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Accurate alignment of linear accelerator table rotational axis with radiation iso-
center is critical for noncoplanar radiotherapy applications. The purpose of the 
present study is to develop a method to align the table rotation axis and the MV 
isocenter to submillimeter accuracy. We developed a computerized method using 
electronic portal imaging device (EPID) and measured alignment stability over time. 
Mechanical and radiation isocenter coincidence was measured by placing a steel ball 
bearing at radiation isocenter using existing EPID techniques. Then, EPID images 
were acquired over the range of table rotation. A MATLAB script was developed 
to calculate the center of rotation, as well as the necessary adjustment to move the 
table rotational axis to MV isocenter. Adjustment was applied via torque to screws 
at the base of the linac table. Stability of rotational alignment was measured with 
49 measurements over 363 days on four linacs. Initial rotational misalignment from 
radiation isocenter ranged from 0.91–2.11 mm on the four tested linacs. Linac-A 
had greatest error (> 2 mm) and was adjusted with the described method. After 
adjustment, the error was significantly decreased to 0.40 ± 0.12 mm. The adjustment 
was stable over the course of 15 measurements over 231 days. Linac-B was not 
adjusted, but tracked from time of commissioning with 27 measurements over 363 
days. No discernible shift in couch characteristics was observed (mean error 1.40 ± 
0.22 mm). The greater variability for Linac-B may relate to the interchangeable 
two-piece couch, which allows more lateral movement than the one-piece Linac-A 
couch. Submillimeter isocenter alignment was achieved by applying a precision 
correction to the linac table base. Table rotational characteristics were shown to 
be stable over the course of twelve months. The accuracy and efficiency of this 
method may make it suitable for acceptance testing, annual quality assurance, or 
commissioning of highly-conformal noncoplanar radiotherapy programs.
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I. IntroDuctIon

With the increased use of high-dose highly conformal treatments such as stereotactic body 
radiotherapy, accuracy of mechanical and radiation isocenters is paramount.(1) Historically, 
such accuracy was achieved through mechanical coupling of the patient to a frame, such as 
the skull-anchored radiosurgery frames or bite-block-coupled floor stands.(2) In recent years, 
stereotactic techniques are increasingly implemented with frameless methods, which permit 
stereotactic treatments to sites not amenable to mechanical coupling, but introduce additional 
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isocenter uncertainty.(3) Recently, highly noncoplanar techniques have been proposed to provide 
further dosimetric advantages through increased degrees of freedom for treatment planning.(4-6) 
Accurate table rotation about radiation isocenter is an important element of conformal therapy, 
and critically so for noncoplanar methods. Consequently, there is a need for an accurate and effi-
cient method to measure and adjust table rotational isocenter relative to radiation isocenter.

With QA tools typically available today it is difficult to assess the treatment table rotational 
isocenter with submillimeter precision. The standard test for measuring rotational alignment is 
the “star-shot” test where two axes are held constant while a slit field is delivered under various 
rotations of the remaining axis. However, the standard table star-shot test provides alignment 
information only in a single radiation plane, whereas radiation isocenter is best defined over 
the range of all possible gantry and collimator angles. Thus, star-shot methods do not provide 
information on the alignment between the table rotational axis and the true radiation isocenter. 
Another method to assess the rotational alignment of the table is visual inspection of crosshair 
walkout on graph paper. This walkout is difficult to assess in two dimensions to less than a mil-
limeter, even ignoring possible crosshair misalignment. The Winston-Lutz test(7) is commonly 
used to sample combined isocentric accuracy at relevant treatment parameters, but does not 
intuitively indicate the source of misalignment. 

Various semiautomatic tests have been proposed for checking the alignment of linear accel-
erators. Mechanical methods utilizing a platform for laser alignment and a computer-interfaced 
microscope have been used.(8,9) Several authors have published on computerized analysis for 
film star-shots,(10,11) including correlation of film star-shots with optical methods.(12,13) In another 
study, phosphor plates were used to acquire quantitative data on correlation of laser alignment 
with mechanical isocenter.(14) Methods utilizing electronic portal imaging dosimetry (EPID) 
for computerized star-shots or Winston-Lutz analysis are in the literature,(15-17) and these have 
the advantage of not requiring external systems or film. 

This report suggests a complete procedure for couch alignment of Elekta accelerators that 
utilizes a radiation isocenter identification method from the literature,(18) as well as manufac-
turer specifications for the adjustment of linear accelerator tables.(19) This report differs from 
previous studies in several important ways: 1) while previous methods provide a means of 
measuring “wobble” as linac components are rotated, the method presented here also links the 
wobble to the absolute position of the radiation isocenter in space; 2) the method presented 
here uses a direct radiographic measure of radiation isocenter rather than relying on a sur-
rogate for radiation isocenter such as room lasers; 3) the method presented here provides a 
formalism for the mechanical adjustments required to bring linac components into alignment; 
4) data are presented which demonstrates correction of a misaligned table with the proposed 
method, as well as a year’s worth of data on the stability of table characteristics, one of which 
was tracked from the time of commissioning. The accuracy and efficiency of this method may 
make it suitable for acceptance testing, annual quality assurance, and ideally suited for sub-
millimeter alignment of the treatment table for noncoplanar radiotherapy and other precision 
radiotherapy applications.

 
II. MAtErIALS AnD MEtHoDS

The methodology described here relies on a precise knowledge of the radiation isocenter. In 
this report we use the term “radiation isocenter” to refer to that point from which the treatment 
beam axis (that is, the center of the radiation field) has minimum variation over all gantry and 
collimator angles. This is related to, but different from, the definitions of mechanical isocenter, 
laser-defined isocenter or IGRT-derived isocenter, though the location of these points must be 
within the tolerances specified in TG-142.(1) To identify radiation isocenter, the first step is to 
align a radio-opaque object at the point closest to treatment beam axis over many gantry and 
collimator positions. To accomplish this, an 8 mm steel ball bearing (BB) mounted in a Lucite 
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rod (Elekta Synergy Basic Calibration Kit, MRT 9551; Elekta, Stockholm, Sweden) (Fig. 1) 
is placed at radiation isocenter using an existing digital star-shot methodology that is provided 
by the vendor.(19) In this method, the phantom is initially aligned to treatment lasers and eight 
EPID images are acquired (four cardinal gantry angles with 0° and 180° collimator angles at 
each gantry position). The two collimator angles are acquired in order to eliminate the effect of 
any asymmetry in the jaws or MLCs. For each image, the vector difference between the center 
of the BB and the beam axis is calculated. This information is used to calculate the correction 
required to minimize the displacement of the BB and the beam axis. The correction is applied 
via three orthogonal Vernier calipers at the base of the phantom. By iterating this process, 
the residual error in BB placement from radiation isocenter was within 0.11 ± 0.05 mm over 
49 measurements.

 Once the BB is positioned at the radiation isocenter using the above technique, the gantry 
is placed at  0° with a precision level. 15 EPID images are acquired over the range of table 
motion (0°, 30°, 60°, 90°, 90°, 60°, 30°, 0°, -30°, -60°, -90°, -90°, -60°, -30°, 0°; Fig. 2) using 
remotely engaged table motion. The data were acquired counterclockwise and clockwise, since 
the trajectory was observed to take a bifurcated path or loop in some datasets. 

The resulting 15 images are exported to a MATLAB R2010b (The MathWorks, Inc., Natick, 
MA) program written in-house. First, the centroid of the BB in each image is fit by first segment-
ing the field and BB edge and then employing centroid-finding routines using a least squares 
method. The centroid fit is constrained to the projected size of the BB in the imaging plane. The 
BB coordinates in the initial image, which represent radiation isocenter, are defined as the (0,0) 

Fig. 1. BB phantom (left) mounted on linac table. The BB is placed within 0.1 mm of megavoltage radiation isocenter prior 
to the 0° acquisition. Table correction (right) is applied to two screws at the table base, as indicated by arrows. Directions 
are noted for gun (G), target (T), A, and B sides.

Fig. 2. MV image of BB phantom at 0°, 30°, 60°, and 90° rotation, with BB centroid fit indicated with black dot. 15 
images are acquired to map out table rotational axis. 
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coordinate in the MV reference frame. The BB location in the following images sweeps out 
an arc which represents the precession of the BB about the rotational axis of the table (Fig. 3). 
For an idealized table, with its rotation axis exactly aligned to the radiation isocenter, the BB 
location will not change as the table is rotated and the 15 points will all be at (0,0) in the MV 
reference frame. In an actual table, the beam axis is always slightly misaligned and, therefore, 
the BB traces out a semicircle. The maximum rotational error is defined as the maximum vec-
tor error found at any table position. By fitting a circle to the acquired BB locations, the vector 
between the apparent centroid and (0,0) may be calculated. This fit was accomplished with 
a variant of the least-squares Kasa method in MATLAB. The resulting vector represents the 
optimal adjustment to align the table rotation axis with the radiation isocenter. 

Once the adjustment to radiation isocenter has been calculated it can be applied to the table 
base. For the linear accelerators tested here (Elekta Inc., Crawley, UK), the table rotational axis 
is applied by adjustment of the two base fixing screws at the table base by the service engineers 
(Fig. 1). By rotating the screws in the same direction, the rotational axis can be moved in the 
gun-target (GT) plane. Conversely, by adjusting the screws in opposite directions, the rotational 
axis can be moved in the transverse (AB) plane. Care must be taken to ensure that the same 
torque exists on the fixings before and after adjustment. With knowledge of the accelerator 
geometry, an analytical expression exists to translate the adjustment vector described above 
to a rotational adjustment to the screws at the table base.(19) This expression is described in 
Eq. (1) (degrees counterclockwise adjustment to A-side fixing) and Eq. (2) (degrees clockwise 
adjustment to B-side fixing), where XGT and YAB are the prescribed shift in the GT and AB 
planes in millimeters:
   
 θA = XGT/0.01779 + YAB/0.01843 (1) 
   
 θB = XGT/0.01779 – YAB/0.01843 (2)
 

Reproducibility of the method was tested at several stages. To test quality of BB fit, 15 con-
secutive EPID images were acquired without moving the BB and the standard deviation was 
calculated. To test the reproducibility of the imaging caliper system, 15 images were acquired, 
shifting the BB by 1.00 mm with caliper adjustment between images, and the mean and stan-
dard deviation of the difference between desired and calculated BB positions was calculated. 
Finally, end-to-end reproducibility was tested by performing seven consecutive measurements. 
In addition to comparing rotational errors, BB placement with respect to radiation isocenter 
was checked after measurement 4 and 7.

Fig. 3. Typical plot of BB centroid displacement from isocenter at 15 table angles for Linac-A before (left panel) and 
after adjustment (right panel). The calculated adjustment to move the table to radiation isocenter was -1.33 mm towards 
A and -0.04 mm towards T.
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Four linac tables were measured: Linac-A: Elekta Synergy S with HexaPod six degrees 
of freedom tabletop mounted on Elekta Precise table; Linac-B and Linac-C: Elekta Synergy 
with two-piece Q-Fix kVue tabletop (Qfix Systems, Avondale, PA) mounted on Elekta Precise 
table; Linac-D: Elekta Precise with two-piece Q-Fix kVue tabletop mounted on Elekta Precise 
table. The Hexapod tabletop was parked for all measurements. Linac-A was evaluated based on 
TG142 recommendations for stereotactic radiotherapy and Linac-B, -C, and –D were evaluated 
as nonstereotactic machines.

 
III. rESuLtS 

Table alignment was measured on four linacs with 49 measurements over 363 days. The four 
linacs had maximum table alignment error of 2.11, 1.88, 0.91, and 1.10 mm respectively 
(Linac-A, -B, -C, and -D, respectively; Table 1).

Linac-A was shown to exceed the TG142 specification of ± 1 mm from baseline for a stereot-
actic machine and was selected for adjustment using the proposed technique.  Following adjust-
ment to the screws at the table base, rotational error was significantly decreased to 0.40 ± 0.12 
mm (mean ± standard deviation, Fig. 4, p < 0.001). This adjustment was stable over the course 
of 15 longitudinal measurements over the following 231 days (range 0.25—0.65 mm). 

Linac-B was tracked from time of commissioning with 27 measurements over 363 days. The 
alignment error was 1.40 ± 0.22 mm (Fig. 4, range 1.13—1.88 mm). No significant trends in table 
behavior were observed after twelve months of clinical use. However, observed variability for 
the Linac-B table was greater than variability for the Linac-A table (standard deviation of 0.22 
mm vs. 0.12 mm). This may be a result of the interchangeable two-piece tabletop on Linac-B, 
which allows more lateral movement than the one-piece Linac-A tabletop.

Reproducibility of the method was tested at several stages. For 15 consecutive EPID acquisi-
tions without changing the position of the BB, the standard deviation of BB fit was 0.07 mm. 

Table 1. Maximum rotational error measured on four linacs over 363 days.

  Linac-A  Linac-A 
	 	 (preadjustment)	 (postadjustment)	 Linac-B	 Linac-C	 Linac-D
 Measurements 2 15 27 2 2

 Mean (mm) 2.11 0.40 1.40 0.92 1.19
 Range (mm) 2.03–2.19 0.25–0.65 1.13–1.88 0.91–0.92 1.10–1.28

Fig. 4. Maximum rotational error relative to MV isocenter over time. The Linac-A table (left) before and after adjust-
ment. The table exhibits stable performance for several months postadjustment. The Linac-B table (right) does not exhibit 
significant trends from time of commissioning, but is characterized by greater standard deviation. 
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For 15 consecutive measurements with known 1.00 mm shifts applied to the BB via calipers, the 
mean positional difference was 0.16 mm with standard deviation 0.05 mm (range 0.13–0.21). 
Finally, end-to-end reproducibility was tested by performing seven consecutive measurements on 
Linac-B (Fig. 5). Rotational error was highly reproducible at all table positions, with maximum 
standard deviation of 0.03 mm. Hysteresis in rotation was low, as final BB placement relative to 
radiation isocenter was within 0.13 mm of initial placement. However, different profiles were 
seen with clockwise and counterclockwise rotation.

 
IV. DIScuSSIon

The method described here provides for a semi-automatic measurement of table rotation align-
ment that is accurate (on the order of 0.2 mm) and efficient (< 1 hr) using existing hardware and 
software. It furthermore provides the necessary adjustment to align the rotational axis of the 
table to radiation isocenter with submillimeter accuracy. Accurate table rotation is critical for 
highly conformal radiotherapy, especially noncoplanar methods. The rising interest in frame-
less stereotactic radiotherapy to body sites with image guidance has presented new challenges 
for quality assurance of linear accelerators. The requirement of placing high-dose gradients in 
extreme proximity to critical structures, such as stereotactic radiotherapy of spine malignancies 
and the spinal cord,(20-25) has resulted in more stringent AAPM guidelines for treatment accuracy 
and the development of precision methods to characterize performance.(26) 

In one study of spine stereotactic radiotherapy, translational errors of 2 mm, such as the 
ones found under rotational conditions in this study, resulted in dose error of greater than 
5% to the target and 25% increase in dose to critical structures.(27) In another study of spine 
stereotactic radiotherapy, simulated translational errors of 2 mm increased D5 by up to  
38%.(28) The dosimetric consequences of table rotational error are a function of the number 
of noncoplanar treatment beams used, making it especially important for the proposed highly 
noncoplanar methods.(4-6)

The current standard for the alignment of linear accelerators, AAPM TG-142, specifies a 
test of “coincidence of radiation and mechanical isocenter” on an annual basis.(1) The tolerance 
is ± 1 mm for units where stereotactic radiosurgery is performed. However, this tolerance is 
“from baseline”. Importantly, the report does not specify how this test may be accomplished,  
nor does it make recommendations of how to adjust the coincidence if it is out of tolerance. 
This issue is expected to be addressed in the upcoming AAPM TG-198, which describes how 
to implement TG-142 recommendations. The most commonly used measurements for isoce-
nter coincidence, star-shot and Winston-Lutz tests, do not test alignment relative to radiation 

Fig. 5. Calculated table misalignment is highly reproducible over seven sequential measurements, although different error 
profiles are observed with clockwise versus counterclockwise rotation. 
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isocenter and do not provide the adjustment needed to minimize isocentric misalignment. The 
test developed here may be used for these purposes.  

Other methods for measurement of table rotation have been described in the literature, includ-
ing methods utilizing computerized analysis of film and EPID star-shots, optical tracking, and 
phosphor plates.(9-13,14,15-17,29) The method we describe here differs from these previous studies 
in several important ways. First, the use of integrated linac systems allows efficient measurement 
in less than 1 hour and submillimeter accuracy without the need for external equipment. Some 
previous reported methodologies require specialized devices and/or time-intensive procedures. 
Second, the rotational isocenter is characterized with knowledge of radiation isocenter. That 
is, while previous methods provide a means of measuring “wobble” as linac components are 
rotated,(15-16) the method presented here also links the wobble to the absolute position of the 
radiation isocenter in space. Third, the method uses a direct radiographic measure of radiation 
isocenter rather than relying on a surrogate, such as room lasers, which some methods rely 
on (e.g., Winkler at al.(17)). Finally, the proposed method provides the required adjustment to 
move the rotational axis to radiation isocenter, which can be achieved with greater precision 
than existing methods in the timeframe of a few hours. 

Treatment table rotational performance showed no significant change over the course of 
363 days, both for a table that received adjustment (Linac-A) and a table that was monitored 
from the time of commissioning (Linac-B). Note that, while Linac-B exhibited submillimeter 
stability over time, the initial alignment at installation was relatively poor (over 1 mm). This 
makes this method well-suited to adjust table rotation at acceptance testing, after an accidental 
collision or other deleterious event, or when starting a new SBRT treatment program. Variability 
in error was greater for Linac-B than Linac-A. We hypothesize that the single-piece tabletop 
design of Linac-A has reduced lateral motion under rotation versus the interlocking two-piece 
tabletop of Linac-B, as some lateral play exists in the locking bar.

Reproducibility of a single BB centroid fit over sequential measurements with known 
translations was less than 0.2 mm, limited by the accuracy of the Edmund rotary stages on the 
phantom, the EPID imaging panel, and the BB fitting methods. When averaged over 15 table 
positions, the end-to-end reproducibility of repeated rotational error assessment was less than 
0.1 mm. It is notable that clockwise and counterclockwise rotation produced moderately distinct 
error profiles, most likely due to asymmetry in table braking characteristics. The stability of 
adjustment lends confidence to the use of this method. 

The reader’s attention is called to the fact that adjustment of the table base may propagate 
to other table characteristics, such as height, level, and optical reference frames, which should 
be evaluated after adjustment.

One limitation of this work is that it has only been tested on a single vendor platform. While 
we have used the reference BB method described above, in principle any method could be used 
which is capable of placing a radiographic object at, or close to, the radiation isocenter. Finally, 
the solution for determining radiation isocenter consists of only eight image acquisitions, 
and table rotation was only evaluated at 15 points. Increasing the number of images acquired 
could theoretically lead to better characterization of true mechanical and radiation isocenter 
coincidence. However, given the small standard deviation observed in the adjusted case, the 
implemented method appears sufficient to provide robust tracking of performance. 

 
V. concLuSIonS

The minimization of isocentric error is an important component of a comprehensive QA pro-
gram. Dosimetric studies have demonstrated that relatively small misalignments (e.g., 2 mm) 
can lead to large dose errors (> 25%) in some applications. A computerized method for precision 
measurement and adjustment of table rotation about radiation isocenter has been developed 
using a steel ball bearing and EPID images. Table rotation characteristics were shown to be 



158    Nyflot et al.: Submillimeter alignment of table rotation with MV isocenter 158

Journal of Applied clinical Medical Physics, Vol. 15, no. 2, 2014

stable over the course of twelve months on two linear accelerators, one of which was a new unit 
commissioned just prior to the tests performed here. The accuracy and efficiency of this method 
may make it suitable for acceptance testing, commissioning of highly conformal noncoplanar 
radiotherapy programs, and addition into an annual QA regimen.
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