufficient

information.

The model accurately matches the cancer incidence and survival in the CNBSS (see the

Results section). We then use the model to quantify the benefit and harm of mammography

screening, with benefit measured as the increase in 25-year survival, and harm as the increase

in overdiagnosis. The benefit of screening decreases almost to zero with highly effective treat-

ment. In general, patients with the most rapidly growing or potentially largest tumors have

the highest benefit and least harm from mammography screening, with only a relatively small

effect of age.

We measured overdiagnosis in two ways, through the difference in the number of patients

diagnosed (excess incidence [18]), and through the number who would have died of other

causes if treatment were relatively ineffective. The goal of treatment is, of course, to ensure that

all patients have the chance to die of something else, and thus comparing the number of deaths

with relatively effective treatment confounds true overdiagnosis with successful treatment. An

alternative defines overdiagnosis as cancers that would not have presented clinically during

the patient’s lifetime [15, 31] which is most appropriate for modeling studies that optimize

timing and type of testing.

Unlike age or other known risk factors, it is difficult in practice to predict specific tumor

characteristics in an individual patient before recommending screening. In addition to

improving mammography technology, increasing the net benefit of screening may require

pretreatment tests that can identify women at the greatest risk of the highly aggressive

cancers.

The CNBSS has been criticized because participants were volunteers [34] and thus possibly

at higher risk than the general population. However, because participants were then random-

ized, this selection of volunteers should only increase the effect size of screening, but not create

a change in direction.

The developed model has several limitations. The parameters from the literature come

from a variety of sources and studies that might not apply across all populations. The remain-

ing three are based on a single study, and future work will test how effectively it can reproduce

the outcome of other clinical trials, especially the Swedish trial [6, 7], by modifying few or no

parameter values. Calibrating this model to the Swedish trial, we hope to comprehend which

factors contribute to the contradicting outcomes of these two studies. In addition, our model-

ing of treatment is quite simplified, without taking into account recent improvements or dif-

ferent treatments for different breast cancer types.

Our model brings a new quantitative tool to bear on the controversy over the use of mam-

mography screening. This CNBSS-based model suggests, in line with recent trials, that the

benefits are sufficiently small and the harm sufficiently large to make screening of dubious

value except in patients destined to have highly aggressive cancers, who of course are difficult

if not impossible to identify in advance.
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